首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this paper is to characterize the apoptotic response of various subpopulations of human white blood cells after in vitro exposure to ionizing radiation using the modified neutral comet assay (MNCA). White blood cells, isolated from human whole blood, were fractionated into granulocytes and mononuclear cells which were further separated into B-cells, natural killer (NK) cells, and CD4(+) and CD8(+) T-cells. The separated fractions were exposed to low doses of X-rays and then MNCA was used to measure the apoptotic fraction (AF) at different time points in irradiated and unirradiated aliquots of sorted cultures. The spontaneous AF in unirradiated control cells was the most critical determinant of whether an apoptotic response could be detected in irradiated cells. When cultured in isolation granulocytes and B-cells had the highest background AF, with NK cells having the next highest. CD4(+) and CD8(+) T-cells had a low, stable, spontaneous AF which gave them the highest signal-to-noise ratio. Although B-cells demonstrated the highest radiation-induced apoptotic response to 1Gy of X-rays, CD8(+) T-cells were the most radiation-responsive lymphocytes due to their low spontaneous AF. By generating dose response curves for CD4(+) and CD8(+) T-cells, the sensitivity of the MNCA for detecting apoptosis in these two cell types was also examined.  相似文献   

2.
The purpose of this study was to characterize the differential sensitivities of various subpopulations of human white blood cells after exposure to H2O2 (an oxidant agent) and bleomycin (a radiomimetic glycopeptide), in vitro, using single-cell gel electrophoresis (SCGE). Human peripheral blood was fractionated into mononuclear cells, which were further separated into monocytes, CD4+ T-cells, CD8+ T-cells, B-cells and natural killer cells (NK cells). The separated fractions were exposed to different doses of H2O2 and bleomycin, and then used to measure levels of induced and basal DNA damage. There was a significant increase in the amount of DNA damage in CD4+ T-cells, CD8+ T-cells, NK cells and B-cells when treated with H2O2 and bleomycin, whereas monocytes had the lowest sensitivity to H2O2 compared with the other cell fractions, but no lower sensitivity to bleomycin. Furthermore, CD4+ T-cells and CD8+ T-cells had the highest levels of basal DNA damage. When basal DNA damage was taken into account, NK cells tended to show a higher sensitivity to H2O2 than CD4+ T-cells, CD8+ T-cells and monocytes. In addition, B-cells, which showed lower sensitivity to H2O2 than CD4+ T-cells, CD8+ T-cells and NK cells when exposed to lower doses of H2O2 (<10 microM), showed higher sensitivity to H2O2 at higher doses (>20 microM). On the other hand, B-cells showed the highest sensitivity to bleomycin.  相似文献   

3.
In vitro effects of radiation were studied in two permanent cell lines (AGS and SII) from two patients with adenocarcinoma of the stomach and three permanent sublines from each cell line. Radiation survival parameters for AGS and SII parent cell lines and sublines were determined after in vitro irradiation of their cells with 0.5 to 10 Gy of 60Co gamma rays. The AGS and SII cell lines had different growth properties, DNA contents and radiation survival curves. Surviving fractions of SII parent cells (76 chromosomes) after 2.0 and 10 Gy were 1.22 and 17.8 times greater, respectively, than values for AGS parent cells (47 chromosomes). Sensitivities (D0) were 1.08 and 1.45 Gy for AGS and SII parent lines, respectively. The D0 values for AGS parent cells and sublines were similar (1.01 to 1.08 Gy), but SII parent cells and sublines had D0 values of 1.45, 1.36, 1.37 and 1.12 Gy (for SII-A). Also, the SII parent cells had survival fractions after 2.0 and 10 Gy that were 1.3 and 11.3 times greater, respectively, than values for the SII-A cells. These data show differences in radiation responses among stomach cancer cell lines and sublines that may relate to DNA content, but there was no consistent correlation between radiation response and a particular cell characteristic.  相似文献   

4.
Ionizing radiations elicit a variety of biological effects in mammalian cells. In recent years altered signal transduction has been recognized as a key cellular response to ionizing radiation. Several oncogenes, the products of which are components of signal transduction pathways and which are over-expressed in many tumors, are specifically induced in cells exposed to radiation. It has also become evident that the oncogene ras and the serine/threonine protein kinase oncogenes raf and PKC confer radio-resistance to tumor cells. Modulation of these genes or their activity by natural compounds may offer a strategy to treat cancer by enhancing radiation-induced apoptosis of tumor cells.  相似文献   

5.
6.
Apoptosis induced in male germ cells following ionizing radiation is dependent on functional p53 (Trp53) being present. We sought to determine whether Fas (Tnfrsf6/CD95/APO-1), an apoptotic factor, is involved in this p53-dependent germ cell death. In p53 knock-out mice exposed to 5 Gy of x-radiation, germ cells were protected from cell death, as assessed by counting apoptotic seminiferous tubules 12 h following radiation. Similarly, spermatid head counts in p53 knock-out mice remained near normal 29 days after exposure to 0.5 Gy of radiation, whereas wild-type animals had a more than twofold reduction in spermatid head counts. Fas mRNA expression remained at pretreatment levels in p53 knock-out mice; however, Fas increased in a time-dependent manner in wild-type mice following exposure to 5 Gy of radiation, indicating that radiation-induced Fas expression is p53-dependent. The functional significance of Fas involvement was demonstrated when lpr(cg) mice, having a nonfunctional Fas receptor, were exposed to 5 Gy of radiation; the number of apoptotic seminiferous tubules 12 h following radiation was significantly reduced compared to that of wild-type mice. Additionally, lpr(cg) mice exposed to 0.5 Gy of radiation had increased spermatid head counts 29 days following radiation compared to wild-type mice. Interestingly, gld mice with a non-functional Fas ligand (Tnfsf6/FasL/CD95L) were as sensitive to radiation as wild-type animals, and levels of FasL mRNA were not affected by radiation treatment. These results indicate that apoptosis and up-regulation of Fas following radiation are both p53-dependent events. Although Fas is necessary, in part, for radiation-induced p53-dependent apoptosis, FasL is not.  相似文献   

7.
Many aspects of cellular physiology, including cellular response to genotoxic stress, are related to the circadian rhythmicity induced by the molecular clock. The current study investigated if the cellular response to DNA damage is in relation to endogenous expression levels of the PER2 protein, a key component of the molecular regulatory system that confers rhythmicity in mammalian cells. Human normal fibroblasts (CCD-34Lu) were subjected to serum shock to induce circadian oscillations of the PER2 protein and then irradiated with γ- rays at times corresponding to the trough and peak expression of the PER2 protein. To better examine cellular response to DNA damage, the experiments performed in this study were carried out in non-proliferating CCD-34Lu fibroblasts in order to maintain the cell and circadian cycles separated while they were being exposed to genotoxic stress. Study results demonstrated that clonogenic cell survival, double-strand break repair kinetics, and TP53 protein levels were affected in the cells irradiated at the trough than in those irradiated at peak expression of the PER2 protein.  相似文献   

8.
Understanding how human organs respond to ionizing radiation (IR) at a systems biology level and identifying biomarkers for IR exposure at low doses can help provide a scientific basis for establishing radiation protection standards. Little is known regarding the physiological responses to low dose IR at the metabolite level, which represents the end-point of biochemical processes inside cells. Using a full thickness human skin tissue model and GC-MS-based metabolomic analysis, we examined the metabolic perturbations at three time points (3, 24 and 48 h) after exposure to 3, 10 and 200 cGy of X-rays. PLS-DA score plots revealed dose- and time-dependent clustering between sham and irradiated groups. Importantly, delayed metabolic responses were observed at low dose IR. When compared with the high dose at 200 cGy, a comparable number of significantly changed metabolites were detected 48 h after exposure to low doses (3 and 10 cGy) of irradiation. Biochemical pathway analysis showed perturbations to DNA/RNA damage and repair, lipid and energy metabolisms, even at low doses of IR.  相似文献   

9.
10.
Changes in the activity of ornithindecarboxylase in various tissues and in the amount of catecholamine in rat hypothalamus by the action of acute and chronic ionizing radiation were studied. A nonmonotonous relationship between the metabolic parameters of animal tissues and cells and the radiation dose was revealed. It was assumed that the nonmonotonous character of the dose-response dependence results from the nonmonotonous time course of the metabolic response to irradiation. It was also assumed that living systems have the property of responding to stress agents by nonmonotonous changes in metabolism. In the case of acute irradiation, this response manifests itself as oscillations of metabolic parameters about the control. The oscillations occur with a particular amplitude and periods, which vary with radiation dose, and damp out with time. As a result, in a fixed time interval, the dose-response curve may be nonmonotonous. Reverse dose-response relationships are also possible. In the case of chronic irradiation, the metabolic and functional parameters oscillate throughout irradiation time, and a modification of the response occurs. A prolong exposure to ionizing radiation causes strong changes in the metabolism of lipids of cell membranes, organelles and chromatin, as well as in the functional properties of some mammalian cells and tissues. The necessity of constructing quantitative models for explaining the nonmonotonous dose-response dependence is discussed.  相似文献   

11.
Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). RAD18 a central regulator of translesion DNA synthesis (TLS), has been shown to play an important role in regulating genomic stability and DNA damage response. In the present study, we investigate the relationship between RAD18 and resistance to ionizing radiation (IR) and examined the expression levels of RAD18 in primary and recurrent GBM specimens. Our results showed that RAD18 is an important mediator of the IR-induced resistance in GBM. The expression level of RAD18 in glioma cells correlates with their resistance to IR. Ectopic expression of RAD18 in RAD18-low A172 glioma cells confers significant resistance to IR treatment. Conversely, depletion of endogenous RAD18 in RAD18-high glioma cells sensitized these cells to IR treatment. Moreover, RAD18 overexpression confers resistance to IR-mediated apoptosis in RAD18-low A172 glioma cells, whereas cells deficient in RAD18 exhibit increased apoptosis induced by IR. Furthermore, knockdown of RAD18 in RAD18-high glioma cells disrupts HR-mediated repair, resulting in increased accumulation of DSB. In addition, clinical data indicated that RAD18 was significantly higher in recurrent GBM samples that were exposed to IR compared with the corresponding primary GBM samples. Collectively, our findings reveal that RAD18 may serve as a key mediator of the IR response and may function as a potential target for circumventing IR resistance in human GBM.  相似文献   

12.
In Xenopus development the mid-blastula transition (MBT) marks a dramatic change in response of the embryo to ionizing radiation. Whereas inhibition of cyclin D1-Cdk4 and cyclin A2-Cdk2 by p27(Xic1) has been linked to cell cycle arrest and prevention of apoptosis in embryos irradiated post-MBT, distinct roles for these complexes during apoptosis are evident in embryos irradiated pre-MBT. Cyclin A2 is cleaved by caspases to generate a truncated complex termed Delta N-cyclin A2-Cdk2, which is kinase active, not inhibited by p27(Xic1), and not sensitive to degradation by the ubiquitin-mediated proteasome pathway. Moreover, Delta N-cyclin A2-Cdk2 has an expanded substrate specificity and can phosphorylate histone H2B at Ser-32, which may facilitate DNA cleavage. Consistent with a role for cyclin A2 in apoptosis, the addition of Delta N-cyclin A2-Cdk2, but not full-length cyclin A2-Cdk2, to Xenopus egg extracts triggers apoptotic DNA fragmentation even when caspases are not activated. Similarly, cyclin D1 is targeted by caspases, and the generated product exhibits higher affinity for p27(Xic1), leading to reduced phosphorylation of the retinoblastoma protein (pRB) during apoptosis. These data suggest that caspase cleavage of both cyclin D1-Cdk4 and cyclin A2-Cdk2 promotes specific apoptotic events in embryos undergoing apoptosis in response to ionizing radiation.  相似文献   

13.
A I Gaziev 《Radiobiologiia》1986,26(4):447-452
Mechanisms of induction of the antimutagenic and anticarcinogenic adaptive repair response of cells to the effect of alkylating substances and other genotoxic agents are discussed. The possibility of induction of adaptive repair response of mammalian cells to low-level radiation is suggested.  相似文献   

14.
Gruel, G., Voisin, P., Vaurijoux, A., Roch-Lefèvre, S., Gré goire, E., Maltère, P., Petat, C., Gidrol, X., Voisin, P. and Roy, L. Broad Modulation of Gene Expression in CD4(+) Lymphocyte Subpopulations in Response to Low Doses of Ionizing Radiation. Radiat. Res. 170, 335-344 (2008).To compare the responses of the different lymphocyte subtypes after an exposure of whole blood to low doses of ionizing radiation, we examined variations in gene expression in different lymphocyte subpopulations using microarray technology. Blood samples from five healthy donors were independently exposed to 0 (sham irradiation), 0.05 and 0.5 Gy of ionizing radiation. Three and 24 h after exposure, CD56(+), CD4(+) and CD8(+) cells were negatively isolated. RNA from each set of experimental conditions was competitively hybridized on 25k oligonucleotide microarrays. Modifications of gene expression were measured after both intervals and in all cell types. Twenty-four hours after exposure to 0.5 Gy, we observed an induction of the expression of BAX, PCNA, GADD45, DDB2 and CDKN1A. However, the numbers of modulated genes greatly differed between cell types. In particular, 3 h after exposure to doses as low as 0.05 Gy, the number of down-modulated genes was 10 times greater for CD4(+) cells than for all other cell types. Moreover, most of these repressed genes were taking part in the cell processes of protein biosynthesis and oxidative phosphorylation. The results suggest that several biological pathways in CD4(+) cells could be sensitive to low doses of radiation. Therefore, specifically studying CD4(+) cells could help to understand the mechanisms involved in low-dose response and allow their detection.  相似文献   

15.
16.
Since the beneficial effects of low-dose radiation (0.01 Gy) are usually observed in normal cells, we investigated whether the adaptive response was induced by low-dose radiation in neoplastic cells of different origin as well as in normal cells. Cell lines used in this experiment were as follows: mouse lymphocytes (NL); L929 cells established from mouse connective tissue; primary mouse keratinocytes (PK); line 308 from mouse papilloma; X-ray sensitive lymphoma cells, L5178Y-S and EL-4 cells from mouse lymphoma. The adaptive response was determined by cell survival and apoptosis. The involvement of apoptosis in the adaptive response was examined by ELISA and TUNEL assay. Adaptive response was induced by pretreatment with low-dose radiation of 0.01 Gy in normal cells such as NL, L929, and PK, but not in L5178Y-S, EL-4, and line 308 cells. In addition, the reduction of apoptosis by pretreatment with low-dose radiation was observed in NL, L929, and PK, but not in L5178Y-S, EL-4, and line 308 cells. These results suggested that the adaptive response could be induced by pretreatment with low-dose radiation and the phenomena were observed in normal cells, not in neoplastic cells. In addition, pretreatment with low-dose radiation reduced apoptosis, suggesting that an anti-apoptotic pathway may be involved in the adaptive response. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The results of numerous studies indicate that cells can become refractory to the detrimental effect of ionizing radiation when previously exposed to a low, “adapting dose”;. This phenomenon has been termed an “adaptive response”; to ionizing radiation. It has been postulated that the induced radioresistance is due to the induction of DNA repair systems which efficiently protect the adapted cells from the effects of a subsequent, high “challenging dose”;. However, a direct proof of this hypothesis is still lacking. The analyzed endpoints include chromosomal aberrations, survival, mutations, genetic instability and DNA damage repair measured by the comet assay. Frequently contradictory results were published by different authors. For example some authors observed a reduced frequency of apoptosis in adapted cells, whereas others reported the opposite. The source of variablity of the adaptive response in human lymphocytes remains unresolved. While there is no doubt that an adapting dose can trigger some protecting mechanisms within the cell it appears that there is no single, universal mechanism of the adaptive response that is valid for all cell types and irradiation conditions.  相似文献   

18.
Recently (Cytometry 2003, 56A, 71-80), we reported that direct cell-to-cell contact is required for stimulating proliferation of bystander rat liver cells (WB-F344) cocultured with irradiated cells, and neither functional gap junction intercellular communication nor long-range extracellular factors appear to be involved in this proliferative bystander response (PBR). The molecular basis for this response is unknown. Confluent monolayers of WB-F344 cells were exposed to 5-Gray (Gy) of gamma-rays. Irradiated cells were mixed with unirradiated cells and co-cultured for 24 h. Cells were harvested and protein expression was examined using 2-DE. Protein expression was also determined in cultures of unirradiated and 5-Gy irradiated cells. Proteins were identified by MS. Nucleophosmin (NPM)-1, a multifunctional nucleolar protein, was more highly expressed in bystander cells than in either unirradiated or 5-Gy irradiated cells. Enolase-alpha, a glycolytic enzyme, was present in acidic and basic variants in unirradiated cells. In bystander and 5-Gy irradiated cells, the basic variant was weakly expressed, whereas the acidic variant was overwhelmingly present. These data indicate that the presence of irradiated cells can affect NPM-1 and enolase-alpha in adjacent bystander cells. These proteins appear to participate in molecular events related to the PBR and suggest that this response may involve cellular defense, proliferation, and metabolism.  相似文献   

19.
Poly(ADP-ribose) and the response of cells to ionizing radiation   总被引:1,自引:0,他引:1  
The activity of poly(ADP-ribose) polymerase is stimulated by DNA damage resulting from treatment of cells with ionizing radiation, as well as with DNA-damaging chemicals. The elevated polymerase activity can be observed at doses lower than those necessary for measurable reduction in cellular NAD concentration (less than 20 Gy). Several nuclear proteins, including the polymerase itself, are poly(ADP-ribosylated) at elevated levels in irradiated Chinese hamster cells. The addition of inhibitors of poly(ADP-ribose) polymerase to irradiated cells has been found to sensitize the cells to the lethal effects of the radiation, to inhibit the repair of potentially lethal damage, and to delay DNA strand break rejoining. Because of the nonspecificity of the inhibitors, however, it is as yet unknown whether their effects are directly related to the inhibition of poly(ADP-ribose) polymerase, to interference with the poly(ADP-ribosylation) of one or more chromosomal proteins, or to effects unrelated to the poly(ADP-ribosylation) process. The data are consistent with the involvement of poly(ADP-ribose) in the repair of radiation damage, but the nature of this involvement remains to be elucidated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号