共查询到20条相似文献,搜索用时 0 毫秒
1.
Muhitch MJ 《Plant physiology》1988,86(1):23-27
Acetolactate synthase (EC 4.1.3.18) activity was examined in maize (Zea mays L.) endosperm and embryos as a function of kernel development. When assayed using unpurified homogenates, embryo acetolactate synthase activity appeared less sensitive to inhibition by leucine + valine and by the imidazolinone herbicide imazapyr than endosperm acetolactate synthase activity. Evidence is presented to show that pyruvate decarboxylase contributes to apparent acetolactate synthase activity in crude embryo extracts and a modification of the acetolactate synthase assay is proposed to correct for the presence of pyruvate decarboxylase in unpurified plant homogenates. Endosperm acetolactate synthase activity increased rapidly during early kernel development, reaching a maximum of 3 micromoles acetoin per hour per endosperm at 25 days after pollination. In contrast, embryo activity was low in young kernels and steadily increased throughout development to a maximum activity of 0.24 micromole per hour per embryo by 45 days after pollination. The sensitivity of both endosperm and embryo acetolactate synthase activities to feedback inhibition by leucine + valine did not change during kernel development. The results are compared to those found for other enzymes of nitrogen metabolism and discussed with respect to the potential roles of the embryo and endosperm in providing amino acids for storage protein synthesis. 相似文献
2.
Extracts of immature kernels of Zea mays L. catalyzed the synthesis of indol-3-yl-acetyl-myo-inositol arabinoside from indol-3-yl-acetyl-myo-inositol and UDP-[U-14C]xylose. The product contained radioactivity which upon hydrolysis with trifluoroacetic acid cochromatographed with arabinose and not xylose. The amount of product from the reaction was proportional to the amount of indol-3-yl-acetyl-myo-inositol added, and the product was positive to Ehmann's reagent for indoles. In addition, the product and authentic indol-3-yl-acetyl-myo-inositol arabinoside had the same RF or retention time in three chromatographic systems. 相似文献
3.
Concentration and Metabolic Turnover of Indoles in Germinating Kernels of Zea mays L 总被引:3,自引:29,他引:3 下载免费PDF全文
The amounts and rates of metabolic turnover of the indolylic compounds in germinating kernels of sweet corn were determined. Knowledge of pool size and rate of pool turnover has permitted: (a) identification of indole-3-acetyl-myo-inositol as the major chemical form for transport of indole-3-acetic acid (IAA) from endosperm to shoot; (b) demonstration that the free IAA of the endosperm is turning over rapidly with a half-life of 3.2 hours; (c) identification of esters of IAA as the immediate precursors of IAA in the endosperm and shoot; (d) demonstration that neither tryptophan nor tryptamine is a major precursor of IAA for the seed or shoot; (e) identification of IAA-myo-inositol glycosides as precursors of IAA-myo-inositol. 相似文献
4.
Changes in Endogenous Cytokinin Levels in Kernels of Zea mays L. during Imbibition and Germination 总被引:2,自引:0,他引:2
In order to assess the potential role of endogenous cytokininsin the germination of Zea mays L. caryopses, cytokinin activitywas determined in mature kernels and in kernels 1, 2, and 3d after imbibition. Cytokinin activity was also recorded inthe endosperm and embryo tissue of mature kernels and of kernels3 d after imbibition to establish the localization and changesin the levels of endogenous cytokinins during imbibition andearly germination. Using chromatographic, chemical, and enzymic techniques, compoundswith chromatographic properties resembling those of zeatin,zeatin riboside, zeatin glucoside, zeatin riboside glucoside,and their respective dihydro derivatives were detected in extractsfrom mature maize kernels. From analyses of the endosperm andembryo tissue at the two stages, it appears that the cytokininglucosides present in the endosperm are transported to the embryonicaxis for utilization in growth and development of the seedling.This concept is supported by the fact that the levels of ß-glucosidaseactivity detected were highest in the embryos, particularlyin the radicles, 3 d after imbibition. 相似文献
5.
Expression of the Acc1 Gene-Encoded Acetyl-Coenzyme A Carboxylase in Developing Maize (Zea mays L.) Kernels 下载免费PDF全文
Somers DA Keith RA Egli MA Marshall LC Gengenbach BG Gronwald JW Wyse DL 《Plant physiology》1993,101(3):1097-1101
A mutation (Acc1-S2) in the structural gene for maize (Zea mays L.) acetyl-coenzyme A carboxylase (ACCase) that significantly reduces sethoxydim inhibition of leaf ACCase activity was used to investigate the gene-enzyme relationship regulating ACCase activity during oil deposition in developing kernels. Mutant embryo and endosperm ACCase activities were more than 600-fold less sensitive to sethoxydim inhibition than ACCase in wild-type kernel tissues. Moreover, in vitro cultured mutant kernels developed normally in the presence of sethoxydim concentrations that inhibited wild-type kernel development. The results indicate that the Acc1-encoded ACCase accounts for the majority of ACCase activity in developing maize kernels, suggesting that Acc1-encoded ACCase functions not only during membrane biogenesis in leaves but is also the predominant form of ACCase involved in storage lipid biosynthesis in maize embryos. 相似文献
6.
In Vitro Sugar Transport in Zea mays L. Kernels : I. Characteristics of Sugar Absorption and Metabolism by Developing Maize Endosperm 下载免费PDF全文
Short-term transport studies were conducted using excised whole Zea mays kernels incubated in buffered solutions containing radiolabeled sugars. Following incubation, endosperms were removed and rates of net 14C-sugar uptake were determined. Endogenous sugar gradients of the kernel were estimated by measuring sugar concentrations in cell sap collected from the pedicel and endosperm. A sugar concentration gradient from the pedicel to the endosperm was found. Uptake rates of 14C-labeled glucose, fructose, and sucrose were linear over the concentration range of 2 to 200 millimolar. At sugar concentrations greater than 50 millimolar, hexose uptake exceeded sucrose uptake. Metabolic inhibitor studies using carbonylcyanide-m-chlorophenylhydrazone, sodium cyanide, and dinitrophenol and estimates of Q10 suggest that the transport of sugars into the developing maize endosperm is a passive process. Sucrose was hydrolyzed to glucose and fructose during uptake and in the endosperm was either reconverted to sucrose or incorporated into insoluble matter. These data suggest that the conversion of sucrose to glucose and fructose may play a role in sugar absorption by endosperm. Our data do not indicate that sugars are absorbed actively. Sugar uptake by the endosperm may be regulated by the capacity for sugar utilization (i.e. starch synthesis). 相似文献
7.
In Vitro Sugar Transport in Zea mays L. Kernels : II. Characteristics of Sugar Absorption and Metabolism by Isolated Developing Embryos 总被引:1,自引:0,他引:1 下载免费PDF全文
In vitro sugar transport into developing isolated maize embryos was studied. Embryo fresh and dry weight increased concomitantly with endogenous sucrose concentration and glucose uptake throughout development. However, endogenous glucose and fructose concentration and sucrose uptake remained constant. The uptake kinetics of radiolabeled sucrose, glucose, and fructose showed a biphasic dependence on exogenous substrate concentration. Hexose uptake was four to six times greater than sucrose uptake throughout development. Carbonylcyanide-m-chlorophenylhydrazone and dinitrophenol inhibited sucrose and glucose uptake significantly, but 3-O-methyl glucose uptake was less affected. The uptake of 1 millimolar sucrose was strongly pH dependent while glucose was not. Glucose and fructose were readily converted to sucrose and insoluble products soon after absorption into the embryo. Thus, sucrose accumulated, while glucose pools remained low. Based on the findings of this and other studies a model for sugar transport in the developing maize kernel is presented. 相似文献
8.
Pure phloem sap was collected from leaf sheaths of Zea maysL. by the insect laser technique, and its chemical compositionwas analyzed. Sucrose was the only sugar detected. The predominantinorganic ions were K+ and Cl. The adenylate energy chargeof phloem sap was between 0.72 and 0.86. (Received October 18, 1989; Accepted May 11, 1990) 相似文献
9.
The vascular system of the Zea mays L. leaf consists of longitudinal strands interconnected by transverse bundles. In any given transverse section the longitudinal strands may be divided into three types of bundle according to size and structure: small, intermediate, large. Virtually all of the longitudinal strands intergrade structurally however, from one bundle type to another as they descend the leaf. For example, all of the strands having large-bundle anatomy appear distally as small bundles, which intergrade into intermediates and then large bundles as they descend the leaf. Only the large bundles and the intermediates that arise midway between them extend basipetally into the sheath and stem. Most of the remaining longitudinal strands of the blade do not enter the sheath but fuse with other strands above and in the region of the blade joint. Despite the marked decrease in number of longitudinal bundles at the base of the blade, both the total and mean cross-sectional areas of sieve tubes and tracheary elements increase as the bundles continuing into the sheath increase in size. Linear relationships exist between leaf width and total bundle number, and between cross-sectional area of vascular bundles and both total and mean cross-sectional areas of sieve tubes and tracheary elements. 相似文献
10.
C. Lu I. K. Vasil P. Ozias-Akins 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1982,61(2):109-112
Summary Combining ability studies with respect to such green fodder quality characteristics as oxalic acid, calcium, sodium, potassium and green fodder yield were carried out in a 12 × 12 diallel cross set in pearl millet (Pennisetum typhoides (Burm) S. & H.). With regard to differential expression of gene effects, studies for quality traits were carried out in different seasons and on different plant parts. The relative proportions of general and specific combining variances indicated the preponderance of non-additive genetic variance. Parents possessing desirable fodder quality characteristics were identified on the basis of combining ability and per se performance, and selection criterion for crosses was discussed. It was recommended that leaf portion should be biochemically analysed and manipulated in an environment when the genes are expressed.Part of the Ph. D. dissertation submitted to the Punjab Agricultural University by the senior author in partial fulfilment of the requirements for the degree 相似文献
11.
12.
Spray Clive Phinney Bernard O. Gaskin Paul Gilmour Sarah J. MacMillan Jake 《Planta》1984,160(5):464-468
[13C, 3H]Gibberellin A20 (GA20) has been fed to seedlings of normal (tall) and dwarf-5 and dwarf-1 mutants of maize (Zea mays L.). The metabolites from these feeds were identified by combined gas chromatography-mass spectrometry. [13C, 3H]Gibberellin A20 was metabolized to [13C, 3H]GA29-catabolite and [13C, 3H]GA1 by the normal, and to [13C, 3H]GA29 and [13C, 3H]GA1 by the dwarf-5 mutant. In the dwarf-1 mutant, [13C, 3H]GA20 was metabolized to [13C, 3H]GA29 and [13C, 3H]GA29-catabolite; no evidence was found for the metabolism of [13C, 3H]GA20 to [13C, 3H]GA1. [13C, 3H]Gibberellin A8 was not found in any of the feeds. In all feeds no dilution of 13C in recovered [13C, 3H]GA20 was observed. Also in the dwarf-5 mutant, the [13C]label in the metabolites was apparently undiluted by endogenous [13C]GAs. However, dilution of the [13C]label in metabolites from [13C, 3H]GA20 was observed in normal and dwarf-1 seedlings. The results from the feeding studies provide evidence that the dwarf-1 mutation of maize blocks the conversion of GA20 to GA1.Abbreviations GAn
gibberellin An
- GC-MS
combined gas chromatography-mass spectrometry
- HPLC
high-performance liquid chromatography
- RP
reverse phase 相似文献
13.
In this study, we examined morphological changes of isolated maize (Zea mays L.) sperm cells in the presence of Brewbaker and Kwack salts (BKS) or the individual components of BKS using light, transmission
electron and scanning electron microscopy. Freshly isolated sperms are 7.5 μm in diameter. Treatment with BKS for 5 h resulted
in large cells with a diameter up to 41 μm. Staining of sperm nuclei with 4′, 6-diamidino-2-phenylindole (DAPI) revealed two
or more nuclei in a single cell, suggesting that BKS induces cell fusion. Treatment with each BKS component showed that cell
fusion occurs only in the presence of calcium nitrate. Use of several calcium salts showed the same results, suggesting that
the calcium ion, alone, is responsible for the observed cell fusion. Further studies were conducted to examine the relationship
between calcium distribution and sperm location in pollen tubes using chlorotetracycline and DAPI. Growing maize pollen tubes
exhibited a high membrane calcium region within 20–50 μm from the tip. The Sperms are found no closer than 90 μm to the tip
of the tube, suggesting that sperms are located in a low calcium region prior to being released to the degenerating synergid.
Received: 12 August 1996 / Revision accepted: 6 December 1996 相似文献
14.
Seed development was investigated in kernels of developing wild-type and viviparous (vp-1) Zea mays L. Embryos and endosperm of wild-type kernels began to dehydrate at approx. 35 d after pollination (DAP); viviparous embryos did not desiccate but accumulated fresh weight via coleoptile growth in the caryopses. Concentrations of endogenous abscisic acid (ABA) in the embryo were relatively high early in development, being approx. 150 ng·g-1 fresh weight at 20 DAP. The ABA content declined thereafter, falling to approx. 50 ng·g-1 at 30 DAP. Endosperm ABA content was always low, being less than 20 ng·g-1. There were no differences between wild-type and vp-1 tissues. Immature kernels did not germinate when removed from the ear until late in development. The ability to germinate was correlated with decreasing moisture content in the endosperm at the time of removal; premature drying of immature kernels resulted in greatly increased germination following imbibition. Excised embryos germinated precociously when removed from the endosperm as early as 25 DAP. Such germination could be prevented by treatment with 10-5 M ABA or by lowering the solute potential (s) of the medium with 0.3 M mannitol. Treatment of excised embryos with ABA led to internal ABA concentrations comparable to those in embryos in which germination was inhibited in situ. Mannitol treatment did not have this effect, although water-deficit stress of excised embryos resulted in substantial ABA production. Germinated vp-1 embryos were less sensitive to growth inhibition by ABA or mannitol than germinating wild-type embryos. The vp-1 seedlings were not wilty and their transpiration rates were reduced in response to ABA or water shortage.Abbreviations and symbols ABA
abscisic acid
- DAP
days after pollination
- FW
fresh weight
-
vp-1
viviparous genotype
- s
solute potential 相似文献
15.
16.
Movement of C-Labeled Assimilates into Kernels of Zea mays L: I. Pattern and Rate of Sugar Movement 下载免费PDF全文
Shannon JC 《Plant physiology》1972,49(2):198-202
Carbon-14, photosynthetically fixed in leaves of Zea mays L. and translocated to developing kernels, passed through specialized basal endosperm cells prior to movement into the starchy endosperm and embryo. Radioactivity migrated in the endosperm at a maximum rate of 2.7 millimeters per hour, and there was no difference in the rate of movement in kernels treated 14 to 30 days after pollination. 相似文献
17.
In the normal pattern of development of Zea mays (cv. Iochief)a single mature female inflorescence is produced at node 7.A brief episode of water deficit at the time of terminal maleinflorescence initiation induced the subsequent developmentof two to three mature female inflorescences at nodes 57.This growth of the inflorescences at lower nodes was accompaniedby a marked inhibition of the growth of the terminal male inflorescence.Removal of either the developing terminal inflorescence or ofthe axillary inflorescence at node 7 at this time also promotedthe growth of the lower axillary inflorescences. The growthof these inflorescences was further stimulated by a period ofwater deficit when only the inflorescence at node 7 was removed,but removal of the male inflorescence abolished the capacityof these inflorescences to respond to the water deficit Excisionof the male inflorescence immediately before or immediatelyafter the period of water deficit produced the same response.It is concluded that this response of the lower axillary inflorescencesto water deficit is mediated through an effect on the developingterminal male inflorescence. Zea mays, water deficit, inflorescence development, tassel, correlative inhibition 相似文献
18.
Merten Jabben 《Planta》1980,149(1):91-96
The phytochrome system is analyzed in light-grown maize (Zea mays L.) plants, which were prevented from greening by application of the herbicide SAN 9789. The dark kinetics of phytochrome are not different in the first, second or third leaf. It is concluded that in light-grown maize plants phytochrome levels are regulated by Pr formation and Pfr and Pr destruction, rather than by PfrPr dark reversion. Pr undergoes destruction after it has been cycled through Pfr. The consequences of this Pr destruction on the phytochrome system are discussed.Abbreviations SAN 9789
4-chloro-5-(methylamino)-2-(,,-trifluoro-m-tolyl)-3(2H) pyridazinone
- Pfr
far-red absorbing form of phytochrome
- Pr
red absorbing form of phytochrome
- Ptot
Pfr+Pr 相似文献
19.
A water deficit imposed during the period of terminal male inflorescenceinitiation and early development reduced both the growth rateand the mature size of that organ in Zea mays (cv. Iochief).Growth and development of the axillary shoots, the potentialfemale inflorescences, was inhibited during the episode of waterdeficit but promoted thereafter. As a result, plants which hadbeen subjected to a water deficit at that period produced 23mature cobs and relatively large axillary shoots at the lowernodes, whereas plants supplied with water throughout produceda single mature cob and relatively small axillary shoots. A water deficit imposed during other growth phases did not producethis response and, moreover, a further period of deficit imposedlater in development, following a deficit at the sensitive stage,inhibited the enlargement of the axillary shoots invoked bythe earlier deficit. It did not, however, inhibit the enhancedfloral development of those axillary shoots nor reverse theinhibition of tassel growth. The data are discussed in relation to correlative inhibitionin Zea mays. 相似文献
20.
Nitrate reductase in Zea mays L. under salinity 总被引:5,自引:0,他引:5
G. K. Abd-El Baki F. Siefritz H.-M. Man H. Weiner R. Kaldenhoff & W. M. Kaiser 《Plant, cell & environment》2000,23(5):515-521