首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Dihydrotestosterone glucuronide (DHTG), a series of 5 alpha-bile acids, or allo-bile acids (3 alpha-hydroxy-5 alpha-cholanic acid, 3-keto-5 alpha-cholanic acid and 3 beta-hydroxy-5 alpha-cholanic acid) and their normal bile acid analogues (3 alpha-hydroxy-5 beta-cholanic acid or lithocholate, 3-keto-5 beta-cholanic acid and 3 beta-hydroxy-5 beta-cholanic acid) were administered intravenously to female rats in order to determine their effects on bile flow. All agents caused a rapid and profound inhibition of bile flow which was dose-dependent. The logarithm of the dose vs the cholestatic response curve for DHTG, the allo-bile acids and lithocholate were all parallel. DHTG was the most potent congener and was two times more potent than 3-keto-5 alpha-cholanic acid and 5 times more potent than lithocholate. These data indicate that the glucuronic acid moiety and the trans configuration of the A and B rings of the steroid nucleus confer the greatest cholestatic potency.  相似文献   

2.
The metabolism of 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid was studied in the bile fistula rats and in preparations from rat liver homogenates. In the bile fistula rats, the main products were chenodeoxycholic acid, alpha-muricholic acid, and beta-muricholic acid. Only small amounts of cholic acid were formed. Incubations of 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid with microsomes and NADPH yielded as the main product 3 alpha, 6 beta, 7 alpha-trihydroxy-5 beta-cholestanoic acid. The formation of small amounts of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid was shown. The major product in incubations of 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid with microsomes and the 100,000 g supernatant fluid fortified with ATP was identified as 3 alpha, 7 alpha, 24 xi-trihydroxy-5 beta-cholestanoic acid. This compound was converted into chenodeoxycholic acid and its metabolites in the bile fistula rat.  相似文献   

3.
The use of 5-aminosalicylic acid in assessment of reactive oxygen species formation was investigated by in vitro Fenton and ozonation reactions, and by in vivo ozone-exposure experiments. Enzymatic hydroxylation was evaluated by a microsomal assay. Fischer 344 male rats (250 g) injected with 5-aminosalicylic acid (100 mg x kg(-1) i.p.; 30 min) were exposed to ozone (0, 1, 2 ppm; nose only, 2 h); bronchoalveolar lavage, lung homogenates, and plasma were recovered. Oxidation products of 5-aminosalicylic acid were as follows: salicylic acid, by deamination; 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid, from radical or enzymatic hydroxylation; 5-amino-2-hydroxy-N,N'-bis(3-carboxy-4-hydroxyphenyl)-1,4-benzoquinonediimine, a condensation product of oxidized 5-aminosalicylic acid; and 5-amino-2,3,4,6-tetrahydroxybenzoic acid, attributed to hydroxyl radical attack without deamination, identified by HPLC electrochemical (HPLC-EC) detector system analysis and by GC-MS analysis of trimethylsilyl derivatives. 5-Aminotetrahydroxybenzoic acid was not formed enzymatically. 5-Aminotetrahydroxybenzoic acid, but not 5-aminosalicylic acid, was significantly elevated in bronchoalveolar lavage (+86%) and lung homogenates (+56%) in response to 2 ppm ozone (p < 0.05); no significant changes were detected in plasma. The data indicate that hydroxylation of 5-aminosalicylic acid is a potential specific probe for in vivo oxidative stress.  相似文献   

4.
Intraperitoneal injection of the cyclic imine 1-piperideine in mice resulted in measurable quantities of 5-aminopentanoic acid in brain. 5-Aminopentanoic acid is a methylene homologue of gamma-aminobutyric acid (GABA) that is a weak GABA agonist. 5-Aminopentanoic acid formed in the periphery was ruled out as the source of brain 5-aminopentanoic acid based on the absence of detection in brain following injection of 100 mg/kg of 5-aminopentanoic acid. Deuterium-labeled 1-piperideine was prepared by exchange in deuterated phosphate buffer. Injection of [3.3-2H2]1-piperideine yielded [2.2-2H2]5-aminopentanoic acid in brain. The results are consistent with uptake of 1-piperideine into brain and oxidation of the precursor to 5-aminopentanoic acid. Inhibition of GABA catabolism by pretreatment with aminooxyacetic acid increased brain concentrations of 5-aminopentanoic acid formed from 1-piperideine, suggesting that 5-aminopentanoic acid is an in vivo substrate of 4-aminobutyrate:2-oxoglutarate aminotransferase.  相似文献   

5.
Nahar L  Turner AB 《Steroids》2003,68(14):1157-1161
Four lithocholic acid dimers were synthesised via esterification. The ester-linked dimer, 3-oxo-5beta-cholan-24-oic acid (cholan-24-oic acid methyl ester)-3-yl ester, (3alpha,5beta), was obtained by condensation of methyl lithocholate with 3-oxo-5beta-cholan-24-oic acid. Borohydride reduction of this ester-linked dimer gave 3alpha-hydroxy-5beta-cholan-24-oic acid (cholan-24-oic acid methyl ester)-3-yl ester, (3alpha,5beta), which was acetylated to 3alpha-acetoxy-5beta-cholan-24-oic acid (cholan-24-oic acid methyl ester)-3-yl ester, (3alpha,5beta). Reaction of methyl lithocholate with oxalyl chloride yielded the oxalate dimer, bis(5beta-cholan-24-oic acid methyl ester)-3alpha-yl oxalate.  相似文献   

6.
Folate in the brain of the South African fruit bat consists of 10-formyltetrahydropteroyglutamic acid and the tri-, tetra- and penta- forms of 5-methyltetrahydropteroylglutamic acid. Following parenteral injection, only 5-[3H]-methyltetrahydropteroylglutamic acid was taken up by the brain, but none of a dose of 14C-labelled tetrahydropteroylglutamic acid was detectable. Only trace smounts of the 5-methyltetrahydropteroylglutamic acid were converted into the formyl compounds and a small amount of methyltetrahydropteroyltriglutamic acid appeared after 96 h. There was no significant difference in vitamin B-12-deficient animals.  相似文献   

7.
Metabolism of sinapic acid and related compounds in the rat   总被引:1,自引:1,他引:0       下载免费PDF全文
1. Administration of sinapic acid to the rat results in the excretion of 3-hydroxy-5-methoxyphenylpropionic acid, dihydrosinapic acid, 3-hydroxy-5-methoxycinnamic acid and unchanged sinapic acid in the urine. The sinapic acid conjugate sinalbin is also catabolized to free sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid in the rat. 2. 3,4,5-Trimethoxycinnamic acid is metabolized in part to sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 3. 3,5-Dimethoxycinnamic acid is metabolized to 3-hydroxy-5-methoxycinnamic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 4. The metabolic interrelationships of these compounds were studied by the administration of intermediates and a metabolic pathway is proposed. 5. The metabolism of the corresponding benzoic acids was studied, but these compounds and their metabolites were shown not to be intermediates or products of the metabolism of the related cinnamic acids.  相似文献   

8.
Arachidonate 5-lipoxygenase purified from porcine leukocytes was incubated with (5S)-hydroperoxy-6,8,11,14-eicosatetraenoic acid. In addition to degradation products of leukotriene A4 (6-trans-leukotriene B4 and its 12-epimer and others), (5S,6R)-dihydroperoxy-7,9,11,14-eicosatetraenoic acid was produced as a major product especially when the incubation was performed on ice rather than at room temperature. The amount of the (5S,6R)-dihydroperoxy acid was close to the total amount of leukotriene A4 degradation products. Under the anaerobic condition, production of the (5S,6R)-dihydroperoxy acid was markedly reduced. 5-Hydroxy-6,8,11,14-eicosatetraenoic acid could be a substrate of the enzyme and was transformed predominantly to a compound identified as (5S)-hydroxy-(6R)-hydroperoxy-7,9-trans-11,14-cis-eicosatetraenoic acid at about 1-2% rate of arachidonate 5-oxygenation. These findings indicated that the purified 5-lipoxygenase exhibited a 6R-oxygenase activity with (5S)-hydroxy and (5S)-hydroperoxy acids as substrates. The 6R-oxygenase activity, like the leukotriene A synthase activity, was presumed to be an integral part of 5-lipoxygenase because it required calcium and ATP and was affected by selective 5-lipoxygenase inhibitors.  相似文献   

9.
Mass spectrometric and NMR spectroscopic analyses of bound sialic acids from the starfish Asterias rubens revealed the presence of N-acetylneuraminic acid (4%), N-acetyl-8-O-methylneuraminic acid (12%), N-acetyl-9-O-acetyl-8-O-methylneuraminic acid (less than 1%), N-glycoloylneuraminic acid (19%), N-glycoloyl-8-O-methylneuraminic acid (47%), and N-glycoloyl-9-O-acetyl-8-O-methylneuraminic acid (18%). Analysis of sialo-oligomeric material, obtained after mild acid hydrolysis, demonstrated that N-glycoloyl-8-O-methylneuraminic acid can occur as di- and tri-oligomers, linked through the anomeric center and the N-glycoloyl moiety, Neu5Gc8Me-alpha(2----O5)-Neu5Gc8Me and Neu5Gc8Me-alpha(2----O5)-Neu5Gc8Me-alpha (2----O5)-Neu5Gc8Me. Studies on the biosynthesis of N-acyl-8-O-methylneuraminic acid in A rubens, using the tracer S-adenosyl-L-[methyl-14C]methionine, showed that N-acylneuraminate 8-O-methyltransferase activity was present predominantly in the membrane fraction. CMP-N-acetylneuraminic acid monooxygenase activity was found in the soluble protein fraction, in agreement with investigations on the corresponding vertebrate enzyme.  相似文献   

10.
The effect of the cerebral 5-hydroxytryptamine system on the turnover of striatal 3,4-dihydroxyphenyl-ethylamine (dopamine) was investigated by measuring the level of dopamine and one of its metabolites in rats depleted of cerebral 5-hydroxytryptamine or treated with a 5-hydroxytryptamine receptor blocker. Treatment with p-chlorophenylalanine induced, in addition to a reduction in striatal 5-hydroxytryptamine and 5-hydroxyindol-3-ylacetic acid, an increase in the striatal concentration of dopamine, a diminution in the concentration of homovanillic acid in the same cerebral area, and a reduction in the rise of this acid after the administration of a butyrophenone derivative or tetrabenazine. Treatment with methysergide also reduced the increase of homovanillic acid induced by the butyrophenone. When probenecid was given to rats treated with p-chlorophenylalanine, homovanillic acid failed to accumulate, whereas the accumulation of 5-hydroxyindol-3-ylacetic acid was unaffected. The decay of dopamine after alpha-methyl-p-tyrosine administration was normal for the first 6 h but was later reduced in rats given p-chlorophenylalanine or methysergide. The results suggest that the lack of activation of 5-hydroxytryptamine receptors leads to a reduction in the turnover of dopamine in the nigrostriatal pathway.  相似文献   

11.
The mono trans geometrical isomer of eicosapentaenoic acid, 5c,8c,11c,14c,17t-eicosapentaenoic acid (20:5delta5c,8c,11c,14c,17t), was synthesized by fatty acid microbial conversion using a delta12-desaturase defective mutant of an arachidonic acid (AA)-producing fungus, Mortierella alpina 1S-4. The substrate for the bioconversion, a geometrical isomer of linolenic acid, was prepared by isomerization of linseed oil methyl ester by the nitrous acid method, followed by purification on a AgNO3-silica gel column. The structure and double bond geometry were identified after hydrazine reduction followed by permanganate oxidation to 20:5delta5c,8c,11c,14c,17t. The biosynthetic route from 18:3delta6c,9c,12t to 20:5delta5c,8c,11c,14c,17t was presumed to mimic the route from linoleic acid to arachidonic acid.  相似文献   

12.
Pseudomonas oleovorans has been previously shown to produce a polyester containing a phenyl pendant group when grown with 5-phenylpentanoic acid under nutrient-limiting conditions. The same polyester was produced when 5-phenyl-2,4-pentadienoic acid was the only carbon source, and a mixture of two different polymers was produced when this bacterium was grown on a mixture of 5-phenyl-2,4-pentadienoic acid and nonanoic acid. The polymer blend obtained was separated by fractional crystallization to yield poly(3-hydroxy-5-phenylpentanoate) and the copolymer which is normally produced with nonanoic acid alone.  相似文献   

13.
In the course of study on the mechanism of the tartaric acid formation from 5-ketogluconic acid, a new intermediary substance with mauve color to Abdel-Akhel and Smith’s reagent was isolated from intact cell culture liquid. The chemical structure of this substance was determined as 1,2-dihydroxyethyl hydrogen L(+) tartrate from the results of hydrolysis experiments and from the identifications of the constituents of the molecule, and named “pretaric acid.” Tartaric acid was evidently produced from pretaric acid by intact cell culture. Clearly, then, pretaric acid appears to be an intermediate in the formation of tartaric acid from 5-ketogluconic acid. The authors assumed that in the formation of pretaric acid from 5-ketogluconic acid, a Baeyer-Villiger type oxidation occurred.  相似文献   

14.
Biliary bile acids of Alligator mississippiensis were analyzed by gas-liquid chromatography-mass spectrometry after fractionation by silica gel column chromatography. It was shown that the alligator bile contained 12 C27 bile acids and 8 C24 bile acids. In addition to the C27 bile acids, such as 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid, 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-cholestanoic acid, 3 alpha,7 alpha-dihydroxy-5 beta-cholestanoic acid, 3 alpha,12 alpha-dihydroxy-5 beta-cholestanoic acid, 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholestanoic acid, and 3 alpha,12 alpha-dihydroxy-7-oxo-5 beta-cholestanoic acid, identified previously in the bile of A. mississippiensis, 3 alpha,7 beta-dihydroxy-5 beta-cholestanoic acid, 3 alpha,7 beta,12 alpha-trihydroxy-5 beta-cholestanoic acid, 7 beta,12 alpha-dihydroxy-3-oxo-5 beta-cholestanoic acid, 3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestanoic acid, 3 alpha,7 alpha,12 alpha,26-tetrahydroxy-5 beta-cholestanoic acid, and 1 beta,3 alpha,7 alpha,12 alpha-tetrahydroxy-5 beta-cholestanoic acid were newly identified. And in addition to the C24 bile acids, such as chenodeoxycholic acid, ursodeoxycholic acid, cholic acid, and allocholic acid, identified previously, deoxycholic acid, 3 alpha,7 alpha-dihydroxy-5 beta-chol-22-enoic acid, 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-chol-22-enoic acid, and 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-chol-22-enoic acid were newly identified.  相似文献   

15.
Endogenous porphyrin accumulation after administration of 5-aminolevulinic acid is employed in photodynamic therapy of tumours. Due to its low membrane permeability, esterified 5-aminolevulinic acid derivatives less hydrophilic than the parental compound are under investigation. Knowledge of the mechanisms of 5-aminolevulinic acid derivatives uptake into target cells is essential to understand and improve photodynamic therapy and useful in the design of new derivatives with better affinity and with higher selectivity for tumour cells in specific tissues. The aim of this work was to assess the interaction of 5-aminolevulinic acid derivatives with the intestinal PEPT1 and renal transporter PEPT2 expressed in Pichia pastoris yeasts. We found that Undecanoyl, Hexyl, Methyl and 2-(hydroxymethyl)tetrahydropyranyl 5-aminolevulinic acid esters and the dendron 3m-ALA inhibited (14)C-5-aminolevulinic acid uptake by PEPT2. However, only the Undecanoyl ester inhibited 5-aminolevulinic acid uptake by PEPT1. We have also found through a new developed colorimetric method, that Hexyl and 2-(hydroxymethyl)tetrahydropyranyl 5-aminolevulinic acid esters display more affinity than 5-aminolevulinic acid for PEPT2 whereas none of the compounds surpass 5-aminolevulinic acid affinity for PEPT1. In addition, the Undecanoyl ester binds with high affinity to the membranes of PEPT2 and PEPT1-expressing yeasts and to the control yeasts. The main finding of this work was that some derivatives have the potential to improve 5-aminolevulinic acid-based photodynamic therapy by increased efficiency of transport into cells expressing PEPT2 such as kidney, mammary gland, brain or lung whereas in tissues expressing exclusively PEPT1 the parent 5-aminolevulinic acid remains the compound of choice.  相似文献   

16.
培养基成分对杜仲愈伤组织生长及次生代谢产物含量的影响   总被引:10,自引:0,他引:10  
以Bs+0.5mg/L NAA+0.5mg/L BA为基本培养基,研究了B5培养基中8种主要无机盐浓度对杜仲愈伤组织生长及绿原酸和总黄酮两种次生代谢产物含量的影响。结果表明:在1000~5000mg/L范围内增加培养基中KNO3的含量有利于愈伤组织生长,B5培养基中当KNO3的浓度达到2/3时,绿原酸和总黄酮含量及产量最高;(NH4)2SO4以4/3原浓度时对愈伤组织生长量、总黄酮含量及产量最高,对绿原酸的含量则是其为原浓度的1/3时最高;MgSO4以2/3浓度对生长量及1/3浓度对绿原酸、总黄酮积累最高;NaH2PO4、CaCl2和MnSO4以原浓度的愈伤组织生长和次生代谢产物合成最好;ZnSO4和FeSO4的原浓度愈伤组织的生长量最大,而1/3浓度的绿原酸和总黄酮含量最高。  相似文献   

17.
Distribution of 5-doxylstearic acid in the membranes of mammalian cells   总被引:1,自引:0,他引:1  
Concentration-dependent spin broadening of ESR spectra of the nitroxide 5-doxylstearic acid has been used to evaluate the distribution of 5-doxylstearic acid in the membranes of intact mouse thymus-bone marrow (TB) and Chinese hamster ovary (CHO) cells. TB cells, CHO cells, erythrocytes, and isolated plasma membranes from CHO cells were labelled with 5-doxylstearic acid and the peak to peak linewidths of the central line of the resulting ESR spectra were measured. The measured line widths were linearly dependent on the amount of 5-doxylstearic acid incorporated into the sample over the range of 0-0.18 mol nitroxide per mol lipid. In erythrocytes, the relationship between linewidths approximated a linear function at lower concentrations of 5-doxylstearic acid, up to 0.07 mol nitroxide per mol lipid. The amount of broadening of the central line for a given amount of 5-doxylstearic acid was far less for intact cells than for either erythrocytes or plasma membrane, indicating that the 5-doxylstearic acid samples a much larger lipid pool in the intact cells. With the broad assumption that the mobility of the 5-doxylstearic acid is similar in different membranes, the size of the lipid pool sampled by 5-doxylstearic acid is approximately equal to the total cellular lipid in intact cells. If a given concentration of 5-doxylstearic acid sampled only the plasma membrane of TB or CHO cells, we would expect to see a linewidth corresponding to a 12-20-fold greater local concentration of 5-doxylstearic acid than was observed, since the plasma membranes of CHO and TB cells represent only 5-8 percent of the total cellular lipid. Therefore, the 5-doxylstearic acid must distribute into most or all cellular membranes of intact cells and is not localized in the plasma membrane alone.  相似文献   

18.
1. The metabolism of 5-hydroxy[1′-14C]tryptamine creatinine sulphate in the nuclear fraction of rat-liver homogenate was studied. In the incubation mixture five metabolites were found. 2. Two metabolites were not radioactive; one of them was identified as 5-hydroxyindole-3-carboxylic acid and the second tentatively as 5-hydroxyindole-3-aldehyde. 3. 5-Hydroxyindol-3-ylacetic acid, 1′-N-acetyl-5-hydroxytryptamine and 5-hydroxytryptophol were not precursors of 5-hydroxyindolealdehyde and 5-hydroxyindolecarboxylic acid. 4. It was shown that the metabolism of 5-hydroxytryptamine in the nuclear fraction involves monoamine oxidase, the precursor of 5-hydroxyindolealdehyde and 5-hydroxyindolecarboxylic acid being most probably 5-hydroxyindol-3-ylacetaldehyde.  相似文献   

19.
When Escherichia coli are grown in the presence of 5-fluorouracil, the 5-fluorouracil is incorporated almost exclusively into ribonucleic acid as fluorouridylate. In this study, small but detectable amounts were incorporated into ribonucleic acid as fluorocytidylate and into deoxyribonucleic acid as fluorodeoxyuridylate and fluorodeoxycytidylate. The amount of 5-fluorouracil found in deoxyribonucleic acid as fluorodeoxyuridylate increased 50-fold when the cells were deficient in both deoxyuridine triphosphatase and uracil-deoxyribonucleic acid glycosylase activities. Therefore, the same mechanisms which excluded uracil from deoxyribonucleic acid in vivo also excluded 5-fluorouracil. Even though purified uracil-deoxyribonucleic acid glycosylase excised 5-fluorouracil from deoxyribonucleic acid at only 5% the rate with which it excised uracil, most of the 5-fluorouracil excised from deoxyribonucleic acid in vivo was apparently excised directly by uracil-deoxyribonucleic acid glycosylase rather than by repair initiated by excision of uracil.  相似文献   

20.
Pyridoxal 5′-phosphate strongly and reversibly inhibited maize leaf 5-amino levulinic acid dehydratase. The inhibition was linearly competitive with respect to the substrate 5-aminolevulinic acid at pH values between 7 to 9.0. Pyridoxal was also effective as an inhibitor of the enzyme but pyridoxamine phosphate was not inhibitory. The results suggest that pyridoxal 5′-phosphate may be interacting with the enzyme either close to or at the 5-aminolevulinic acid binding site. This conclusion was further corroborated by the detection of a Schiff base between the enzyme and the substrate, 5-aminolevulinic acid and by reduction of pyridoxal phosphate and substrate complexes with sodium borohydride  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号