首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Seven fluorine-substituted 1H-pyrrolo[2,3-b]pyridine derivatives were synthesized based on a lead ligand, 3-[[4-(4-iodophenyl)piperazin-1-yl]-methyl]-1H-pyrrolo[2,3-b]pyridine (L-750,667) and evaluated as potential dopamine D(4) receptor imaging agents by positron emission tomography (PET). Binding affinities of these ligands for the dopamine D(2), D(3), and D(4) receptor subtypes were measured in vitro. Most ligands showed high and selective binding for the D(4) receptor. Ligand 7 had high affinity for the D(4) receptor, whereas ligands 1, 2, and 6 showed high selectivity for the D(4) receptor. LogP values were calculated for the ligands in this series and ligand 6 had the lowest lipophilicity. (18)F-labeled ligand 7 demonstrated a uniform regional brain distribution and a rapid washout in mice, probably due to nonspecific binding. Based on their in vitro binding properties and calculated logP values, ligand 6 appears to have the most promise for dopamine D(4) receptor imaging.  相似文献   

2.
G protein-coupled receptors (GPCRs) are seven-transmembrane (TM) helical proteins that bind extracellular molecules and transduce signals by coupling to heterotrimeric G proteins in the cytoplasm. The human D4 dopamine receptor is a particularly interesting GPCR because the polypeptide loop linking TM helices 5 and 6 (loop i3) may contain from 2 to 10 similar direct hexadecapeptide repeats. The precise role of loop i3 in D4 receptor function is not known. To clarify the role of loop i3 in G protein coupling, we constructed synthetic genes for the three main D4 receptor variants. D4-2, D4-4, and D4-7 receptors contain 2, 4, and 7 imperfect hexadecapeptide repeats in loop i3, respectively. We expressed and characterized the synthetic genes and found no significant effect of the D4 receptor polymorphisms on antagonist or agonist binding. We developed a cell-based assay where activated D4 receptors coupled to a Pertussis toxin-sensitive pathway to increase intracellular calcium concentration. Studies using receptor mutants showed that the regions of loop i3 near TM helices 5 and 6 were required for G protein coupling. The hexadecapeptide repeats were not required for G protein-mediated calcium flux. Cell membranes containing expressed D4 receptors and receptor mutants were reconstituted with purified recombinant G protein alpha subunits. The results show that each D4 receptor variant is capable of coupling to several G(i)alpha subtypes. Furthermore, there is no evidence of any quantitative difference in G protein coupling related to the number of hexadecapeptide repeats in loop i3. Thus, loop i3 is required for D4 receptors to activate G proteins. However, the polymorphic region of the loop does not appear to affect the specificity or efficiency of G(i)alpha coupling.  相似文献   

3.
A series of indole compounds have been prepared and evaluated for affinity at D2-like dopamine receptors using stably transfected HEK cells expressing human D2, D3, or D4 dopamine receptors. These compounds share structural elements with the classical D2-like dopamine receptor antagonists, haloperidol, N-methylspiperone, and benperidol. The compounds that share structural elements with N-methylspiperone and benperidol bind non-selectively to the D2 and D3 dopamine receptor subtypes. However, several of the compounds structurally similar to haloperidol were found to (a) bind to the human D2 receptor subtype with nanomolar affinity, (b) be 10- to 100-fold selective for the human D2 receptor compared to the human D3 receptor, and (c) bind with low affinity to the human D4 dopamine receptor subtype. Binding at sigma (sigma) receptor subtypes, sigma1 and sigma2, were also examined and it was found that the position of the methoxy group on the indole was pivotal in both (a) D2 versus D3 receptor selectivity and (b) affinity at sigma1 receptors. Adenylyl cyclase studies indicate that our indole compounds with the greatest D2 receptor selectivity are neutral antagonists at human D2 dopamine receptor subtypes. With stably transfected HEK cells expressing human D2 (hD2-HEK), these compounds (a) have no intrinsic activity and (b) attenuated quinpirole inhibition of adenylyl cyclase. The D2 receptor selective compounds that have been identified represent unique pharmacological tools that have potential for use in studies on the relative contribution of the D2 dopamine receptor subtypes in physiological and behavioral situations where D2-like dopaminergic receptor involvement is indicated.  相似文献   

4.
Employing the achiral 4-aminopiperidine derivative clebopride as a lead compound, chiral analogues were developed displaying dopamine receptor binding profiles that proved to be strongly dependent on the stereochemistry. Compared to the D1 receptor, the test compounds showed high selectivity for the D2-like subtypes including D2(long), D2(short), D3 and D4. The highest D4 and D3 affinities were observed for the cis-3-amino-4-methylpyrrolidines 3e and the enantiomer ent3e resulting in K(i) values of 0.23 and 1.8 nM, respectively. The benzamides of type 3 and 5 were synthesized in enantiopure form starting from (S)-aspartic acid and its unnatural optical antipode.  相似文献   

5.
A piperazinylbutylisoxazole libary was designed, synthesized and screened for the binding affinities to dopamine D2, D3, and D4 receptors. Several ligands were identified to possess high binding affinity and selectivity for the D3 and D4 receptors over the D2 receptor. Compounds 6s and 6t showed K(i) values of 2.6 nM and 3.9 nM for the D3 receptor with 46- and 50-fold selectivity over the D2 receptor, respectively.  相似文献   

6.
A series of compounds structurally related to aripiprazole (1), an atypical antipsychotic and antidepressant used clinically for the treatment of schizophrenia, bipolar disorder, and depression, have been prepared and evaluated for affinity at D(?-like) dopamine receptors. These compounds also share structural elements with the classical D(?-like) dopamine receptor antagonists, haloperidol, N-methylspiperone, domperidone and benperidol. Two new compounds, 7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one oxalate (6) and 7-(4-(4-(2-(2-fluoroethoxy)phenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one oxalate (7) were found to (a) bind to the D? receptor subtype with high affinity (K(i) values < 0.3 nM), (b) exhibit >50-fold D? versus D? receptor binding selectivity and (c) be partial agonists at both the D? and D? receptor subtype.  相似文献   

7.
To elucidate the molecular basis for the interaction of ligands with the human melanocortin-4 receptor (hMC4R), agonist structure-activity studies and receptor point mutagenesis were performed. Structure-activity studies of [Nle(4), D-Phe(7)]-alpha-melanocyte stimulating hormone (NDP-MSH) identified D-Phe7-Arg8-Trp9 as the minimal NDP-MSH fragment that possesses full agonist efficacy at the hMC4R. In an effort to identify receptor residues that might interact with amino acids in this tripeptide sequence 24 hMC4R transmembrane (TM) residues were mutated (the rationale for choosing specific receptor residues for mutation is outlined in the Results section). Mutation of TM3 residues D122 and D126 and TM6 residues F261 and H264 decreased the binding affinity of NDP-MSH 5-fold or greater, thereby identifying these receptor residues as sites potentially involved in the sought after ligand-receptor interactions. By examination of the binding affinities and potencies of substituted NDP-MSH peptides at receptor mutants, evidence was found that core melanocortin peptide residue Arg8 interacts at a molecular level with hMC4R TM3 residue D122. TM3 mutations were also observed to decrease the binding of hMC4R antagonists. Notably, mutation of TM3 residue D126 to alanine decreased the binding affinity of AGRP (87-132), a C-terminal derivative of the endogenous melanocortin antagonist, 8-fold, and simultaneous mutations D122A/D126A completely abolished AGRP (87-132) binding. In addition, mutation of TM3 residue D122 or D126 decreased the binding affinity of hMC4R antagonist SHU 9119. These results provide further insight into the molecular determinants of hMC4R ligand binding.  相似文献   

8.
Aminomethyl-substituted biaryls bearing a pyrazole or triazole moiety were synthesized and investigated for dopamine and serotonin receptor binding. The N-arylpyrazoles 3b,f,g and 4 revealed Ki values in the subnanomolar range (0.28-0.70 nM) for the dopamine D4 receptor subtype. Employing both mitogenesis and GTPgammaS assays, ligand efficacy was evaluated indicating partial agonist properties. Interestingly, the tetrahydropyrimidine 4 (FAUC 2020) displayed significant intrinsic selectivity for D2(long) over D2(short).  相似文献   

9.
We have applied a fast and high-yielding method for the parallel amidation of 4-[4-(2-methoxyphenyl)piperazin-1-yl]-butylamine yielding analogs of the partial dopamine receptor agonist BP 897. Using this amino scaffold prepared in solution and polymer-bound carboxylic acid equivalents, we have synthesized a series of high affinity dopamine D(3) receptor ligands. The novel compounds were obtained in good to excellent yield and purity. Biological evaluation included determination of binding affinities at hD(2S) and hD(3) receptor subtypes. From the 22 novel structures presented here, compound 4v showed high affinity (K(i) (hD(3)) 1.6nM) and a 136-fold preference for the D(3) receptor versus that for the D(2) receptor subtype. Our results suggest that this derivatization technique is a useful method to speed up structure-activity relationships studies on dopamine receptor subtype modulators.  相似文献   

10.
R P Link  H F DeLuca 《Steroids》1988,51(5-6):583-598
The binding activity of four vitamin D metabolites and/or analogs for the intestinal 1,25-dihydroxyvitamin D3 receptor was evaluated after incubation at 25 degrees C for 1 h or at 0-4 degrees C for 18 h. The incubation conditions, which had no effect on the binding of 1,25-dihydroxyvitamin D3, had a dramatic effect on the binding of 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3 and a small but reproducible effect on 24,25-dihydroxyvitamin D3 binding to receptor. Affinities 10- to 20-fold higher were obtained for 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, and affinities 3-fold higher were obtained for 24,25-dihydroxyvitamin D3 at the 0-4 degrees C/18-h incubation. A comparison of intestinal receptor from chick and pig with nine vitamin D compounds showed no major differences between the two species. The relative affinity of the vitamin D analogs to compete with tritiated 1,25-dihydroxyvitamin D3 for the receptor in pig nuclear extract, expressed as ratios of the molar concentration required for 50% binding of the tritiated 1,25-dihydroxyvitamin D3 compared to nonradioactive 1,25-dihydroxyvitamin D3, are as follows: 1,25-dihydroxyvitamin D3 (1) = 1,25-dihydroxyvitamin D2 = 24-homo-1,25-dihydroxyvitamin D3 greater than 1,24,25-trihydroxyvitamin D3 (4) greater than 25-hydroxyvitamin D3 (21) = 10-oxo-19-nor-25-hydroxyvitamin D3 = 1 alpha-hydroxyvitamin D3 (37) greater than 24,25-dihydroxyvitamin D2 (257) much much greater than vitamin D3 (greater than 10(6)).  相似文献   

11.
Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory "designed ankyrin repeat proteins" (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies.  相似文献   

12.
Abstract: To investigate whether polymorphic forms of the human dopamine D4 receptor have different functional characteristics, we have stably expressed cDNAs of the D4.2, D4.4, and D4.7 isoforms in several cell lines. Chinese hamster ovary CHO-K1 cell lines expressing D4 receptor variants displayed pharmacological profiles that were in close agreement with previous data from transiently expressed D4 receptors in COS-7 cells. Dopamine stimulation of the D4 receptors resulted in a concentration-dependent inhibition of the forskolin-stimulated cyclic AMP (cAMP) levels. The potency of dopamine to inhibit cAMP formation was about twofold reduced for D4.7 (EC50 of ∼37 n M ) compared with the D4.2 and D4.4 variants (EC50 of ∼16 n M ). Antagonists block the dopamine-mediated inhibition of cAMP formation with a rank order of potency of emonapride > haloperidol = clozapine ≫ raclopride. There was no obvious correlation between the efficacy of inhibition of forskolin-stimulated cAMP levels and the D4 subtypes. Dopamine could completely reverse prostaglandin E2-stimulated cAMP levels for all three D4 receptor variants. Deletion of the repeat sequence does not affect functional activity of the receptor. The data presented indicate that the polymorphic repeat sequence causes only small changes in the ability of the D4 receptor to block cAMP production in CHO cells.  相似文献   

13.
Dopamine (DA) acts through five receptor subtypes (D1–D5). We compared expression levels and distribution patterns of all DA mRNA receptors in the spinal cord of wild-type (WT) and loss of function D3 receptor knockout (D3KO) animals. D3 mRNA expression was increased in D3KO, but no D3 receptor protein was associated with cell membranes, supporting the previously reported lack of function. In contrast, mRNA expression levels and distribution patterns of D1, D2, D4, and D5 receptors were similar between WT and D3KO animals. We conclude that D3KO spinal neurons do not compensate for the loss of function of the D3 receptor with changes in the other DA receptor subtypes. This supports use of D3KO animals as a model to provide insight into D3 receptor dysfunction in the spinal cord.  相似文献   

14.
Dopamine is the primary inhibitory regulator of lactotroph proliferation and prolactin (PRL) secretion in vivo, acting via dopamine D2 receptors (short D2S and long D2L forms). In GH4C1 pituitary cells transfected with D2S or D2L receptor cDNA, dopamine inhibits PRL secretion and DNA synthesis. These actions were blocked by pertussis toxin, implicating G(i)/G(o) proteins. To address roles of specific G(i)/G(o)4 proteins in these actions a series of GH4C1 cell lines specifically depleted of individual Galpha subunits was examined. D2S-mediated inhibition of BayK8644-stimulated PRL secretion was primarily dependent on G(o) over G(i), as observed for BayK8644-induced calcium influx. By contrast, inhibitory coupling of the D2S receptor to TRH-induced PRL secretion was partially impaired by depletion of any single G protein, but especially G(i)3. Inhibitory coupling of D2L receptors to PRL secretion required G(o), but not G(i)2, muscarinic receptor coupling was resistant to depletion of any G(i)/G(o) protein, whereas the 5-HT1A and somatostatin receptors required G(i)2 or G(i)3 for coupling. The various receptors also demonstrated distinct G protein requirements for inhibition of DNA synthesis: depletion of any G(i)/G(o) subunit completely uncoupled the D2S receptor, the D2L receptor was uncoupled by depletion of G(i)2, and muscarinic and somatostatin receptors were resistant to depletion of G(i)2 only. These results demonstrate distinct receptor-G protein preferences for inhibition of TRH-induced PRL secretion and DNA synthesis.  相似文献   

15.
The promiscuous D6 receptor binds several inflammatory CC chemokines and has been recently proposed to act as a chemokine-scavenging decoy receptor. The present study was designed to better characterize the spectrum of CC chemokines scavenged by D6, focusing in particular on CCR4 ligands and analyzing the influence of NH(2)-terminal processing on recognition by this promiscuous receptor. Using D6 transfectants, it was found that D6 efficiently bound and scavenged most inflammatory CC chemokines (CCR1 through CCR5 agonists). Homeostatic CC chemokines (CCR6 and CCR7 agonists) were not recognized by D6. The CCR4 agonists CC chemokine ligand 17 (CCL17) and CCL22 bound to D6 with high affinity. CCL17 and CCL22 have no agonistic activity for D6 (chemotaxis and calcium fluxes), but were rapidly scavenged, resulting in reduced chemotactic activity on CCR4 transfectants. CD26 mediates NH(2) terminus processing of CCL22, leading to the production of CCL22 (3-69) and CCL22 (5-69) that do not interact with CCR4. These NH(2)-terminal truncated forms of CCL22 were not recognized by D6. The results presented in this study show that D6 recognizes and scavenges a wide spectrum of inflammatory CC chemokines, including the CCR4 agonists CCL22 and CCL17. However, this promiscuous receptor is not engaged by CD26-processed, inactive, CCL22 variants. By recognizing intact CCL22, but not its truncated variants, D6 expressed on lymphatic endothelial cells may regulate the traffic of CCR4-expressing cells, such as dendritic cells.  相似文献   

16.
为明确H9c2心肌细胞是否能够表达多巴胺受体(dopamine receptor,DR),应用RT-PCR和Westernblot-ting分别检测H9c2心肌细胞和SD成年雌鼠左心室心肌组织中,DR的两种亚型,D1DR和D4DR的表达.结果发现,H9c2心肌细胞可在mRNA和蛋白水平上表达出与SD大鼠心肌组织相同的产物.这说明能以H9c2心肌细胞为研究材料,进一步深入研究心肌D1DR和D4DR基因的表达调控机制以及心肌DR的功能.  相似文献   

17.
Abstract

The Ah receptor nuclear translocator protein (ARNT) is required for binding of the Ah (dioxin) receptor to the xenobiotic responsive element (XRE), and is a structural component of the XRE-binding form of the Ah receptor. The vitamin D receptor requires an accessory protein for binding to the vitamin D responsive element (VDRE) in the osteocalcin gene. Since the vitamin D receptor has similarities to the Ah receptor, we investigated whether ARNT is also required for vitamin D receptor activity. Two lines of evidence demonstrate that ARNT is not required for vitamin D receptor activity, and therefore does not correspond to the vitamin D receptor accessory protein: i) Antibodies to ARNT have no effect on binding of the vitamin D receptor to the VDRE. ii) c4, a mutant of Hepa-1 cells that is defective in ARNT activity, and in which binding of the Ah receptor to the XRE does not occur, possesses a vitamin D receptor with full activity for binding the VDRE.  相似文献   

18.
Monoclonal antibody (Mab) 1D7 is specific for human apolipoprotein (apo) E and blocks binding of lipid-associated apoE to the low density lipoprotein (LDL) receptor. We report here that 1D7 can also block the binding of apoE-free LDL to the LDL receptor. The inhibition of LDL-receptor binding is not due to immunological cross-reactivity between the anti-apoE Mab and apoB, the ligand responsible for the interaction of LDL with the LDL receptor: 1) Mab 1D7 did not react with apoE-depleted LDL; 2) the LDL receptor binding inhibitory activity of 1D7 immunoglobulin G (IgG) preparations could be dissociated from the anti-apoE activity; 3) the inhibition was maintained when the fibroblasts were preincubated with the 1D7 IgG, extensively washed, and only then exposed to 125I-labeled LDL. Rather, it appears that 1D7 recognizes mouse apoE, that mouse apoE-1D7 immune complexes contaminate 1D7 IgG preparations and that the contaminating mouse apoE can compete with 125I-labeled LDL for the LDL receptor. We have demonstrated mouse apoE in IgG preparations of 1D7 but not in those of other anti-apoE Mabs that do not influence LDL-receptor binding. Precipitation of 1D7 IgG with NH4SO4 eliminates both apoE and the capacity of 1D7 to block LDL receptor binding. Finally, mouse apoE can be isolated by immunoaffinity chromatography of mouse serum on immobilized 1D7 Mab. As this is probably not a unique case, the observation has important implications for the use of Mabs as structural probes.  相似文献   

19.
Atypical antipsychotic properties of 4-(4-fluorobenzylidene)-1-[2-[5-(4-fluorophenyl)-1H-pyrazol-4-yl]ethyl] piperidine (NRA0161) were investigated by in vitro receptor affinities, in vivo receptor occupancies and findings were compared with those of risperidone and haloperidol in rodent behavioral studies. In in vitro receptor binding studies, NRA0161 has a high affinity for human cloned dopamine D(4) and 5-HT(2A) receptor with Ki values of 1.00 and 2.52 nM, respectively. NRA0161 had a relatively high affinity for the alpha(1) adrenoceptor (Ki; 10.44 nM) and a low affinity for the dopamine D(2) receptor (Ki; 95.80 nM). In in vivo receptor binding studies, NRA0161 highly occupied the 5-HT(2A) receptor in rat frontal cortex. In contrast, NRA0161 did not occupy the striatal D(2) receptor. In behavioral studies, NRA0161, risperidone and haloperidol antagonized the locomotor hyperactivity in mice, as induced by methamphetamine (MAP). At a higher dosage, NRA0161, risperidone and haloperidol dose-dependently antagonized the MAP-induced stereotyped behavior in mice and NRA0161 dose-dependently and significantly induced catalepsy in rats. The ED(50) value in inhibiting the MAP-induced locomotor hyperactivity was 30 times lower than that inhibiting the MAP-induced stereotyped behavior and 50 times lower than that which induced catalepsy.These findings suggest that NRA0161 may have atypical antipsychotic activities yet without producing extrapyramidal side effects.  相似文献   

20.
A series of novel 1H-pyrazolo-[3,4-c]cyclophepta[1,2-c]thiophenes was prepared and screened at selected dopamine receptor subtypes. Compound 4 (NGB 4420) displayed high affinity and selectivity (>100-fold) for the D(4) over D(2) and other CNS receptors. This compound was identified as a D(4) antagonist via its attenuation of dopamine agonist-induced GTPgamma(35)S binding at D(4) receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号