首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peripheral T lymphocytes undergo activation by antigenic stimulation and function in hypoxic areas of inflammation. We demonstrated in CD3-positive human T cells accumulating in inflammatory tissue expression of the hypoxia-inducible factor-1alpha (HIF-1alpha), indicating a role of hypoxia-mediated signals in regulation of T cell function. Surprisingly, accumulation of HIF-1alpha in human T cells required not only hypoxia but also TCR/CD3-mediated activation. Moreover, hypoxia repressed activation-induced cell death (AICD) by TCR/CD3 stimulation, resulting in an increased survival of the cells. Microarray analysis suggested the involvement of HIF-1 target gene product adrenomedullin (AM) in this process. Indeed, AM receptor antagonist abrogated hypoxia-mediated repression of AICD. Moreover, synthetic AM peptides repressed AICD even in normoxia. Taken together, we propose that hypoxia is a critical determinant of survival of the activated T cells via the HIF-1alpha-AM cascade, defining a previously unknown mode of regulation of peripheral immunity.  相似文献   

2.
Whether TCR engagement leads to activation or tolerance is determined by the concomitant delivery of multiple accessory signals, cytokines, and environmental cues. In this study, we demonstrate that the mammalian target of rapamycin (mTOR) integrates these signals and determines the outcome of TCR engagement with regard to activation or anergy. In vitro, Ag recognition in the setting of mTOR activation leads to full immune responses, whereas recognition in the setting of mTOR inhibition results in anergy. Full T cell activation is associated with an increase in the phosphorylation of the downstream mTOR target S6 kinase 1 at Thr(421)/Ser(424) and an increase in the mTOR-dependent cell surface expression of transferrin receptor (CD71). Alternatively, the induction of anergy results in markedly less S6 kinase 1 Thr(421)/Ser(424) phosphorylation and CD71 surface expression. Likewise, the reversal of anergy is associated not with proliferation, but rather the specific activation of mTOR. Importantly, T cells engineered to express a rapamycin-resistant mTOR construct are resistant to anergy induction caused by rapamycin. In vivo, mTOR inhibition promotes T cell anergy under conditions that would normally induce priming. Furthermore, by examining CD71 surface expression, we are able to distinguish and differentially isolate anergic and activated T cells in vivo. Overall, our data suggest that by integrating environmental cues, mTOR plays a central role in determining the outcome of Ag recognition.  相似文献   

3.
T cell activation requires Ag-specific stimulation mediated by the TCR as well as an additional stimulus provided by Ag presenting cells. On human T cells, it has been shown that antibodies to the Ag CD28 can provide a potent amplification signal for cytokine production and proliferation. Here we describe the production of a mAb to the murine homologue of CD28, and the use of this antibody to examine the function and distribution of CD28 in the mouse. Anti-murine CD28 synergizes with TCR-mediated signals to greatly enhance lymphokine production and proliferation of T cells, and the CD28 signal is not blocked by cyclosporin A. In the peripheral lymphoid organs and in the blood of the mouse, all CD4+ and CD8+ T cells express CD28. In the thymus, CD28 expression is highest on immature CD3-, CD8+ and CD4+8+ cells, and on CD4-8- cells that express alpha beta and tau delta TCR. The level of CD28 on mature CD4+ and CD8+ alpha beta TCR+ thymocytes is two- to fourfold lower than on the immature cells. The potent costimulatory function of CD28 on mature T cells, together with the high level of expression on CD4+8+ thymocytes, suggest that this costimulatory receptor might play an important role in T cell development and activation.  相似文献   

4.
5.
6.
Restimulation of Ag receptors on peripheral T lymphocytes induces tyrosine phosphorylation-based signaling cascades that evoke Fas ligand expression and induction of Fas-mediated programmed cell death. In view of the role for the Src homology domain 2-bearing protein tyrosine phosphatase-1 (SHP-1) in modulating TCR signaling, we investigated the influence of SHP-1 on TCR-mediated apoptosis by assaying the sensitivity of peripheral T cells from SHP-1-deficient viable motheaten (mev) mice to cell death following TCR restimulation. The results of these studies revealed mev peripheral T cells to be markedly more sensitive than wild-type cells to induction of cell death following TCR stimulation. By contrast, PMA/ionophore and anti-Fas Ab-induced apoptotic responses were no different in mev compared with wild-type activated cells. Enhanced apoptosis of TCR-restimulated mev lymphocytes was associated with marked increases in Fas ligand expression as compared with wild-type cells, but was almost abrogated in both mev and wild-type cells by Fas-Fc treatment. Thus, the increased sensitivity of mev T cells to apoptosis following TCR restimulation appears to reflect a TCR-driven phenomenon mediated through up-regulation of Fas-Fas ligand interaction and induction of the Fas signaling cascade. These findings, together with the hyperproliferative responses of mev peripheral T cells to initial TCR stimulation, indicate that SHP-1 modulation of TCR signaling translates to the inhibition of both T cell proliferation and activation and, as such, is likely to play a pivotal role in regulating the expansion of Ag-stimulated T cells during an immune response.  相似文献   

7.
8.
The phosphoinositide 3-kinase (PI3K)/Akt pathway is commonly activated in cancer; therefore, we investigated its role in hypoxia-inducible factor-1alpha (HIF-1alpha) regulation. Inhibition of PI3K in U87MG glioblastoma cells, which have activated PI3K/Akt activity secondary to phosphatase and tensin homologue deleted on chromosome 10 (PTEN) mutation, with LY294002 blunted the induction of HIF-1alpha protein and its targets vascular endothelial growth factor and glut1 mRNA in response to hypoxia. Introduction of wild-type PTEN into these cells also blunted HIF-1alpha induction in response to hypoxia and decreased HIF-1alpha accumulation in the presence of the proteasomal inhibitor MG132. Akt small interfering RNA (siRNA) also decreased HIF-1alpha induction under hypoxia and its accumulation in normoxia in the presence of dimethyloxallyl glycine, a prolyl hydroxylase inhibitor that prevents HIF-1alpha degradation. Metabolic labeling studies showed that Akt siRNA decreased HIF-1alpha translation in normoxia in the presence of dimethyloxallyl glycine and in hypoxia. Inhibition of mammalian target of rapamycin (mTOR) with rapamycin (10-100 nmol/L) had no significant effect on HIF-1alpha induction in a variety of cell lines, a finding that was confirmed using mTOR siRNA. Furthermore, neither mTOR siRNA nor rapamycin decreased HIF-1alpha translation as determined by metabolic labeling studies. Therefore, our results indicate that Akt can augment HIF-1alpha expression by increasing its translation under both normoxic and hypoxic conditions; however, the pathway we are investigating seems to be rapamycin insensitive and mTOR independent. These observations, which were made on cells grown in standard tissue culture medium (10% serum), were confirmed in PC3 prostate carcinoma cells. We did find that rapamycin could decrease HIF-1alpha expression when cells were cultured in low serum, but this seems to represent a different pathway.  相似文献   

9.
人HIF—1α的腺病毒表达载体的构建与分析   总被引:4,自引:0,他引:4  
低氧诱导因子 1(hypoxiainduciblefactor 1,HIF 1)是由HIF 1α和HIF 1β组成的异源二聚体转录因子 ,在细胞的氧平衡过程中起重要作用。在应答低氧信号时 ,HIF 1α亚基表达水平上调 ,并通过激活参与细胞能量代谢、红血细胞生成以及血管生成的靶基因表达 ,达到保护局部缺 贫血细胞免于凋亡或死亡 ,而后者则是临床上影响大脑和脊椎神经损伤恢复的主要原因。为了达到基因治疗急性神经损伤的目的 ,我们构建了表达HIF 1α的重组腺病毒载体。实验表明 ,重组腺病毒可以在大肠杆菌中组装 ,并在HEK2 93T细胞中包装。包装后的HIF 1α重组腺病毒载体的病毒感染效率为 2× 10 1 3CFU ,外源基因HIF 1α在He1a细胞中的表达 6h后达到峰值。目前正在开展建立在此基础上的急性神经损伤动物模型试验。  相似文献   

10.
The TCR is a multimeric structure comprised of distinct Ag recognition and signal transduction components. Although none of the molecules that make up the TCR possess intrinsic protein tyrosine kinase (PTK) activity, stimulation of T cells via the TCR results in the rapid appearance of newly tyrosine phosphorylated proteins in cell lysates. Evidence suggests ligation of the TCR induces activation of a PTK that may be a member of the src family. One early consequence of this TCR-mediated PTK activation is the phosphorylation of the gamma 1 isoform of phospholipase C. This phosphorylation event is associated with increased enzymatic activity resulting in the hydrolysis of phosphatidylinositol 4,5 bisphosphate into two second messengers, inositol 1,4,5 trisphosphate and diacylglycerol. Recently, our laboratory and others have isolated mutant T cells that lack surface expression of CD45, the major surface tyrosine phosphatase expressed on lymphoid cells. Stimulation of the TCR on these cells fails to result in the expected activation events. We demonstrate that reconstitution of surface expression of the 180-kDa isoform of CD45 by gene transfer into a CD45-deficient mutant of the Jurkat T cell leukemic line restores the ability of the TCR to couple fully to its signal transduction machinery. These results support the role of CD45 tyrosine phosphatase activity in regulating the TCR-activated PTK.  相似文献   

11.
We hypothesized that the neuroprotective role of the standardized Ginkgo biloba (Ginkgoaceae) extract EGb 761 under hypoxic conditions might be associated with its function to increase HIF-1 activity based on the fact that oxygen availability is crucial for cellular metabolism and viability and that HIF-1 plays an essential role in cellular oxygen homeostasis under hypoxic conditions. In this study, we therefore investigated the effects of ginkgolides, the main constituent of the non-flavone fraction of EGb 761, on the content and activity of HIF-1alpha, a key factor to determine HIF-1 activity, in hypoxic PC12 cells induced by cobalt chloride. Our data demonstrated that ginkgolides have a significant protective role against hypoxia-induced injury in the PC12 cells. The findings also strongly support our hypothesis that the protective role of ginkgolides is due to the up-regulation of HIF-1alpha protein expression and modification through the ginkgolides-induced activation of the p42/p44 MAPK pathway. In addition, it was evident that ginkgolides could significantly increase the HIF-1 DNA binding activity, which might also be associated with the protective effects of ginkgolides by promoting the expression of target genes of HIF-1 under hypoxic conditions.  相似文献   

12.
A CD4(+) T cell clone (HC/2G-1) was established by stimulating peripheral blood T cells from a patient with renal cell carcinoma (RCC) with dendritic cells preincubated with the autologous apoptotic renal tumor line in the presence of IFN-alpha. It recognizes the autologous RCC and most allogeneic RCC lines by IFN-gamma release (10 of 11 lines) and lysis (9 of 10 lines), but does not recognize multiple EBV B cells or fibroblasts. It shows little or no recognition of a panel of melanomas, breast cancers and non-small-cell lung cancers. Phenotypically, HC/2G-1 is CD3(+)CD4(+) TCR alphabeta(+), but CD161(-)CD16(-)NKG2D(-). Tumor recognition by clone HC/2G-1 was not blocked by Abs to HLA class I or class II, but was significantly reduced by anti-TCR alphabeta Ab. Furthermore, tumor recognition was beta(2)-microglobulin-independent. HC/2G-1 does not use a Valpha or Vbeta described for classical NKT cells, but rather Valpha14 and Vbeta2.1. Allogeneic T cells cotransfected with mRNAs encoding the alpha and beta chains of the HC/2G-1 TCR recognized renal tumor lines, demonstrating that tumor recognition is TCR-mediated. Interestingly, TRAIL appears to play a role in tumor recognition by HC/2G-1 in that reactivity was blocked by anti-TRAIL Ab, and soluble TRAIL could enhance IFN-gamma secretion by HC/2G-1 in response to renal tumors. Our findings suggest that clone HC/2G-1 represents a novel type of CD4(+) cell that has broad TCR-mediated recognition of a determinant widely expressed by RCC.  相似文献   

13.
Selection processes in the thymus eliminate nonfunctional or harmful T cells and allow the survival of those cells with the potential to recognize Ag in association with self-MHC-encoded molecules (Ag/MHC). We have previously demonstrated that thymus-derived glucocorticoids antagonize TCR-mediated deletion, suggesting a role for endogenous thymic glucocorticoids in promoting survival of thymocytes following TCR engagement. Consistent with this hypothesis, we now show that inhibition of thymus glucocorticoid biosynthesis causes an increase in thymocyte apoptosis and a decrease in recovery that are directly proportional to the number of MHC-encoded molecules present and, therefore, the number of ligands available for TCR recognition. Expression of CD5 on CD4+CD8+ thymocytes, an indicator of TCR-mediated activation, increased in a TCR- and MHC-dependent manner when corticosteroid production or responsiveness was decreased. These results indicate that thymus-derived glucocorticoids determine where the window of thymocyte selection occurs in the TCR avidity spectrum by dampening the biological consequences of TCR occupancy and reveal that glucocorticoids mask the high percentage of self-Ag/MHC-reactive thymocytes that exist in the preselection repertoire.  相似文献   

14.
Ab stimulation of the TCR rapidly enhances the functional activity of the LFA-1 integrin. Although TCR-mediated changes in LFA-1 activity are thought to promote T cell-APC interactions, the Ag specificity and sensitivity of TCR-mediated triggering of LFA-1 is not clear. We demonstrate that peptide/MHC (pMHC) tetramers rapidly enhance LFA-1-dependent adhesion of OT-I TCR transgenic CD8(+) T cells to purified ICAM-1. Inhibition of src family tyrosine kinase or PI3K activity blocked pMHC tetramer- and anti-CD3-stimulated adhesion. These effects are highly specific because partial agonist and antagonist pMHC tetramers are unable to stimulate OT-I T cell adhesion to ICAM-1. The Ag thresholds required for T cell adhesion to ICAM-1 resemble those of early T cell activation events, because optimal LFA-1 activation occurs at tetramer concentrations that fail to induce maximal T cell proliferation. Thus, TCR signaling to LFA-1 is highly Ag specific and sensitive to low concentrations of Ag.  相似文献   

15.
16.
One of the important signaling events following TCR engagement is activation of phospholipase Cγ (PLCγ). PLCγ has two isoforms, PLCγ1 and PLCγ2. It is known that PLCγ1 is important for TCR signaling and TCR-mediated T cell selection and functions, whereas PLCγ2 is critical for BCR signal transduction and BCR-mediated B cell maturation and functions. In this study, we report that PLCγ2 was expressed in primary T cells, and became associated with linker for activated T cells and Src homology 2-domain containing leukocyte protein of 76 kDa and activated upon TCR stimulation. PLCγ1/PLCγ2 double-deficient T cells displayed further block from CD4 and CD8 double-positive to single-positive transition compared with PLCγ1 single-deficient T cells. TCR-mediated proliferation was further impaired in PLCγ1/PLCγ2 double-deficient T cells compared with PLCγ1 single-deficient T cells. TCR-mediated signal transduction, including Ca(2+) mobilization and Erk activation, was further impaired in PLCγ1/PLCγ2 double-deficient relative to PLCγ1 single-deficient T cells. In addition, in HY TCR transgenic mouse model, thymic positive and negative selections were reduced in PLCγ1 heterozygous- and PLCγ2 homozygous-deficient (PLCγ1(+/-)PLCγ2(-/-)) relative to wild-type, PLCγ2 single-deficient (PLCγ2(-/-)), or PLCγ1 heterozygous-deficient (PLCγ1(+/-)) mice. Taken together, these data demonstrate that PLCγ2 participates in TCR signal transduction and plays a role in T cell selection.  相似文献   

17.
Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis.  相似文献   

18.
The Src family kinase Lck is essential for T cell Ag receptor-mediated signaling. In this study, we report the effects of acute elimination of Lck in Jurkat TAg and primary T cells using RNA interference mediated by short-interfering RNAs. In cells with Lck knockdown (kd), proximal TCR signaling was strongly suppressed as indicated by reduced zeta-chain phosphorylation and intracellular calcium mobilization. However, we observed sustained and elevated phosphorylation of ERK1/2 in Lck kd cells 30 min to 2 h after stimulation. Downstream effects on immune function as determined by activation of a NFAT-AP-1 reporter, and TCR/CD28-stimulated IL-2 secretion were strongly augmented in Jurkat and primary T cells, respectively. As expected, overexpression of SHP-1 in Jurkat cells inhibited TCR-induced NFAT-AP-1 activation, but this effect could be overcome by simultaneous kd of Lck. Furthermore, acute elimination of Lck also suppressed TCR-mediated activation of SHP-1, suggesting the possible role of SHP-1 in a negative feedback loop originating from Lck. This report underscores Lck as an important mediator of proximal TCR signaling, but also indicates a suppressive role on downstream immune function.  相似文献   

19.
T cells must integrate a diverse array of intrinsic and extrinsic signals upon Ag recognition. Although these signals have canonically been categorized into three distinct events--Signal 1 (TCR engagement), Signal 2 (costimulation or inhibition), and Signal 3 (cytokine exposure)--it is now appreciated that many other environmental cues also dictate the outcome of T cell activation. These include nutrient availability, the presence of growth factors and stress signals, as well as chemokine exposure. Although all of these distinct inputs initiate unique signaling cascades, they also modulate the activity of the evolutionarily conserved serine/threonine kinase mammalian target of rapamycin (mTOR). Indeed, mTOR serves to integrate these diverse environmental inputs, ultimately transmitting a signaling program that determines the fate of newly activated T cells. In this review, we highlight how diverse signals from the immune microenvironment can guide the outcome of TCR activation through the activation of the mTOR pathway.  相似文献   

20.
The migration of vascular smooth muscle cells from the media to intima and their subsequent proliferation are critical causes of arterial wall thickening. In atherosclerotic lesions increases in the thickness of the vascular wall and the impairment of oxygen diffusion capacity result in the development of hypoxic lesions. We investigated the effect of hypoxia on the migration of human coronary artery smooth muscle cells (CASMCs) via HIF-1alpha-dependent expression of thrombospondin-1 (TSP-1). When the cells were cultured under hypoxic conditions, mRNA and protein levels of TSP-1, and mRNA levels of integrin beta(3) were increased with the increase in HIF-1alpha protein. DNA synthesis and migration of the cells were stimulated under the conditions, and a neutralizing anti-TSP-1 antibody apparently suppressed the migration, but not DNA synthesis. The migration was also inhibited by RGD peptide that binds to integrin beta(3). Furthermore, the migration was completely suppressed in HIF-1alpha-knockdown cells exposed to hypoxia, while it was significantly enhanced in HIF-1alpha-overexpressing cells. These results suggest that the hypoxia induces the migration of CASMCs, and that the migration is elicited by TSP-1 of which induction is fully dependent on the stabilization of HIF-1alpha, in autocrine regulation. Thus we suggest that HIF-1alpha plays an important role in the pathogenesis of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号