首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery of RNA interference (RNAi) gave rise to the development of new nucleic acid-based technologies as powerful investigational tools and potential therapeutics. Mechanistic key details of RNAi in humans need to be deciphered yet, before such approaches take root in biomedicine and molecular therapy.We developed and validated an in silico-based model of siRNA-mediated RNAi in human cells in order to link in vitro-derived pre-steady state kinetic data with a quantitative and time-resolved understanding of RNAi on the cellular level. The observation that product release by Argonaute 2 is accelerated in the presence of an excess of target RNA in vitro inspired us to suggest an associative mechanism for the RNA slicer reaction where incoming target mRNAs actively promote dissociation of cleaved mRNA fragments. This novel associative model is compatible with high multiple turnover rates of RNAi-based gene silencing in living cells and accounts for target mRNA concentration-dependent enhancement of the RNAi machinery.  相似文献   

2.
《TARGETS》2003,2(6):253-260
Inhibition of gene expression using the RNA interference (RNAi) pathway is rapidly becoming the method of choice for studying gene function in mammalian cells. However, successful knockdown of the target gene requires efficient delivery of short interfering RNAs (siRNAs). Several technologies have been developed that enable effective delivery of siRNAs to both cells in culture and whole animals. These technologies will allow the use of RNAi to study gene function in mammalian model systems in which classical methods are often limited and costly.  相似文献   

3.
RNA interference is a natural gene expression silencing system that appears throughout the tree of life. As the list of cellular processes linked to RNAi grows, so does the demand for tools to accurately measure RNAi dynamics in living cells. We engineered a synthetic RNAi sensor that converts this negative regulatory signal into a positive output in living mammalian cells thereby allowing increased sensitivity and activation. Furthermore, the circuit's modular design allows potentially any microRNA of interest to be detected. We demonstrated that the circuit responds to an artificial microRNA and becomes activated when the RNAi target is replaced by a natural microRNA target (miR-34) in U2OS osteosarcoma cells. Our studies extend the application of rationally designed synthetic switches to RNAi, providing a sensitive way to visualize the dynamics of RNAi activity rather than just the presence of miRNA molecules.  相似文献   

4.
Hepatitis C Virus (HCV) and other plus-strand RNA viruses typically require the generation of a small number of negative genomes (20–100× lower than the positive genomes) for replication, making the less-abundant antigenome an attractive target for RNA interference(RNAi)-based therapy. Because of the complementarity of duplex short hairpin RNA/small interfering RNA (shRNA/siRNAs) with both genomic and anti-genomic viral RNA strands, and the potential of both shRNA strands to become part of the targeting complexes, preclinical RNAi studies cannot distinguish which viral strand is actually targeted in infected cells. Here, we addressed the question whether the negative HCV genome was bioaccessible to RNAi. We first screened for the most active shRNA molecules against the most conserved regions in the HCV genome, which were then used to generate asymmetric anti-HCV shRNAs that produce biologically active RNAi specifically directed against the genomic or antigenomic HCV sequences. Using this simple but powerful and effective method to screen for shRNA strand selectivity, we demonstrate that the antigenomic strand of HCV is not a viable RNAi target during HCV replication. These findings provide new insights into HCV biology and have important implications for the design of more effective and safer antiviral RNAi strategies seeking to target HCV and other viruses with similar replicative strategies.  相似文献   

5.
6.
RNA interference (RNAi) mediated by small interfering RNA (siRNA) has become a popular tool of examining the function of various genes. However, many studies have failed to identify any inhibitory effect of the siRNAs on the expression of the target gene, even though the siRNA being tested had been designed sequence-specifically. In order to determine if this failure is due to the incorrect choice of observation time rather than that of the target site of the gene of interest, this study examined the RNAi efficiency of a vector-driven siRNA targeting two different reporter proteins, EGFP and d2EGFP, whose targeted sequences were identical but the half-lives within the cells differed remarkably from each other (>24h versus 2h), during the time course after transfection. The EGFP expression levels in both cells were reduced in time-dependent manner but the reduction patterns were quite different from each other. The RNAi efficiency varied among the different observation time points and the time required for the maximum RNAi efficiency was proportional to the half-life of the target protein. Stable knocked down cell lines for EGFP expression were then established and the reduced EGFP expression levels in these cell lines were retained for a long period. These results suggest that the choice of an adequate observation time or the establishment of stable knocked down cells by antibiotic selection might be required for making an accurate evaluation of the RNAi effect on the target protein possessing a long half-life.  相似文献   

7.
Since its discovery 10 years ago, RNA interference (RNAi) has evolved from a research tool into a powerful method for altering the phenotype of cells and whole organisms. Its near universal applicability coupled with its pinpoint accuracy for suppressing target proteins has altered the landscape of many fields. While there is considerable intellectual investment in therapeutics, its potential extends far beyond. In this review, we explore some of these emerging applications--metabolic engineering for enhancing recombinant protein production in both insect and mammalian cell systems, antisense technologies in bacteria as next generation antibiotics, and RNAi in plant biotechnology for improving productivity and nutritional value.  相似文献   

8.
9.
RNA interference (RNAi) was investigated with the aim of achieving gene silencing with diverse RNAi platforms that include small interfering RNA (siRNA), short hairpin RNA (shRNA) and antisense oligonucleotides (ASO). Different versions of each system were used to silence the expression of specific subunits of the heterotrimeric signal transducing G-proteins, G alpha i2 and G beta 2, in the RAW 264.7 murine macrophage cell line. The specificity of the different RNA interference (RNAi) platforms was assessed by DNA microarray analysis. Reliable RNAi methodologies against the genes of interest were then developed and applied to functional studies of signaling networks. This study demonstrates a successful knockdown of target genes and shows the potential of RNAi for use in functional studies of signaling molecules.  相似文献   

10.
Small interfering RNA (siRNA) enables efficient target gene silencing by employing a RNA interference (RNAi) mechanism, which can compromise gene expression and regulate gene activity by cleaving mRNA or repressing its translation. Twenty years after the discovery of RNAi in 1998, ONPATTRO? (patisiran) (Alnylam Pharmaceuticals, Inc.), a lipid formulated siRNA modality, was approved for the first time by United States Food and Drug Administration and the European Commission in 2018. With this milestone achievement, siRNA therapeutics will soar in the coming years. Here, we review the discovery and the mechanisms of RNAi, briefly describe the delivery technologies of siRNA, and summarize recent clinical advances of siRNA therapeutics.  相似文献   

11.
Specific and potent RNAi in the nucleus of human cells   总被引:13,自引:0,他引:13  
  相似文献   

12.
Nucleic acid-based sequence-specific therapeutic intervention offers the potential for treatment of particular cancers without side effects. RNA interference (RNAi) induced by small interfering RNA (siRNA) (19-21 bp) is a normal cellular mechanism leading to highly specific and extraordinarily efficient degradation of the corresponding mRNA. The mechanism of RNAi as well as strategies for the design and delivery of siRNA are described. The growing role of RNAi in target validation for cancer-specific genetic aberrations is discussed. We attempt an early assessment of the potential for using RNAi technologies to treat cancer directly, especially hematologic malignancies. Promising targets for specific gene silencing in hematologic oncology include oncogenic fusion proteins and oncogenes activated by point mutations. Potency and specificity of gene silencing are the major advantages of the new RNAi technology over other nucleic acid-based gene targeting approaches. Crucial questions for pharmaceutical interventions remain. Advances in the areas of delivery, systemic spreading and duration of the silencing effect are necessary before the methodology can enter clinical oncology.  相似文献   

13.
RNA interference in human cells is restricted to the cytoplasm   总被引:31,自引:1,他引:30       下载免费PDF全文
RNA interference (RNAi) is an evolutionarily conserved eukaryotic adaptive response that leads to the specific degradation of target mRNA species in response to cellular exposure to homologous double-stranded RNA molecules. Here, we have analyzed the subcellular location at which RNA degradation occurs in human cells exposed to double-stranded short interfering RNAs. To unequivocally determine whether a given mRNA is subject to degradation in the cytoplasm, the nucleus, or both, we have used the retroviral Rev/RRE system to control whether target mRNAs remain sequestered in the nucleus or are exported to the cytoplasm. In the absence of export, we found that the nuclear level of the RRE-containing target mRNA was not affected by activation of RNAi. In contrast, when nuclear export was induced by expression of Rev, cytoplasmic target mRNAs were effectively and specifically degraded by RNAi. Curiously, when the target mRNA molecule was undergoing active export from the nucleus, induction of RNAi also resulted in a reproducible approximately twofold drop in the level of target mRNA present In the nuclear RNA fraction. As this same mRNA was entirely resistant to RNAi when sequestered in the nucleus, this result suggests that RNAi is able to induce degradation of target mRNAs not only in the cytoplasm but also during the process of nuclear mRNA export. Truly nucleoplasmic mRNAs or pre-mRNAs are, in contrast, resistant to RNAi.  相似文献   

14.
Biochemical mechanisms of the RNA-induced silencing complex   总被引:5,自引:0,他引:5  
Paroo Z  Liu Q  Wang X 《Cell research》2007,17(3):187-194
In less than 10 years since its inception, RNA interference (RNAi) has had extraordinary impact on biomedical science. RNAi has been demonstrated to influence numerous biological and disease pathways. Development and adoption of RNAi technologies have been prolific ranging from basic loss-of-function tools, genome-wide screening libraries to pharmaceutical target validation and therapeutic development. However, understanding of the molecular mechanisms of RNAi is far from complete. The purpose of this brief review is to highlight key achievements in elucidating the bio- chemical mechanisms of the RNA-induced silencing complex and to outline major challenges for the field.  相似文献   

15.
16.
17.
RNAi-based gene therapy is a powerful approach to treat viral infections because of its high efficiency and sequence specificity. The HIV-1-based lentiviral vector system is suitable for the delivery of RNAi inducers to HIV-1 susceptible cells due to its ability to transduce nondividing cells, including hematopoietic stem cells, and its ability for stable transgene delivery into the host cell genome. However, the presence of anti-HIV short hairpin RNA (shRNA) and microRNA (miRNA) cassettes can negatively affect the lentiviral vector titers. We show that shRNAs, which target the vector genomic RNA, strongly reduced lentiviral vector titers but inhibition of the RNAi pathway via saturation could rescue vector production. The presence of miRNAs in the vector RNA genome (sense orientation) results in a minor titer reduction due to Drosha processing. A major cause for titer reduction of miRNA vectors is due to incompatibility of the cytomegalovirus promoter with the lentiviral vector system. Replacement of this promoter with an inducible promoter resulted in an almost complete restoration of the vector titer. We also showed that antisense poly(A) signal sequences can have a dramatic effect on the vector titer. These results show that not all sequences are compatible with the lentiviral vector system and that care should be taken in the design of lentiviral vectors encoding RNAi inducers.  相似文献   

18.
目的:构建丝/苏氨酸蛋白激酶2(AKT2)基因RNA干扰(RNAi)慢病毒载体。方法:利用公用网站按照RNAi序列设计原则,设计RNAi靶点序列并合成靶序列的Oligo DNA,退火形成双链DNA,与经MluI和ClaI进行酶切后的PLVTHM载体连接产生shRNA慢病毒载体。应用shRNA慢病毒载体转染293T细胞及U87细胞,测定病毒滴度,流式细胞仪测定U87细胞的转染效率,PCR及Western blot鉴定AKT2基因在U87细胞中的下调作用。结果:成功构建了shRNA-AKT2慢病毒载体,经测序与设计合成的靶向链完全一致。荧光显微镜下观察293T细胞感染效率大于90%,病毒滴度为3.59×107TU/ml;流式细胞仪测定对AKT2细胞的转染效率为86.93%。PCR测定shRNA载体感染U87细胞后AKT2的干扰效率为68%。Western Blot结果显示该慢病毒载体对AKT2的表达有较为显著的敲减作用。结论:成功构建了人胶质瘤细胞株AKT2基因RNAi慢病毒载体,为后续的体内外功能学试验创造了条件。  相似文献   

19.
20.
RNA干扰在疾病治疗方面的应用研究   总被引:1,自引:0,他引:1  
褚亮  刘新垣 《生命科学》2007,19(2):117-121
RNA干扰是由双链RNA引起的序列特异的基因沉默现象。由于RNA干扰能在细胞组织及动物模型中沉默疾病相关基因,因此,RNA干扰也是各种疾病治疗的有效手段。在哺乳动物细胞内诱导RNA干扰可以通过导入小干扰RNA(siRNA),或是以质粒、病毒为载体表达短的发夹RNA(shRNA)而实现。本文介绍了RNA干扰在疾病治疗方面的应用,并就其面临的挑战进行讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号