首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forty cDNA clones corresponding to the bifunctional NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase enzyme were isolated from a mouse lambda gt11 library. Two classes of cDNA clones were shown by Northern analysis to correspond to the two mRNA species of 1.7 and 2.0 kilobases present in transformed cells but not in normal tissues and that apparently are derived from alternate polyadenylation signals. The 1050-base pair coding region encodes a protein of 350 amino acids which contains a putative mitochondrial-targeting signal peptide of 34 amino acids following the initiator methionine. The 20 amino acids immediately following the signal peptide correspond exactly to those determined by sequence analysis of the amino terminus of the purified protein. The derived amino acid sequence of the NAD-dependent dehydrogenase-cyclohydrolase shows extensive homology with the corresponding amino-terminal sequence of the trifunctional NADP-dependent dehydrogenase-cyclohydrolase-synthetase enzyme from human cells (approximately 40%), yeast cytosol (approximately 36%), and yeast mitochondria (approximately 45%).  相似文献   

2.
3.
NAD-dependent methylenetetrahydrofolate dehydrogenase is expressed in transformed or established mammalian cell lines in vitro but only in the developmental tissues of normal adult animals (Mejia, N. R. and MacKenzie, R. E. (1985) J. Biol. Chem. 260, 14616-14620). The enzyme, which contains methenyltetrahydrofolate cyclohydrolase activity as well, has been purified 6000-fold from Ehrlich ascites tumor cells. The preparation is homogeneous by sodium dodecyl sulfate gel electrophoresis (Mr = 34,000), and results from cross-linking with bis(sulfosuccinimidyl)suberate are consistent with a dimeric structure (Mr = 68,000) for the native bifunctional enzyme. The dehydrogenase is specific for NAD and requires both a divalent cation, Mg2+ or Mn2+, for activity and as well is stimulated by inorganic phosphate. When compared to the usual NADP-dependent methylenetetrahydrofolate dehydrogenase from mouse liver, the NAD-dependent dehydrogenase activity of the murine tumor enzyme shows a greater affinity for the polyglutamate forms of folate.  相似文献   

4.
The bifunctional NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase from ascites tumor cells has very different kinetic properties from the larger NADP-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase present in all mammalian cells. The NAD-dependent dehydrogenase is unique in that it requires formation of a magnesium.enzyme complex to allow addition of the first substrate, NAD+. It catalyzes an equilibrium ordered kinetic mechanism that has methylenetetrahydrofolate as the last reactant to add and NADH as the last product released. The NADP-dependent dehydrogenase has the same order of addition of substrates, but NADPH is released prior to methenyltetrahydrofolate. The dehydrogenase-cyclohydrolase activities of both enzymes channel methenyltetrahydropteroylglutamate intermediates with the same efficiency which is unaffected by the number of glutamyl residues in the methylenetetrahydrofolate substrate. However, the cyclohydrolase activity of the bifunctional protein is kinetically independent of its dehydrogenase activity, as supported by its lack of inhibition by NAD+, whereas NADP+ strongly inhibits that of the NADP-dependent enzyme. This difference is further demonstrated by the observation that conversion of formyltetrahydrofolate to methylenetetrahydrofolate in the presence of reduced pyridine nucleotide is catalyzed readily only by the bifunctional enzyme.  相似文献   

5.
NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase is a bifunctional enzyme synthesized as a 37-kDa precursor that is imported into the mitochondria of embryonic and transformed mammalian cells. The cDNA encoding the human bifunctional enzyme was modified to remove nucleotides corresponding to the mitochondrial targeting sequence and was subcloned into a procaryotic expression vector under the control of the T7 RNA polymerase promoter. The soluble dehydrogenase-cyclohydrolase was expressed in Escherichia coli at levels up to 150-fold higher than those found in transformed mammalian cells. Forms of the recombinant enzyme with one, three, or seven additional amino-terminal residues were purified to homogeneity and shown to have similar kinetic properties. Investigation of the absolute requirement of the enzyme for Mg2+ using fluorescence quenching indicates that this ion binds in the absence of substrates.  相似文献   

6.
The mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase (NMDMC) is believed to have evolved from a trifunctional NADP-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase-synthetase. It is unique in its absolute requirement for inorganic phosphate and magnesium ions to support dehydrogenase activity. To enable us to investigate the roles of these ions, a homology model of human NMDMC was constructed based on the structures of three homologous proteins. The model supports the hypothesis that the absolutely required Pi can bind in close proximity to the 2'-hydroxyl of NAD through interactions with Arg166 and Arg198. The characterization of mutants of Arg166, Asp190, and Arg198 show that Arg166 is primarily responsible for Pi binding, while Arg198 plays a secondary role, assisting in binding and properly orienting the ion in the cofactor binding site. Asp190 helps to properly position Arg166. Mutants of Asp133 suggest that the magnesium ion interacts with both Pi and the aspartate side chain and plays a role in positioning Pi and NAD. NMDMC uses Pi and magnesium to adapt an NADP binding site for NAD binding. This adaptation represents a novel variation of the classic Rossmann fold.  相似文献   

7.
A trifunctional protein in man, 5,10-methylenetetrahydrofolate dehydrogenase-5,10-methenyltetrahydrofolate cyclohydrolase-10-formyltetrahydrofolate synthetase, catalyzes three consecutive steps in the interconversion of tetrahydrofolate derivatives; these derivatives supply one-carbon units for intermediary metabolism. Somatic cell hybridization and in situ hybridization were used to localize the functional gene coding for this protein--to human chromosome 14q24, near the c-fos and TGF-beta 3 loci. A second hybridizing sequence, possibly a pseudogene, was identified near the centromere of the X chromosome, at Xp11.  相似文献   

8.
9.
The cholesterol side-chain cleavage enzyme (SCC) catalyzes the initial and rate-limiting step in the synthesis of steroid hormones. The mouse gene encoding SCC was cloned and the nucleotide sequence of its 5'-flanking region determined. This sequence includes an AP-1 motif at -319 and two motifs, AGGTCA at -70 and AGCCTTG at -40, that match elements proposed to be important in the expression of steroid 21-hydroxylase. When transfected into mouse Y1 adrenocortical tumor cells, 1.5 kilobase pairs of 5'-flanking region of the SCC gene directed high levels of expression of a growth hormone reporter gene; treatment of the transfected Y1 cells with 8-bromo-cAMP increased this expression by 5-fold. In contrast, transfected mouse MA-10 Leydig cells showed appreciably lower expression, suggesting that SCC expression in Leydig cells requires additional elements not contained in the 5'-flanking region of the SCC gene used in these experiments. Deletion experiments showed that 424 base pairs of 5'-flanking sequences were sufficient for regulated expression in Y1 cells and mapped two regulatory regions: one from -424 to -327 and a second from -219 to -77. DNase I footprinting and gel mobility shift analyses of these 424 base pairs defined several interactions between nuclear proteins and the SCC promoter, including footprints centered over the AP-1 motif, over a sequence at -120, and over the sequences (-70 and -40) that resemble 21-hydroxylase promoter elements. Finally, site-selected mutagenesis of the potential elements at -40, -70, or -120 decreased SCC promoter activity in transfected Y1 adrenocortical cells, thus establishing their importance in SCC expression.  相似文献   

10.
Triglyceride lipases catalyze the reversible degradation of glycerol esters with long-chain fatty acids into fatty acids and glycerol. In silico analysis of 5′-end flanking sequence of the gene LIP1 encoding a triglyceride lipase from the wheat head blight pathogen Fusarium graminearum revealed the presence of several cis-regulatory elements. To delineate the function of these regulatory elements, we constructed a series of deletion mutants in the LIP1 promoter region fused to the open reading frame of a green fluorescent protein (GFP) and assayed the promoter activity. Analysis of GFP expression levels in mutants indicated that a 563-bp promoter sequence was sufficient to drive the expression of LIP1 and regulatory elements responsible for the gene induction were located within the 563-372 bp region. To further investigate the regulatory elements, putative cis-acting elements spanned within the 563-372 bp region were mutated using a targeted mutagenesis approach. A CCAAT box, a CreA binding site, and a fatty acid responsive element (FARE) were identified and confirmed to be required for the basal expression of LIP1, glucose suppression and fatty acid induction, respectively.  相似文献   

11.
12.
13.
14.
The insect cell line derived from Spodoptera frugiperda (Sf9) does not express the activities of the trifunctional NADP-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase. The lack of synthetase activity was confirmed by the inability to incorporate radiolabeled formate into nucleotides. The cells express, instead, a Mg2+ and NAD-dependent bifunctional methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase with properties similar to the enzyme found in the mitochondria of transformed mammalian cells. In contrast, the enzyme in Sf9 cells is localized in the cytoplasm. Nutritional studies in defined medium with dialyzed serum demonstrated that the Sf9 cell does not required added purines or pyrimidines for growth. It is auxotrophic for cysteine and glycine; this latter requirement is probably due to the absence of mitochondrial serine hydroxymethyltransferase. Incorporation of labeled glycine and serine into DNA indicates that only serine is a source of one-carbon units. These results suggest that the mitochondria in Sf9 cells do not play a major role in folate-mediated metabolism.  相似文献   

15.
16.
17.
The 5'-flanking region of the human FcRn alpha-chain gene was analyzed for its ability to directly express the chloramphenicol acetyltransferase (CAT) reporter gene in NIH3T3 and Lu106 cells. Transient transfection of the CAT constructs revealed that there was promoter activity in the region -660 to +300 of the 5'-flanking sequence. Electrophoretic mobility-shift assays showed that there are functional binding sites for Sp1 or Sp1-like factors, AP1 or a related factor, and additional unidentified proteins in the promoter region.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号