首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neuropeptide substance P (SP) is shown to be a potent mitogen for intact and regenerating planarians. At nanomolar concentrations, SP markedly enhances cellular proliferation causing an increase in the mitotic index and in the number of blastema cells. Moreover, albeit to a lower extent, SP enhances cellular differentiation as shown by the increases in eye and pharynx length in regenerating organisms. On the basis of these observations, we hypothesize that SP may be one of the postulated growth factors necessary for the stimulation of proliferation, and to a lesser extent differentiation of cells in intact and regenerating planarians.  相似文献   

2.
The singular regenerative abilities of planarians require a population of stem cells known as neoblasts. In response to wounding, or during the course of cell turnover, neoblasts are signaled to divide and/or differentiate, thereby replacing lost cell types. The study of these pluripotent stem cells and their role in planarian regeneration has been severely hampered by the reported inability of planarians to incorporate exogenous DNA precursors; thus, very little is known about the mechanisms that control proliferation and differentiation of this stem cell population within the planarian. Here we show that planarians are, in fact, capable of incorporating the thymidine analogue bromodeoxyuridine (BrdU), allowing neoblasts to be labeled specifically during the S phase of the cell cycle. We have used BrdU labeling to study the distribution of neoblasts in the intact animal, as well as to directly demonstrate the migration and differentiation of neoblasts. We have examined the proposal that a subset of neoblasts is arrested in the G2 phase of the cell cycle by double-labeling with BrdU and a mitosis-specific marker; we find that the median length of G2 (approximately 6 h) is sufficient to account for the initial mitotic burst observed after feeding or amputation. Continuous BrdU-labeling experiments also suggest that there is not a large, slow-cycling population of neoblasts in the intact animal. The ability to label specifically the regenerative stem cells, combined with the recently described use of double-stranded RNA to inhibit gene expression in the planarian, should serve to reignite interest in the flatworm as an experimental model for studying the problems of metazoan regeneration and the control of stem cell proliferation.  相似文献   

3.
The conditions were studied which influenced the reproduction of an asexual race Dugesia tigrina. The decapitation was shown to arrest divisions until the restroration of a new ganglion. The division of intact planarians does not depend on the presence of additional cut head regions and is inhibited in the presence of other intact or decapitated specimens. These data suggest that two antagonistic factors influence the division of planarians: a stimulating factor is related to the activity of the ganglion and is propagated endogenously; an inhibiting factor is localized in the trunk or tail regions. The latter may be secreted outside and influence other specimens.  相似文献   

4.
 To obtain specific immunological probes for studying molecular mechanisms involved in cell renewal, cell differentiation, and pattern formation in intact and regenerating planarians, we have produced a hybridoma library specific for the asexual race of the freshwater planarian Dugesia (Girardia) tigrina. Among the 276 monoclonal antibodies showing tissue-, cell-, cell subtype-, subcellular- and position-specific staining, we have found monoclonal antibodies against all tissues and cell types with the exception of neoblasts, the undifferentiated totipotent stem-cells in planarians. We have also detected position-specific antigens that label anterior, central, and posterior regions. Patterns of expression uncovered an unexpected heterogeneity among previously thought single cell types, as well as interesting cross-reactivities that deserve further study. Characterization of some of these monoclonal antibodies suggests they may be extremely useful as molecular markers for studying cell renewal and cell differentiation in the intact and regenerating organism, tracing the origin, lineage, and differentiation of blastema cells, and characterizing the stages and mechanisms of early pattern formation. Moreover, two position-specific monoclonals, the first ones isolated in planarians, will be instrumental in describing in molecular terms how the new pattern unfolds during regeneration and in devising the pattern formation model that best fits classical data on regeneration in planarians. Accepted: 16 September 1996  相似文献   

5.
Several families of evolutionarily conserved axon guidance cues orchestrate the precise wiring of the nervous system during embryonic development. The remarkable plasticity of freshwater planarians provides the opportunity to study these molecules in the context of neural regeneration and maintenance. Here we characterize a homologue of the Slit family of guidance cues from the planarian Schmidtea mediterranea. Smed-slit is expressed along the planarian midline, in both dorsal and ventral domains. RNA interference (RNAi) targeting Smed-slit results in the collapse of many newly regenerated tissues at the midline; these include the cephalic ganglia, ventral nerve cords, photoreceptors, and the posterior digestive system. Surprisingly, Smed-slit RNAi knockdown animals also develop morphologically distinguishable, ectopic neural structures near the midline in uninjured regions of intact and regenerating planarians. These results suggest that Smed-slit acts not only as a repulsive cue required for proper midline formation during regeneration but that it may also act to regulate the behavior of neural precursors at the midline in intact planarians.  相似文献   

6.
Regeneration does not occur when planarians are grown in Ca2+-free medium. The possible effect of calcium upon DNA synthesis was therefore studied using cultured planarian cells and regenerating planarian fragments. In the cultures, DNA synthesis was Ca2+-dependent and required a minimum of 10(-6) M Ca2+ in the medium. It was gradually decreased in cells grown in Ca2+-free medium. Addition of Ca2+ to these cultures raised DNA synthesis. The time lag between addition of Ca2+ and stimulation of DNA synthesis varied with culture age. The triggering effect of Ca2+ was amplified by ionophore A 23187. A calcium binding protein, ram testis calmodulin, intensified the stimulatory effect of calcium, but EGTA blocked this effect. In the presence of trifluoperazine (TFP), DNA synthesis was not stimulated by Ca2+. This inhibition by TFP was overcome by adding calmodulin to the medium. Ca2+ therefore triggered DNA synthesis in vitro, and this role might have been potentiated by calmodulin. In vivo, DNA synthesis was shown to be dependent on the Ca2+ concentration in the medium in which intact or regenerating planarians were grown. In 12-h regenerates, the Ca2+ concentration in the medium was no longer critical. Total calcium content decreased just after sectioning until completion of healing (at 6 h) and then rose significantly to a peak at 12 h which coincided with the first peak of DNA synthesis. The calmodulin content gradually diminished during the first 6 h after sectioning. After a transient rise at 12 h, calmodulin content further decreased until 48 h. The results demonstrate the crucial role of Ca2+ in triggering DNA synthesis in planarian cells in vitro and in regenerating fragments. Calmodulin, whose concentration is very low in planarians compared to vertebrates, might help to induce the first peak of DNA synthesis at 12 h after sectioning, but is probably not the main Ca2+-binding protein involved in the regeneration process.  相似文献   

7.
8.
The strong regenerative capacity of planarians is considered to reside in the totipotent somatic stem cell called the 'neoblast'. However, the signal systems regulating the differentiation/growth/migration of stem cells remain unclear. The fibroblast growth factor (FGF)/FGF receptor (FGFR) system is thought to mediate various developmental events in both vertebrates and invertebrates. We examined the molecular structures and expression of DjFGFR1 and DjFGFR2, two planarian genes closely related to other animal FGFR genes. DjFGFR1 and DjFGFR2 proteins contain three and two immunoglobulin-like domains, respectively, in the extracellular region and a split tyrosine kinase domain in the intracellular region. Expression of DjFGFR1 and DjFGFR2 was observed in the cephalic ganglion and mesenchymal space in intact planarians. In regenerating planarians, accumulation of DjFGFR1-expressing cells was observed in the blastema and in fragments regenerating either a pharynx or a brain. In X-ray-irradiated planarians, which had lost regenerative capacity, the number of DjFGFR1-expressing cells in the mesenchymal space decreased markedly. These results suggest that the DjFGFR1 protein may be involved in the signal systems controlling such aspects of planarian regeneration as differentiation/growth/migration of stem cells.  相似文献   

9.
Dynamics of the telomeric DNA (tDNA) length and the phylogeny of Baikal and Siberian planarians have been studied based on analysis of 18S rDNA and β-actin gene fragments. It was shown that there is a relationship between tDNA length and planarian size. Giant planarians, with a minor exception, have longer tDNA than do smaller planarians. Phylogenetic affinity between species that have stretched tracks of tDNA, large sizes, and similar habitats denotes the possible role of tDNA in the development of the high regenerative capacity of planarians.  相似文献   

10.
The alkaline single-cell gel electrophoresis, or comet assay, was used to evaluate the genotoxic potential of copper sulphate in planarians. Concentration-related increase in DNA damage was induced after 2h and 7 days exposure to CuSO4 dissolved in culture water. To study the influence of copper ions on the persistence of mutagen-induced DNA lesions, planarians were treated with methyl methanesulphonate (MMS), and further incubated in the absence (post-incubation) or presence (post-treatment) of CuSO4. After 2h of post-treatment enhanced persistence of DNA effects in relation to the corresponding post-incubation value was detected, which indicate inhibition of DNA repair by CuSO4. At 4h an increase of DNA migration in relation to the 2h value was observed, which is significant for the post-incubation group. After 24h, DNA damage decreased but was still significantly elevated in relation to the control. From our results, we conclude that planarians are suitable organisms for in vivo detection of copper genotoxicity in the comet assay, and can be used to assess both acute and chronic exposure to this chemical in aquatic ecosystems. The inhibition effect of copper ions on repair of MMS-induced DNA damage suggests that copper could modulate the genotoxic effects associated with complex mixture exposure in the environment.  相似文献   

11.
Planarian flatworms are known as the masters of regeneration, re-growing an entire organism from as little as 1/279th part of their body. While the proteomics of these processes has been studied extensively, the planarian lipodome remains relatively unknown. In this study we investigate the lipid profile of planarian tissue sections with imaging Time-of-Flight – Secondary-Ion-Mass-Spectrometry (ToF-SIMS). ToF-SIMS is a label-free technique capable of gathering intact, location specific lipid information on a cellular scale. Lipid identities are confirmed using LC-MS/MS. Our data shows that different organ structures within planarians have unique lipid profiles. The 22-carbon atom poly unsaturated fatty acids (PUFAs) which occur in unusually high amounts in planarians are found to be mainly located in the testes. Additionally, we observe that planarians contain various odd numbered fatty acid species, that are usually found in bacteria, localized in the reproductive and ectodermal structures of the planarian. An abundance of poorly understood ether fatty acids and ether lipids were found in unique areas in planarians as well as a new, yet unidentified class of potential lipids in planarian intestines. Identifying the location of these lipids in the planarian body provides insights into their bodily functions and, in combination with knowledge about their diet and their genome, enables drawing conclusions about planarian fatty acid processing.  相似文献   

12.
A comparative study of RNA and protein synthesis during regeneration of immature and adult planarians reveals fundamental differences in the regeneration process. Young planarians, which contain about 20 times more RNA/protein in their tissues than adults, actively synthesize RNA prior to any wound. A single stimulation of RNA synthesis is observed after 24 h following sectioning. The electrophoretic pattern of labelled RNA extracted either from intact or regenerating young planarians does not change significantly and shows, besides ribosomal RNA, an important fraction of RNA of heterogeneous molecular weights. This pattern is similar to that observed with extracts of RNA from regenerating adults but only after 24 h following sectioning (Martelly, I. and Le Moigne, A., Reprod. Nutr. Dev., 20 (1980) 1527–1537). Indeed, in adults, a preliminary phase of RNA metabolism is observed during the first day of regeneration. Young and adult planarians differ also in their time course of stimulation of protein synthesis after sectioning. While a lag time of more than 6 h is necessary in adults, protein synthesis is stimulated immediately after sectioning in the young. These differences in the pattern of macromolecular synthesis related to age are discussed in relation with the idea of cellular activation during the regeneration process.  相似文献   

13.
Freshwater planarians have a simple and evolutionarily primitive brain structure. Here, we identified the Djsnap-25 gene encoding a homolog of the evolutionarily conserved synaptic protein SNAP-25 from the planarian Dugesia japonica and assessed its role in brain function. Djsnap-25 was expressed widely in the nervous system. To investigate the specific role of Djsnap-25 in the brain, we developed a unique technique of RNA interference (RNAi), regeneration-dependent conditional gene knockdown (Readyknock), exploiting the high regenerative capacity of planarians, and succeeded in selectively eliminating the DjSNAP-25 activity in the head region while leaving the DjSNAP-25 activity in the trunk region intact. These knockdown animals showed no effect on brain morphology or on undirected movement of the trunk itself. Light-avoidance behavior or negative phototaxis was used to quantitatively analyze brain function in the knockdown animals. The results suggested that the DjSNAP-25 activity within the head region is required for two independent sensory-processing pathways that regulate locomotive activity and directional movement downstream of distinct primary sensory outputs coming from the head margin and the eyes, respectively, during negative phototaxis. Our approach demonstrates that planarians are a powerful model organism to study the molecular basis of the brain as an information-processing center.  相似文献   

14.
In adult planarians, the replacement of cells lost to physiological turnover or injury is sustained by the proliferation and differentiation of stem cells known as neoblasts. Neoblast lineage relationships and the molecular changes that take place during differentiation into the appropriate cell types are poorly understood. Here we report the identification and characterization of a cohort of genes specifically expressed in neoblasts and their descendants. We find that genes with severely downregulated expression after irradiation molecularly define at least three discrete subpopulations of cells. Simultaneous BrdU labeling and in situ hybridization experiments in intact and regenerating animals indicate that these cell subpopulations are related by lineage. Our data demonstrate not only the ability to measure and study the in vivo population dynamics of adult stem cells during tissue homeostasis and regeneration, but also the utility of studies in planarians to broadly inform stem cell biology in adult organisms.  相似文献   

15.
Planarians have been a classic model system for the study of regeneration, tissue homeostasis, and stem cell biology for over a century, but they have not historically been accessible to extensive genetic manipulation. Here we utilize RNA-mediated genetic interference (RNAi) to introduce large-scale gene inhibition studies to the classic planarian system. 1065 genes were screened. Phenotypes associated with the RNAi of 240 genes identify many specific defects in the process of regeneration and define the major categories of defects planarians display following gene perturbations. We assessed the effects of inhibiting genes with RNAi on tissue homeostasis in intact animals and stem cell (neoblast) proliferation in amputated animals identifying candidate stem cell, regeneration, and homeostasis regulators. Our study demonstrates the great potential of RNAi for the systematic exploration of gene function in understudied organisms and establishes planarians as a powerful model for the molecular genetic study of stem cells, regeneration, and tissue homeostasis.  相似文献   

16.
The effects of extracts from intact and regenerating planarians on cell behaviour in culture were studied. The extracts were added to the culture of Chinese hamster fibroblasts and to the primary culture of human lymphocytes. Some extracts contained active agents which influenced the proliferation of fibroblasts increasing or decreasing the mitotic index. The extracts exerted no effect on the mitotic index of lymphocytes. When the extracts were added to the lymphocyte culture together with phytohemagglutinin, which induces the proliferation, the mitotic index somewhat increased. The extracts of regenerating planarians contain factors which activate and inhibit cell proliferation in culture. The active factors stimulated, rather than induced proliferation.  相似文献   

17.
Molecular biology, recombinant DNA techniques, and new methods of cell lineage have reignited the interest of planarians and other worms (mainly annelids and nemerteans) as invertebrate model systems of regeneration. Here, the mean results produced in the last five years are reviewed, an update of the genes and molecules involved in planarian regeneration is provided, and a new morphallactic-epimorphic model of pattern formation is suggested. Moreover, and most importantly, we highlight the new strides brought upon by genomic/proteomic analyses, RNA interference (RNAi) to inactivate gene function, and Bromodeoxyuridine (BrdU) cell labelling. The raising hope to obtain transformed neoblasts and transgenic planarians is also stressed. Altogether, such approaches will eventually lead to solve the long-standing open questions on regeneration which still baffles us. Finally, we warn against overlooking the evident links between regeneration processes and those controlling the daily wear and tear of tissues and cells. Both processes act, at least in planarians, upon a unique stem-cell endowed with an unrivaled developmental potential in the animal kingdom-the neoblast. This cell could be considered the forebear and a model system for stem-cell analysis.  相似文献   

18.
19.
A conserved network of nuclear proteins is crucial to eye formation in both vertebrates and invertebrates. The finding that freshwater planarians can regenerate eyes without the contribution of Pax6 suggests that alternative combinations of regulatory elements may control the morphogenesis of the prototypic planarian eye. To further dissect the molecular events controlling eye regeneration in planarians, we investigated the role of eyes absent (Djeya) and six-1 (Djsix-1) genes in Dugesia japonica. These genes are expressed in both regenerating eyes and in differentiated photoreceptors of intact adults. Through RNAi studies, we show that Djsix-1 and Djeya are both critical for the regeneration of normal eyes in planarians and genetically cooperate in vivo to establish correct eye cell differentiation. We further demonstrate that the genetic interaction is mediated by physical interaction between the evolutionarily conserved domains of these two proteins. These data indicate that planarians use cooperatively Djsix-1 and Djeya for the proper specification of photoreceptors, implicating that the mechanism involving their evolutionarily conserved domains can be very ancient. Finally, both Djsix-1 and Djeya double-stranded RNA are substantially more effective at producing no-eye phenotypes in the second round of regeneration. This is probably due to the significant plasticity of the planarian model system, based on the presence of a stable population of totipotent stem cells, which ensure the rapid cell turnover of all differentiated cell types.  相似文献   

20.
In this study, we report the expression and identification of a PREB-related gene from the planarian Dugesia japonica, DjPreb. The planarian DjPreb cDNA is comprised of 1101 bp and contains a 972 bp open reading frame corresponding to a deduced protein of 323 amino acids with a 69 bp 5’-UTR and a 60 bp 3’-UTR. Phylogenetic analysis shows that DjPreb is PREB/PREB-like members. We examined its spatial and temporal expression and distribution in both intact and regenerating planarians by Relative quantitative real-time PCR and Whole-mount in situ hybridization. The analysis indicates that DjPreb shows a gradient express with peak levels present in the anterior and posterior regions and progressively lower levels in central regions in intact and regenerating planarians. During regeneration the expression of DjPreb is upregulated. Strong expression of DjPreb is observed in the anterior and posterior blastemas. These results suggest that DjPreb may participate in head and tail formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号