首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Normal meiosis consists of a single round of DNA replication followed by two nuclear divisions. In the 1st division the chromosomes segregate reductionally whereas in the 2nd division they segregate equationally (as they do in mitosis). In certain yeast mutants, a single-division meiosis takes place, in which some chromosomes segregate reductionally while others divide equationally. This autonomous segregation behaviour of individual chromosomes on a common spindle is determined by the centromeres they carry. The relationship between reductional segregation of a pair of chromosomes and their earlier recombinational history is also discussed.  相似文献   

2.
G. Sharon  G. Simchen 《Genetics》1990,125(3):475-485
Normal meiosis consists of two consecutive cell divisions in which all the chromosomes behave in a concerted manner. Yeast cells homozygous for the mutation cdc5, however, may be directed through a single meiotic division of a novel type. Dyad analysis of a cdc5/cdc5 strain with centromere-linked markers on four different chromosomes has shown that, in these meioses, some chromosomes within a given cell segregate reductionally whereas others segregate equationally. The choice between the two types of segregation in these meioses is made individually by each chromosome pair. Different chromosome pairs exhibit different segregation tendencies. Similar results were obtained for cells homozygous for cdc14.  相似文献   

3.
Y. Hugerat  G. Simchen 《Genetics》1993,135(2):297-308
Diploid yeast strains, homozygous for the mutation spo13, undergo a single-division meiosis and form dyads (two spores held together in one ascus). Dyad analysis of spo13/spo13 strains with centromere-linked markers on five different chromosomes and on a pair of human DNA YACs shows that: (a) in spo13 meiosis, chromosomes undergo mixed segregation, namely some chromosomes segregate reductionally whereas others, in the same cell, segregate equationally; (b) different chromosomes exhibit different segregation tendencies; (c) recombination between homologous chromosomes might not determine that a bivalent undergoes reductional rather than equational segregation.  相似文献   

4.
During meiosis, DNA replication is followed by two consecutive rounds of chromosome segregation. Cells lacking the protein phosphatase CDC14 or its regulators, SPO12 and SLK19, undergo only a single meiotic division, with some chromosomes segregating reductionally and others equationally. We find that this abnormal chromosome behavior is due to an uncoupling of meiotic events. Anaphase I spindle disassembly is delayed in cdc14-1, slk19Delta, or spo12Delta mutants, but the chromosome segregation cycle continues, so that both meiotic chromosome segregation phases take place on the persisting meiosis I spindle. Our results show that Cdc14, Slk19, and Spo12 are not only required for meiosis I spindle disassembly but also play a pivotal role in establishing two consecutive chromosome segregation phases, a key feature of the meiotic cell cycle.  相似文献   

5.
During mitosis, replicated chromosomes (sister chromatids) become attached at the kinetochore by spindle microtubules emanating from opposite poles and segregate equationally. In the first division of meiosis, however, sister chromatids become attached from the same pole and co-segregate, whereas homologous chromosomes connected by chiasmata segregate to opposite poles. Disorder in this specialized chromosome attachment in meiosis is the leading cause of miscarriage in humans. Recent studies have elucidated the molecular mechanisms determining chromosome orientation, and consequently segregation, in meiosis. Comparative studies of meiosis and mitosis have led to the general principle that kinetochore geometry and tension exerted by microtubules synergistically generate chromosome orientation.  相似文献   

6.
Guerra CE  Kaback DB 《Genetics》1999,153(4):1547-1560
During meiosis, homologous chromosomes pair and then segregate from each other at the first meiotic division. Homologous centromeres appear to be aligned when chromosomes are paired. The role of centromere alignment in meiotic chromosome segregation was investigated in Saccharomyces cerevisiae diploids that contained one intact copy of chromosome I and one copy bisected into two functional centromere-containing fragments. The centromere on one fragment was aligned with the centromere on the intact chromosome while the centromere on the other fragment was either aligned or misaligned. Fragments containing aligned centromeres segregated efficiently from the intact chromosome, while fragments containing misaligned centromeres segregated much less efficiently from the intact chromosome. Less efficient segregation was correlated with crossing over in the region between the misaligned centromeres. Models that suggest that these crossovers impede proper segregation by preventing either a segregation-promoting chromosome alignment on the meiotic spindle or some physical interaction between homologous centromeres are proposed.  相似文献   

7.
The behavior of the ZW sex bivalent was investigated in female meiosis of the poisonous snake Bothrops jararaca. The Z is euchromatic and synapses end to end with the W. The W chromosome shows a heterochromatic segment distally in the short arm. Pairing occurs between the long arm of the W and the slightly longer arm of the mediocentric Z. A sex vesicle, similar to the one found in the XY placental mammals, does not occur in snakes. The Z and W chromosomes segregate reductionally in the first meiotic division and equationally in the second.This work is dedicated to the memory of my father Lino Pires de Camargo  相似文献   

8.
The karyotype and male meiosis of Macrolophus costalis Fieber (Insecta, Heteroptera, Miridae) were studied using C-banding, AgNOR-banding and DNA sequence specific fluorochrome staining. The chromosome formula of the species is 2n = 28(24+X1X2X3Y). Male meiotic prophase is characterized by a prominent condensation stage. At this stage, two sex chromosomes, "X" and Y are positively heteropycnotic and always appeared together, while in autosomal bivalents homologous chromosomes were aligned side by side along their entire length, that is, meiosis is achiasmatic. At metaphase I, "X" and Y form a pseudobivalent and orient to the opposite poles. At early anaphase I, the "X" chromosome disintegrates into three separate small chromosomes, X1, X2, and X3. Hence both the autosomes and sex chromosomes segregate reductionally in the first anaphase, and separate equationally in the second anaphase. This is the first evidence of sex chromosome pre-reduction in the family Miridae. Data on C-heterochromatin distribution and its composition in the chromosomes of this species are discussed.  相似文献   

9.
Dicentric chromosomes undergo a breakage-fusion-bridge cycle as a consequence of having two centromeres on the same chromatid attach to opposite spindle poles in mitosis. Suppression of dicentric chromosome breakage reflects loss of kinetochore function at the kinetochore-microtubule or the kinetochore-DNA interface. Using a conditionally functional dicentric chromosome in vivo, we demonstrate that kinetochore mutants exhibit quantitative differences in their degree of chromosome breakage. Mutations in chl4/mcm17/ctf17 segregate dicentric chromosomes through successive cell divisions without breakage, indicating that only one of the two centromeres is functional. Centromere DNA introduced into the cell is unable to promote kinetochore assembly in the absence of CHL4. In contrast, established centromeres retain their segregation capacity for greater than 25 generations after depletion of Chl4p. The persistent mitotic stability of established centromeres reveals the presence of an epigenetic component in kinetochore segregation. Furthermore, this study identifies Chl4p in the initiation and specification of a heritable chromatin state.  相似文献   

10.
Preparations of metaphase chromosomes of the amphibian urodele Pleurodeles poireti were obtained by squashing cells from tailbuds of ten days old embryos which had been in 50% acetic acid. The Q-bands karyotype is described. Frequently the induced secondary constrictions exhibit a bright fluorescence, as do the centromeres, except for that of chromosome XII. In contrast, satellites on chromosomes III, IV, and XI exhibit little fluorescence. This pattern is compared with that in Pleurodeles waltlii. Differences are observable in centromeres of chromosomes III and XII and the proximal part of the long arm of chromosome VII, differences which can be used as chromosome marker in case of hybridization.  相似文献   

11.
Inverted meiosis is observed in plants (Cyperaceae and Juncaceae) and insects (Coccoidea, Aphididae) with holocentric chromosomes, the centromeres of which occupy from 70 to 90% of the metaphase chromosome length. In the first meiotic division (meiosis I), chiasmata are formed and rodlike bivalents orient equationally, and in anaphase I, sister chromatids segregate to the poles; the diploid chromosome number is maintained. Non-sister chromatids of homologous chromosomes remain in contact during interkinesis and prophase II and segregate in anaphase II, forming haploid chromosome sets. The segregation of sister chromatids in meiosis I was demonstrated by example of three plant species that were heterozygous for chromosomal rearrangements. In these species, sister chromatids, marked with rearrangement, segregated in anaphase I. Using fluorescent antibodies, it was demonstrated that meiotic recombination enzymes Spo11 and Rad5l, typical of canonical meiosis, functioned at the meiotic prophase I of pollen mother cells of Luzula elegance and Rhynchospora pubera. Moreover, antibodies to synaptonemal complexes proteins ASY1 and ZYP1 were visualized as filamentous structures, pointing to probable formation of synaptonemal complexes. In L. elegance, chiasmata are formed by means of chromatin threads containing satellite DNA. According to the hypothesis of the author of this review, equational division of sister chromatids at meiosis I in the organisms with inverted meiosis can be explained by the absence of specific meiotic proteins (shugoshins). These proteins are able to protect cohesins of holocentric centromeres from hydrolysis by separases at meiosis I, as occurs in the organisms with monocentric chromosomes and canonical meiosis. The basic type of inverted meiosis was described in Coccoidea and Aphididae males. In their females, the variants of parthenogenesis were also observed. Until now, the methods of molecular cytogenetics were not applied for the analysis of inverted meiosis in Coccoidea and Aphididae. Evolutionary, inverted meiosis is thought to have appeared secondarily as an adaptation of the molecular mechanisms of canonical meiosis to chromosome holocentrism.  相似文献   

12.
We investigated the structural requirements of the centromere from chromosome III (CEN3) of Saccharomyces cerevisiae by analyzing the ability of chromosomes with CEN3 mutations to segregate properly during meiosis. We analyzed diploid cells in which one or both copies of chromosome III carry a mutant centromere in place of the wild-type centromere and found that some alterations in the length, base composition and primary sequence characteristics of the central A+T-rich region (CDE II) of the centromere had a significant effect on the ability of the chromosome to segregate properly through meiosis. Chromosomes containing mutations which delete a portion of CDE II showed a high rate of premature disjunction at meiosis I. Chromosomes containing point mutations in CDE I or lacking CDE I appeared to segregate properly through meiosis; however, plasmids carrying centromeres with CDE I completely deleted showed an increased frequency of segregation to nonsister spores.  相似文献   

13.
A. Koller  J. Heitman    M. N. Hall 《Genetics》1996,144(3):957-966
In meiosis I, homologous chromosomes pair, recombine and segregate to opposite poles. These events and subsequent meiosis II ensure that each of the four meiotic products has one complete set of chromosomes. In this study, the meiotic pairing and segregation of a trisomic chromosome in a diploid (2n + 1) yeast strain was examined. We find that trivalent pairing and segregation is the favored arrangement. However, insertions near the centromere in one of the trisomic chromosomes leads to preferential pairing and segregation of the ``like' centromeres of the remaining two chromosomes, suggesting that bivalent-univalent pairing and segregation is favored for this region.  相似文献   

14.
R. T. Surosky  B. K. Tye 《Genetics》1988,119(2):273-287
We explored the behavior of meiotic chromosomes in Saccharomyces cerevisiae by examining the effects of chromosomal rearrangements on the pattern of disjunction and recombination of chromosome III during meiosis. The segregation of deletion chromosomes lacking part or all (telocentric) of one arm was analyzed in the presence of one or two copies of a normal chromosome III. In strains containing one normal and any one deletion chromosome, the two chromosomes disjoined in most meioses. In strains with one normal chromosome and both a left and right arm telocentric chromosome, the two telocentrics preferentially disjoined from the normal chromosome. Homology on one arm was sufficient to direct chromosome disjunction, and two chromosomes could be directed to disjoin from a third. In strains containing one deletion chromosome and two normal chromosomes, the two normal chromosomes preferentially disjoined, but in 4-7% of the tetrads the normal chromosomes cosegregated, disjoining from the deletion chromosome. Recombination between the two normal chromosomes or between the deletion chromosome and a normal chromosome increased the probability that these chromosomes would disjoin, although cosegregation of recombinants was observed. Finally, we observed that a derivative of chromosome III in which the centromeric region was deleted and CEN5 was integrated at another site on the chromosome disjoined from a normal chromosome III with fidelity. These studies demonstrate that it is not pairing of the centromeres, but pairing and recombination along the arms of the homologs, that directs meiotic chromosome segregation.  相似文献   

15.
The anaphase I behaviour of wheat univalents in plants with the chromosome constitution (0–7)A(0–7)BRR was analyzed using the C-banding technique, which allows to distinguish between wheat and rye chromosomes. The equational division frequencies of univalents observed in the six plants analyzed show a large variation (0.21–0.83). Within each plant syntelic univalents segregate to the poles at random. The frequency distribution of amphitelically dividing univalents does not conform to a random distribution. The lack of fit is attributed to environmental factors which differentially affect the probability of equational division for the univalents in different PMCs. Two other possible causes of the lack of adjustment, namely, each wheat univalent has a different probability of equational division, and wheat univalents do not move independently to the equator to divide equationally, are also discussed. The latter seems improbable in view of the independent behaviour of univalents dividing reductionally. A correlation observed between the behaviour of chromosome 6B and the rest of wheat univalents is attributed to variation between cells due to external causes.  相似文献   

16.
Marsupial sex chromosomes break the rule that recombination during first meiotic prophase is necessary to ensure reductional segregation during first meiotic division. It is widely accepted that in marsupials X and Y chromosomes do not share homologous regions, and during male first meiotic prophase the synaptonemal complex is absent between them. Although these sex chromosomes do not recombine, they segregate reductionally in anaphase I. We have investigated the nature of sex chromosome association in spermatocytes of the marsupial Thylamys elegans, in order to discern the mechanisms involved in ensuring their proper segregation. We focused on the localization of the axial/lateral element protein SCP3 and the cohesin subunit STAG3. Our results show that X and Y chromosomes never appear as univalents in metaphase I, but they remain associated until they orientate and segregate to opposite poles. However, they must not be tied by a chiasma since their separation precedes the release of the sister chromatid cohesion. Instead, we show they are associated by the dense plate, a SCP3-rich structure that is organized during the first meiotic prophase and that is still present at metaphase I. Surprisingly, the dense plate incorporates SCP1, the main protein of the central element of the synaptonemal complex, from diplotene until telophase I. Once sex chromosomes are under spindle tension, they move to opposite poles losing contact with the dense plate and undergoing early segregation. Thus, the segregation of the achiasmatic T. elegans sex chromosomes seems to be ensured by the presence in metaphase I of a synaptonemal complex-derived structure. This feature, unique among vertebrates, indicates that synaptonemal complex elements may play a role in chromosome segregation.  相似文献   

17.
Two distinct chromosome architectures are prevalent among eukaryotes: monocentric, in which localized centromeres restrict kinetochore assembly to a single chromosomal site, and holocentric, in which diffuse kinetochores form along the entire chromosome length. During mitosis, both chromosome types use specialized chromatin, containing the histone H3 variant CENP-A, to direct kinetochore assembly. For the segregation of recombined homologous chromosomes during meiosis, monocentricity is thought to be crucial for limiting spindle-based forces to one side of a crossover and to prevent recombined chromatids from being simultaneously pulled towards both spindle poles. The mechanisms that allow holocentric chromosomes to avert this fate remain uncharacterized. Here, we show that markedly different mechanisms segregate holocentric chromosomes during meiosis and mitosis in the nematode Caenorhabditis elegans. Immediately prior to oocyte meiotic segregation, outer-kinetochore proteins were recruited to cup-like structures on the chromosome surface via a mechanism that is independent of CENP-A. In striking contrast to mitosis, both oocyte meiotic divisions proceeded normally following depletion of either CENP-A or the closely associated centromeric protein CENP-C. These findings highlight a pronounced difference between the segregation of holocentric chromosomes during meiosis and mitosis and demonstrate the potential to uncouple assembly of outer-kinetochore proteins from CENP-A chromatin.  相似文献   

18.
We examined the inheritance of allelic variation at an isozyme locus, MDH-B, duplicated by ancestral polyploidy in salmonid fishes. We detected only disomic segregation in females. Segregation ratios in males were best explained by a mixture of disomic and tetrasomic inheritance. We propose a two-stage model of pairing in male meiosis in which, first, homologous chromosomes pair and recombine in the proximal region of the chromosome. Next, homeologous chromosomes pair and recombine distally. We suggest that this type of tetrasomic inheritance in which centromeres segregate disomically should be referred to as ``secondary tetrasomy' to distinguish it from tetrasomy involving entire chromosomes (i.e., ``primary tetrasomy'). Differences in segregation ratios between males indicate differences between individuals in the amount of recombination between homeologous chromosomes. We also consider the implication of these results for estimation of allele frequencies at duplicated loci in salmonid populations.  相似文献   

19.
Evidence of spontaneous n+1 aneuploidy has been obtained by trisomic segregation analysis of four independently maintained stocks of Saccharomyces cerevisiae defective in saturated fatty acid synthesis (fas1). In all cases tested, only the chromosome bearing the mutant fatty acid locus was disomic. Tetrad analysis of trisomic hybrids enabled the identification of chromosome XI as the one bearing the fatty acid locus and the assignment of fragment 5 to chromosome XI. Statistical analysis of tetrad frequencies generated by markers in triplex configuration provided information on the meiotic configuration of pairing of the three homologous chromosomes. The possible relationship between defective nuclear membranes and the disjunction of chromosomes in fas1 strains is discussed.  相似文献   

20.
Accurate replication and segregation of the bacterial genome are essential for cell cycle progression. We have identified a single amino acid substitution in the Caulobacter structural maintenance of chromosomes (SMC) protein that disrupts chromosome segregation and cell division. The E1076Q point mutation in the SMC ATPase domain caused a dominant-negative phenotype in which DNA replication was able to proceed, but duplicated parS centromeres, normally found at opposite cell poles, remained at one pole. The cellular positions of other chromosomal loci were in the wild-type order relative to the parS centromere, but chromosomes remained unsegregated and appeared to be stacked upon one another. Purified SMC-E1076Q was deficient in ATP hydrolysis and exhibited abnormally stable binding to DNA. We propose that SMC spuriously links the duplicated chromosome immediately after passage of the replication fork. In wild-type cells, ATP hydrolysis opens the SMC dimer, freeing one chromosome to segregate to the opposite pole. The loss of ATP hydrolysis causes the SMC-E1076Q dimer to remain bound to both chromosomes, inhibiting segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号