首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
干旱胁迫对烟草叶片丙二醛含量和细胞膜透性的影响   总被引:15,自引:0,他引:15  
对干旱胁迫下5个烟草品种(系)丙二醛含量和细胞膜透性进行测定表明,随着干旱胁迫的不断加重,烟草叶片丙二醛含量呈现先升后降的趋势,而细胞膜透性则表现为持续升高;复水后细胞膜透性能很快恢复正常,而丙二醛含量需要较长时间才略有恢复。细胞膜透性反应了烟草受干旱胁迫的程度,而丙二醛含量的稳定对烟草的抗旱性有重要意义。  相似文献   

2.
The dysregulated microRNAs (miRNAs) are involved in diabetic retinopathy progression. Epithelial mesenchymal transition (EMT) and cell permeability are important events in diabetic retinopathy. However, the function and mechanism of miR-195 in EMT and cell permeability in diabetic retinopathy remain largely unclear. Diabetic retinopathy models were established using streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-stimulated ARPE-19 cells. Retina injury was investigated by hematoxylin–eosin (HE) staining. EMT and cell permeability were analyzed by western blotting, immunofluorescence, wound healing, and FITC-dextran assays. MiR-195 expression was detected via qRT-PCR. YY1, VEGFA, Snail1, and Smurf2 levels were detected via western blotting. The interaction relationship was analyzed via ChIP, Co-IP, or dual-luciferase reporter assay. The retina injury, EMT, and cell permeability were induced in STZ-induced diabetic mice. HG induced EMT and cell permeability in ARPE-19 cells. MiR-195, YY1, VEGFA, and Snail1 levels were enhanced, but Smurf2 abundance was reduced in STZ-induced diabetic mice and HG-stimulated ARPE-19 cells. VEGFA knockdown decreased Snail1 expression and attenuated HG-induced EMT and cell permeability. YY1 silence reduced VEGFA and Snail1 expression, and mitigated HG-induced EMT and cell permeability. YY1 could bind with VEGFA and Snail1, and it was degraded via Smurf2-mediated ubiquitination. MiR-195 knockdown upregulated Smurf2 to decrease YY1 expression and inhibited HG-induced EMT and cell permeability. MiR-195 targeted Smurf2, increased expression of YY1, VEGFA, and Snail1, and promoted HG-induced EMT and cell permeability. MiR-195 promotes EMT and cell permeability of HG-stimulated ARPE-19 cells by increasing VEGFA/Snail1 via inhibiting the Smurf2-mediated ubiquitination of YY1.Subject terms: Mechanisms of disease, Diabetes  相似文献   

3.
本文报道利用亚硝酸钠(NaNo_2)穿透红细胞膜与血红蛋白(Hb)作用生成高铁血红蛋白(MetHb),测定MetHb可作为红细胞膜通透性的指标,研究在红细胞悬液中补充葡萄糖,萄葡糖-6-磷酸(G-6-P),3-磷酸甘油(3-PG),ATP后红细胞膜通透性的变化。萄葡糖,G-6-P,ATP均可不同程度地提高通透性,而3-PG有一定的抑制作用,可改善由血卟啉衍生物或γ-线(1000 rad)照射小鼠后引起的红血球通透性增加的作用,使恢复到接近正常水平。  相似文献   

4.
Membrane stress increases cation permeability in red cells.   总被引:1,自引:1,他引:0       下载免费PDF全文
The human red cell is known to increase its cation permeability when deformed by mechanical forces. Light-scattering measurements were used to quantitate the cell deformation, as ellipticity under shear. Permeability to sodium and potassium was not proportional to the cell deformation. An ellipticity of 0.75 was required to increase the permeability of the membrane to cations, and flux thereafter increased rapidly as the limits of cell extension were reached. Induction of membrane curvature by chemical agents also did not increase cation permeability. These results indicate that membrane deformation per se does not increase permeability, and that membrane tension is the effector for increased cation permeability. This may be relevant to some cation permeabilities observed by patch clamping.  相似文献   

5.
To evaluate absorption of compounds across the membrane via a transcellular route, the permeability of peptide derivatives and related compounds was measured by the parallel artificial membrane permeation assay (PAMPA). The permeability coefficients by PAMPA were analyzed quantitatively using classical QSAR and Volsurf approaches with the physicochemical parameters. The results from both approaches showed that hydrogen bonding ability of molecules in addition to hydrophobicity at a particular pH were significant in determining variations in PAMPA permeability coefficients. The relationship between Caco-2 cell permeability and artificial lipid membrane permeability was then determined. The compounds were sorted according to their absorption pathway in the plot of the Caco-2 cell and PAMPA permeability coefficients.  相似文献   

6.
Using a model to study vascular permeability under hydrostatically perfused bovine pulmonary artery endothelial cell (EC) monolayers and a software to automatically analyse cell morphological parameters in a computer image workstation, the effects of isoproterenol (IPN) on platelet-activating factor (PAF)-induced changes in EC monolayer permeability and cell morphological parameters were studied. Albumin has the fortifying effect on endothelial barrier function. After treatment of EC monolayer with 10-8mol/L PAF, trans-monolayer permeability increased, cell surface area decreased, and intercellular space enlarged. As pretreatment with 10-4mol/L IPN, PAF-induced EC permeability increment and morphological changes were blocked. The results suggest that EC contraction and intercellular gap expansion are important mechanisms for PAF-induced high vascular permeability. IPN inhibits the effects of PAF via stabilization of EC morphology and prevention of intercellular gap formation.  相似文献   

7.
A new method for determining permeability coefficients, that are independent of the unstirred water layer (UWL), has been developed. The method was used to determine the cellular permeability coefficient of the rapidly absorbed drug testosterone in monolayers of the human intestinal epithelial cell line, Caco-2. Using a new diffusion cell with an effective stirring system based on a gas lift, the cellular permeability coefficient for testosterone was (1.98 +/- 0.13).10(-4) cm/s which is 3.5-times higher than the permeability coefficient obtained in the unstirred system. The thickness of the UWL obtained with the well stirred diffusion cell was 52 +/- 4 microns. This value is much lower than those previously reported in various well stirred in vitro models. The calculated cellular permeability of testosterone was 13-23-times lower than that for an UWL of the same thickness as the epithelial cell (17-30 microns). We conclude that the permeability of the epithelial monolayer must be included in calculations of the thickness of the UWL.  相似文献   

8.
对细胞膜通透性变化的研究是认识微波杀菌机理的途径之一。用荧光探针检测微波处理后细胞内Ca2 浓度的变化,可以精确地表征细胞膜通透性的改变。选用二乙酸荧光素(FDA)和Fluo-3/AM两种荧光染料,对大肠杆菌(Escherichiacoli)和金黄色葡萄球菌(Staphylococcus aureus)经微波处理后的酯酶活性及细胞膜通透性进行研究,结果表明大肠杆菌与金黄色葡萄球菌的胞内非特异性酯酶(NSE)活性及细胞膜通透性的变化情形有所不同。在50℃、55℃、60℃和65℃微波处理条件下,大肠杆菌细胞膜通透性分别增加了20.7%、28.1%、74.8%、89.8%,而金黄色葡萄球的增加不显著,分别比对照组提高了4.1%、6.0%、21.9%和19.7%。细胞膜通透性的改变与微生物致死率有一定的相关性,也可能是微波杀菌非热效应的表现之一。  相似文献   

9.
10.
After the development of the "black lipid membrane" techniques, studies of the permeability of labeled water and nonelectrolytes across these artificial membranes have yielded permeability constants comparable in magnitude to those obtained from tracer studies of living cell membranes. This general agreement has affirmed the belief that the living cell membranes are indeed closely similar to these bilayer phospholipid membranes. In this report, we draw attention to a hidden assumption behind such comparisons made: the assumption that labeled material passing through the cell membrane barriers instantly reaches diffusion equilibrium inside the cell. The permeability constants to labeled water (and nonelectrolytes) across lipid layers were obtained using setups in which the lipid membrane was sandwiched between aqueous compartments both of which were vigorously stirred. In studies of permeability of living cell membranes only the outside solution was stirred, the intracellular water remained stationary. Yet the calculations of permeability constants of the cell membrane were made with the tacit assumption, that once the labeled materials pass through the cell membrane, they were instantly mixed with the entire cell contents as if a stirrer operating at infinite speed had been present inside the cells. Ignoring this unstirred condition of the intracellular water, in fact, lumped all the real-life delay due to diffusion in the cytoplasm and added it to the resistance to diffusion of the membrane barrier. The result is an estimated membrane permeability to labeled water (and nonelectrolytes) many times slower than it actually is. The present report begins with a detailed analysis of a specific case: tritiated water diffusion from giant barnacle muscle fibers and two non-living models, one real, one imagined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Permeability studies on red cell membranes of dog, cat, and beef   总被引:7,自引:6,他引:1  
Water permeability coefficients of dog, cat, and beef red cell membranes have been measured under an osmotic pressure gradient. The measurements employed a rapid reaction stop flow apparatus with which cell shrinking was measured under a relative osmotic pressure gradient of 1.25 to 1.64 times the isosmolar concentration. For the dog red cell the osmotic permeability coefficient is 0.36 cm4/(sec, osmol). The water permeability coefficient for the dog red cell under a diffusion gradient was also measured (rate constant = 0.10/msec). The ratio between the two permeabilities was used to calculate an equivalent pore radius of 5.9 A. This value agrees welt with an equivalent pore radius of 6.2 A obtained from reflection coefficients of nonelectrolyte water-soluble molecules, and is consistent with data on the permeability of the dog red cell membrane to glucose. These data provide evidence supporting the existence of equivalent pores in single biological membranes.  相似文献   

12.
Paracellular permeability is mediated by the epithelial cell tight junction. Studies in intestinal and other epithelia have suggested that the activity of src family kinases (SFKs) increases epithelial paracellular permeability through its action on the tight junction protein, occludin, but the involvement of SFKs and occludin in regulation of renal epithelial paracellular permeability is unclear. In this study, the role of SFKs in regulation of renal epithelial paracellular permeability and the involvement of occludin protein in this regulatory event was examined in two renal epithelial cell lines, LLC‐PK1 (proximal tubule‐like) and MDCK (distal tubule‐like). The effect of broad spectrum SFK inhibitors on paracellular permeability of calcein and fluorescein‐dextran3000 were examined. SFK inhibitor treatment increased paracellular movement of both compounds in both renal epithelial cell lines. The SFK inhibitor effect was concentration‐dependent and, at low concentrations, was not associated with cell damage/death. Response to SFK inhibitors was acquired progressively after cell populations attained confluence suggesting maturation of the regulatory mechanism. Increased paracellular permeability was not associated with dramatic changes in total cell content of occludin protein, its partitioning between detergent‐soluble and ‐insoluble fractions, or its subcellular localization. Further, the SFK‐induced increase in paracellular permeability was unaffected by either occludin protein overexpression or occludin protein knockdown. These results demonstrate that SFK activity decreases paracellular permeability of renal epithelial cells, as opposed to its effect in intestinal epithelial cells, and that this regulation is not mediated by occludin protein. J. Cell. Physiol. 228: 1210–1220, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Hantaviruses predominantly infect human endothelial cells and, in the absence of cell lysis, cause two diseases resulting from increased vascular permeability. Andes virus (ANDV) causes a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). ANDV infection enhances the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF) by increasing signaling responses directed by the VEGFR2-Src-VE-cadherin pathway, which directs adherens junction (AJ) disassembly. Here we demonstrate that inhibiting pathway-specific VEGFR2 and Src family kinases (SFKs) blocks ANDV-induced endothelial cell permeability. Small interfering RNA (siRNA) knockdown of Src within ANDV-infected endothelial cells resulted in an ~70% decrease in endothelial cell permeability compared to that for siRNA controls. This finding suggested that existing FDA-approved small-molecule kinase inhibitors might similarly block ANDV-induced permeability. The VEGFR2 kinase inhibitor pazopanib as well as SFK inhibitors dasatinib, PP1, bosutinib, and Src inhibitor 1 dramatically inhibited ANDV-induced endothelial cell permeability. Consistent with their kinase-inhibitory concentrations, dasatinib, PP1, and pazopanib inhibited ANDV-induced permeability at 1, 10, and 100 nanomolar 50% inhibitory concentrations (IC(50)s), respectively. We further demonstrated that dasatinib and pazopanib blocked VE-cadherin dissociation from the AJs of ANDV-infected endothelial cells by >90%. These findings indicate that VEGFR2 and Src kinases are potential targets for therapeutically reducing ANDV-induced endothelial cell permeability and, as a result, capillary permeability during HPS. Since the functions of VEGFR2 and SFK inhibitors are already well defined and FDA approved for clinical use, these findings rationalize their therapeutic evaluation for efficacy in reducing HPS disease. Endothelial cell barrier functions are disrupted by a number of viruses that cause hemorrhagic, edematous, or neurologic disease, and as a result, our findings suggest that VEGFR2 and SFK inhibitors should be considered for regulating endothelial cell barrier functions altered by additional viral pathogens.  相似文献   

14.
The addition of haemolytic Sendai virus to cells induces membrane changes in the following sequence: (i) Increased permeability to ions, (ii) increased permeability to low molecular weight metabolites, (iii) increased permeability to proteins. The consequences of an increased permeability to ions are: (a) alteration of membrane potential, (b) net changes in intracellular cations and (c) cell swelling, in that order. Depending on virus: cell ratio, Ca2+ concentration and temperature, it is possible to observe ion leakage without metabolite or protein leakage, and ion and metabolite leakage without protein leakage. A model for the induction of permeability changes is presented.  相似文献   

15.
Summary Dinitrofluorobenzene (DNFB) inhibits the penetration of anions such as sulfate, phosphate, succinate, and lactate, and facilitates the penetration of cations such as K+ and Na+. The phlorizin-glucose insensitive fraction of erythritol permeability is not affected by the agent. The effects of DNFB on ion permeability are similar to those of more specific amino reactive agents like trinitrobenzene sulfonate and 2-methoxy-5-nitrotropone.Anion permeability reacts more sensitively to DNFB than cation permeability. At a given concentration of DNFB in the medium, the inhibition of anion permeability develops faster than the facilitation of cation permeability. At a given time of exposure, lower concentrations of DNFB are required to produce a nearly maximal response of anion permeability than are necessary for maximal effect on cation permeability.The response of anion and cation permeability to DNFB is augmented by increasing the pH at which dinitrophenylation is allowed to take place.DNFB binding to the cell membrane is about one order of magnitude lower than DNFB binding to the whole cell. In the cell membrane, proteins as well as lipids are dinitrophenylated. Among the lipids, only phosphatidylethanolamine binds significant amounts of DNFB. Phosphatidylserine does not seem to react with the agent under the experimental conditions under which DNFB produces its effects on ion permeability.The experimental results are compatible with the assumption that removal of uncharged NH2-groups by dinitrophenylation of the membrane leads to a concomitant reduction of fixed NH 3 + -groups and hence of the positive membrane charge. This leads to an acceleration of cation movements and an inhibition of anion permeability while nonelectrolyte permeability remains unaffected. However, other explanations of our observations cannot be ruled out.  相似文献   

16.
Mycobacterial cell wall is rigid and offers a high resistance to the transport of sitosterol into cytosol. The effect of ethambutol, penicillin, polymixin and bacitracin on biotransformation of sitosterol to androstenedione by modification of cell wall permeability was examined. Drug sensitivity assay results established that bacitracin increased the permeability of the cell wall to hydrophobic compounds. Growth inhibitory study of bacitracin and rifamycin, individually as well as in combination showed that these two antibiotics act synergistically to reduce cell growth. A comparison of transmission electron micrograph results of the bacitracin-treated cells with untreated cells, revealed deformities caused in the cell wall structure by bacitracin treatment. These deformities increased the cell wall permeability and transport of sitosterol inside the cell, and thus enhanced androstenedione (AD) production. A maximum of 1.37, 1.44, 1.65 and 1.76 g AD per gram dry cell weight of mycobacterial cells was produced in the presence of ethambutol, penicillin, polymixin and bacitracin, respectively. Below the minimum inhibitory concentration, bacitracin can be used as potent enhancer of permeability of hydrophobic substances across the mycobacterial cell wall.  相似文献   

17.
Hantaviruses infect human endothelial cells and cause two vascular permeability-based diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Hantavirus infection alone does not permeabilize endothelial cell monolayers. However, pathogenic hantaviruses inhibit the function of alphav beta3 integrins on endothelial cells, and hemorrhagic disease and vascular permeability deficits are consequences of dysfunctional beta3 integrins that normally regulate permeabilizing vascular endothelial growth factor (VEGF) responses. Here we show that pathogenic Hantaan, Andes, and New York-1 hantaviruses dramatically enhance the permeability of endothelial cells in response to VEGF, while the nonpathogenic hantaviruses Prospect Hill and Tula have no effect on endothelial cell permeability. Pathogenic hantaviruses directed endothelial cell permeability 2 to 3 days postinfection, coincident with pathogenic hantavirus inhibition of alphav beta3 integrin functions, and hantavirus-directed permeability was inhibited by antibodies to VEGF receptor 2 (VEGFR2). These studies demonstrate that pathogenic hantaviruses, similar to alphav beta3 integrin-deficient cells, specifically enhance VEGF-directed permeabilizing responses. Using the hantavirus permeability assay we further demonstrate that the endothelial-cell-specific growth factor angiopoietin 1 (Ang-1) and the platelet-derived lipid mediator sphingosine 1-phosphate (S1P) inhibit hantavirus directed endothelial cell permeability at physiologic concentrations. These results demonstrate the utility of a hantavirus permeability assay and rationalize the testing of Ang-1, S1P, and antibodies to VEGFR2 as potential hantavirus therapeutics. The central importance of beta3 integrins and VEGF responses in vascular leak and hemorrhagic disease further suggest that altering beta3 or VEGF responses may be a common feature of additional viral hemorrhagic diseases. As a result, our findings provide a potential mechanism for vascular leakage after infection by pathogenic hantaviruses and the means to inhibit hantavirus-directed endothelial cell permeability that may be applicable to additional vascular leak syndromes.  相似文献   

18.
冷冻干燥对乳酸菌细胞膜通透性的影响   总被引:5,自引:0,他引:5  
对细胞膜通透性变化的研究是认识冷冻干燥过程对乳酸菌损伤机理的途径之一。用荧光探针检测冻干过程前后细胞内H+和Ca2+浓度的变化, 可以精确的表征细胞膜通透性的改变。利用荧光探针BCECF-AM和Fluo3-AM对德氏乳杆菌保加利亚亚种在冻干前后的细胞膜通透性进行研究, 并对比菌种在冻干过程中的活力损失, 发现细胞膜在冻干前后通透性有显著增加, 并与活力的损失成反相关关系。说明在冻干过程中细胞受到了生理性损伤, 细胞膜通透性的改变可能是导致乳酸菌在冻干过程中致死和失活的原因之一。  相似文献   

19.
The sodium flux across individual tight junctions (TJ) of low-resistance MDCK cell monolayers grown on glass coverslips was determined as a measure of paracellular permeability. Increases in perfusate glucose concentration from 5 to 25 mm decreased tight junction Na permeability. This permeability decrease was not specific as nonmetabolizable analogues of glucose caused similar diminutions in TJ Na permeability. Stimulation of protein kinase A increased TJ Na permeability, and inhibition of protein kinase A decreased TJ Na permeability. Transepithelial electrical resistance of monolayers grown on permeable supports did not change as predicted from the observed alterations in TJ Na permeability of monolayers grown on glass coverslips. Fluorescent labeling of cell F-actin showed that increased F-actin in the perijunctional ring correlated with higher TJ Na permeability. Although a low dose of cytochalasin D did not change TJ Na permeability, it disrupted the cytoskeleton and blocked the decrease in TJ Na permeability caused by glucose. Cytochalasin D failed to block the effects of protein kinase A stimulation or inhibition on TJ Na permeability. We conclude that tight junction sodium permeability is regulated both by protein kinase A activity and by other processes involving the actin cytoskeleton. Received: 17 June 1997/Revised: 28 August 1997  相似文献   

20.
Peptides are limited in their use as drugs due to low cell permeability and vulnerability to proteases. In contrast, peptoids are immune to enzymatic degradation and some peptoids have been shown to be relatively cell permeable. In order to facilitate future design of peptoid libraries for screening experiments, it would be useful to have a high-throughput method to estimate the cell permeability of peptoids containing different residues. In this paper, we report the strengths and limitations of a high-throughput cell-based permeability assay that registers the relative ability of steroid-conjugated peptides and peptoids to enter a cell. A comparative investigation of the physicochemical properties and side chain composition of peptoids and peptides is described to explain the observed higher cell permeability of peptoids over peptides. These data suggest that the conversion of the monomeric residues in peptides to an N-alkylglycine moiety in peptoids reduced the hydrogen-bonding potential of the molecules and is the main contributor to the observed permeability improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号