首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Heparin‐binding epidermal growth factor‐like growth factor (HB‐EGF), a vascular‐derived trophic factor, belongs to the epidermal growth factor (EGF) family of neuroprotective, hypoxia‐inducible proteins released by astrocytes in CNS injuries. It was suggested that HB–EGF can replace fetal calf serum (FCS) in astrocyte cultures. We previously demonstrated that in contrast to standard 2D cell culture systems, Bioactive3D culture system, when used with FCS, minimizes the baseline activation of astrocytes and preserves their complex morphology. Here, we show that HB‐EGF induced EGF receptor (EGFR) activation by Y1068 phosphorylation, Mapk/Erk pathway activation, and led to an increase in cell proliferation, more prominent in Bioactive3D than in 2D cultures. HB‐EGF changed morphology of 2D and Bioactive3D cultured astrocytes toward a radial glia‐like phenotype and induced the expression of intermediate filament and progenitor cell marker protein nestin. Glial fibrillary acidic protein (GFAP) and vimentin protein expression was unaffected. RT‐qPCR analysis demonstrated that HB‐EGF affected the expression of Notch signaling pathway genes, implying a role for the Notch signaling in HB‐EGF‐mediated astrocyte response. HB‐EGF can be used as a FCS replacement for astrocyte expansion and in vitro experimentation both in 2D and Bioactive3D culture systems; however, caution should be exercised since it appears to induce partial de‐differentiation of astrocytes.

  相似文献   


2.
Reactive astrogliosis, characterized by cellular hypertrophy and various alterations in gene expression and proliferative phenotypes, is considered to contribute to brain injuries and diseases as diverse as trauma, neurodegeneration, and ischemia. KCa3.1 (intermediate‐conductance calcium‐activated potassium channel), a potassium channel protein, has been reported to be up‐regulated in reactive astrocytes after spinal cord injury in vivo. However, little is known regarding the exact role of KCa3.1 in reactive astrogliosis. To elucidate the role of KCa3.1 in regulating reactive astrogliosis, we investigated the effects of either blocking or knockout of KCa3.1 channels on the production of astrogliosis and astrocytic proliferation in response to transforming growth factor (TGF)‐β in primary cultures of mouse astrocytes. We found that TGF‐β increased KCa3.1 protein expression in astrocytes, with a concomitant marked increase in the expression of reactive astrogliosis, including glial fibrillary acidic protein and chondroitin sulfate proteoglycans. These changes were significantly attenuated by the KCa3.1 inhibitor 1‐((2‐chlorophenyl) (diphenyl)methyl)‐1H‐pyrazole (TRAM‐34). Similarly, the increase in glial fibrillary acidic protein and chondroitin sulfate proteoglycans in response to TGF‐β was attenuated in KCa3.1?/? astrocytes. TRAM‐34 also suppressed astrocytic proliferation. In addition, the TGF‐β‐induced phosphorylation of Smad2 and Smad3 proteins was reduced with either inhibition of KCa3.1 with TRAM‐34 or in KCa3.1?/? astrocytes. These findings highlight a novel role for the KCa3.1 channel in reactive astrogliosis phenotypic modulation and provide a potential target for therapeutic intervention for brain injuries.

  相似文献   


3.
Summary Glial uptake of serotonin and dopamine was studied in primary cultures of the median raphe nucleus and cerebellum by using consecutive demonstration of monoamine fluorescence and glial fibrillary acidic protein immunofluorescence. Most of the glial cells taking up monoamines were glial fibrillary acidic protein positive. Astrocytes with a strong immunoreactivity exhibited monoamine fluorescence only occasionally, although such cells did take up L-dopa readily. Glial fibrillary acidic protein negative cells — morphologically identified as astrocytes — were seen to exhibit monoamine fluorescence after exposure. Glial uptake of serotonin at a concentration of 10–4 M was detected in cerebellar cultures but not in cultures from the median raphe nucleus. When the concentration was 10–3 M uptake of serotonin took place in both the areas but was weaker in cultures from the median raphe nucleus. At concentrations greater than 10–5 M glial uptake of dopamine was detected in cultures from both the regions studied. No region dependent differences in glial uptake of dopamine was demonstrated, however. Based on these observations astrocytes and astrocyte-like glial cells take up dopamine and serotonin. Also glial cells with a remarkably high content of the glial fibrillary acidic protein are more resistant to monoamine uptake than cells exhibiting less intense or no glial fibrillary acidic protein immunofluorescence. The existence of regional differences in uptake of serotonin between the median raphe nucleus and cerebellum suggests that glial uptake of monoamines is not an entirely passive mechanism but may be actively controlled by glial cells in a region dependent manner.  相似文献   

4.
5.
To study early events in the central nervous system (CNS) cholinergic development, cells from rat basal fore brain tissue were placed in culture at an age when neurogenesis in vivo is still active [embryonic day (E) 15]. The rapid mortality of these cells in defined medium, with 50% mortality after 5–10 h, was blocked completely by soluble proteins from the olfactory bulb (a basal forebrain target), extending earlier observations (Lambert, Megerian, Garden, and Klein, 1988). Treated cultures were capable of incorporating thymidine into DNA, and most cells incorporating 3H-thymidine (>90%) also stained positive for neurofilament, confirming neuronal proliferation in the supplemented cultures. A small percentage of 3H-thymidine labelled cells were glial fibrillary acidic protein (GFAP) positive, but growth factors that support astroglial proliferation [epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor (IGF-1)] were not sufficient for neuronal support. After 5 culture days with supplemented medium, almost 50% of the cells showed choline acetyltransferase (ChAT) immunofluorescence. The cholinergic neurons typically formed clusters separate from noncholinergic cells. These mature cultures did not develop if young cultures were treated with aphidicolin to block DNA synthesis. The data show that cultures of very young rat basal forebrain cells can be neurogenic, giving rise to abundant cholinergic neurons, and that early cell proliferation is essential for long-term culture survival.  相似文献   

6.
7.
The interaction between epidermal growth factor (EGF) and its receptor molecule is not completely understood and has received much attention recently. Studies combining site-directed mutagenesis and NMR spectroscopy have identified a number of EGF residues that are required for activity and are believed to interact directly with the receptor. Instead of focusing on these residues, this study combines site-directed mutagenesis and NMR spectroscopy to probe the role of the type I-bend located between residues 25 and 26 of the N-terminal subdomain of the protein. Ser25 of murine EGF is replaced by Pro in an attempt to stabilize this turn conformation to produce a variant of mEGF with increased activity relative to that for the native protein. Ser25 is also replaced by Ala, which is found at position 25 in human EGF (hEGF), as a more conservative replacement. Receptor binding studies demonstrate that both mutations produce about a 30% reduction in binding affinity, which is shown to result from local changes within the loop or minor perturbations of residues neighboring the loop rather than from long-range perturbations of the-sheet of the N-terminal subdomain. The type I-turn appears to remain intact in both mutants; however, replacement with Pro seems to introduce more flexibility into this region of the protein. These results demonstrate that perturbation of this-turn has little effect on EGF-receptor interactions.Abbreviations EGF epidermal growth factor - h human - m murine - TGF type transforming growth factor - NMR nuclear magnetic resonance - [S2A]mEGF mEGF missing the N-terminal asparagine and with the serine at position 2 replaced by alanine - [S2A,S25A]mEGF and [S2A, S25P]mEGF replacement of serine at position 25 in [S2A]mEGF by alanine and proline, respectively - 125I-mEGF 125I-labeled mEGF - DMEM Dulbecco's modified Eagle's medium - FCS fetal calf serum - HEPES N-(2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid - BSA bovine serum albumin - COSY correlated spectroscopy - DQCOSY double-quantum filtered COSY - NOESY nuclear Overhauser spectroscopy - NOE nuclear Overhauser effect - TOCSY total correlation spectroscopy - 3 J(H-HN) vicinal spin-spin coupling constant between amide proton and -proton - DSS 2,2-dimethyl-2-silapentane-5-sulfonate - chemical shift in ppm - ppm parts per million,  相似文献   

8.
The aim of the present study was to produce astrocyte cultures of high purity from mouse hippocampal neural stem cells and to compare their in vitro properties with those isolated from enriched mixed glial cultures prepared from mouse hippocampus, which are commonly contaminated by microglia. We produced primary cultures of newborn mouse hippocampal neural stem cells, which have the potential to differentiate into astrocytes, neurons, and oligodendrocytes. We produced monoclonal neural stem cell colonies by limiting dilution. We induced astrocyte differentiation by plating the colonies on poly-l-lysine and culturing them in induction medium consisting of minimum essential medium/F12 supplemented with 10% fetal bovine serum and 100 ng/ml ciliary neurotrophic factor. We then further purified the cells by differential adherence and shaking at a constant temperature, followed by a second round of limiting dilution. Immunocytochemistry for glial fibrillary acidic protein showed that our method yielded 99.4 ± 0.5% pure astrocytes, whereas traditionally enriched mixed glial cultures yielded 94.2 ± 2% pure astrocytes. Induced cells resembled primary astrocyte cultures in functional properties such as cell proliferation rates and lack of tumorigenicity and p53, and expression of epidermal growth factor receptor, bystin, and nitric oxygen synthase. Our novel method of culture and purification of neural stem cells can therefore be used routinely for the primary culture of highly purified astrocytes from mouse hippocampus.  相似文献   

9.
Abstract: Tumor necrosis factor-α is a pluripotent cytokine that is reportedly mitogenic to astrocytes. We examined expression of the astrocyte intermediate filament component glial fibrillary acidic protein in astrocyte cultures and the U373 glioblastoma cell line after treatment with tumor necrosis factor-α. Treatment with tumor necrosis factor-α for 72 h resulted in a decrease in content of glial fibrillary acidic protein and its encoding mRNA. At the same time, tumor necrosis factor-α treatment increased the expression of the cytokine interleukin-6 by astrocytes. The decrease in glial fibrillary acidic protein expression was greater when cells were subconfluent than when they were confluent. Thymidine uptake studies demonstrated that U373 cells proliferated in response to tumor necrosis factor-α, but primary neonatal astrocytes did not. However, in both U373 cells and primary astrocytes tumor necrosis factor-α induced an increase in total cellular protein content. Treatment of astrocytes and U373 cells for 72 h with the mitogenic cytokine basic fibroblast growth factor also induced a decrease in glial fibrillary acidic protein content and an increase in total protein level, demonstrating that this effect is not specific for tumor necrosis factor-α. The decrease in content of glial fibrillary acidic protein detected after tumor necrosis factor-α treatment is most likely due to dilution by other proteins that are synthesized rapidly in response to cytokine stimulation.  相似文献   

10.
Summary Two human cell lines (GL15 and GL22) derived from glioblastoma multiforme were established and characterized by immunohistochemical and cytogenetic techniques. The expression of glial fibrillary acidic proteins and the karyotype were analyzed at different passages for both cell lines. The course of marker-pattern differed in the two cell lines. The main findings were a cell-density-dependent expression of glial fibrillary acidic protein in the cell line GL15 at all passages and a decreased expression of this protein over time in the cell line GL22. Both cell lines had hyperdiploid karyotypes and exhibited glioma-specific chromosomal abnormalities (gain of chromosome 7 and loss of chromosome 10). In the GL15 cell line no relevant chromosomal changes were produced during culturing, whereas in the GL22 cell line a hypodiploid clone appeared at the 42nd passage. The immunohistochemical and cytogenetic data resulting from this study confirm that the two cell lines established in our laboratory originated from astrocytic tumor cells.Abbreviations MHG malignant human gliomas - GFAP glial fibrillary acidic protein - DMEM Dulbecco's modified Eagle's medium - FCS fetal calf serum - GTG banding trypsin-Giemsa banding - TBS TRIS-buffered saline 10 mM pH 7.6 - p short arm of chromosome; q long arm of chromosome - der derivative chromosome  相似文献   

11.
Biosignalling via lectins may involve modulation of protein kinase activities. This aspect of the biological action of mammalian and plant lectins has been investigated for their effect on the activity of the isolated epidermal growth factor receptor (EGFR). The constitutive tyrosine kinase activity of the epidermal growth factor receptor from rat liver, isolated by calmodulin-affinity chromatography, was activated by concanavalin A (ConA), and wheat germ agglutinin (WGA) to a similar extent as the measured enhancement induced by EGF. In contrast, two mannose-specific lectins, the mannan-binding protein (MBP) and serum amyloid P component (SAP), isolated from human serum, have inhibitory effects, both in the absence and presence of EGF. The differential effects of these lectins were tested using as phosphorylatable substrates a co-polymer of glutamic acid-tyrosine, as well as calmodulin. However, two galactoside-specific lectins, the laminin-binding -galactoside-binding 14 kDa lectin, isolated from bovine heart (14K-BHL), and the /-galactoside-binding lectin, isolated from mistletoe (Viscum album L.) leaves (VAA), do not inhibit the EGFR tyrosine kinase activity. The sugar dependence of the lectin-mediated action was studied by inhibition assays. Mannose and a mannose-containing neoglycoprotein prevent the activating effect of ConA, and N-acetyl-D-glucosamine partially prevents the activation produced by WGA. However, mannose and mannose-containing neoglycoprotein were ineffective to reduce the inhibitory effect of MBP or SAP. Although the response to binding of ConA and WGA was different to that of MBP or SAP with respect to the tyrosine kinase activity of the EGFR, it should be noted that the four lectins inhibited the binding of [125I]EGF to its receptor with similar efficiency.Abbreviations EGF epidermal growth factor - EGFR epidermal growth factor receptor - ConA concanavalin A - MBP mannan-binding protein - SAP serum amyloid P component - WGA wheat germ agglutinin - 14K-BHL bovine heart 14 kDa lectin - VAA Viscum album L. (mistletoe) agglutinin - EGTA [ethylenebis(oxyethylenenitrilo)]-tetraacetic acid; poly(Glu:Tyr)-co-polymer of L-glutamic acid and L-tyrosine - Hepes 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid - Tris tris(hydroxymethyl)-aminomethane - DSS suberic acid bis(N-hydroxy-succinimide ester) - PMSF phenylmethanesulfonyl fluoride - Man mannose - Gal galactose - BSA bovine serum albumin - Man-BSA neoglycoprotein containing -D-mannose - Lac-BSA neoglycoprotein containing -lactose - Gal-BSA neoglycoprotein containing galactose  相似文献   

12.
The modulation of liver growth control by the tumor promoter, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), was investigated in primary hepatocytes of adult rats. Under defined conditions in serum-free cultures, the interaction of TCDD with growth-related hormones was studied. TCDD-treatment of the cultured hepatocytes for two days caused a transient stimulation of both DNA synthesis and mitotic activity. This effect was maximal at the very low nontoxic concentration of 10–12 M TCDD, i.e., two orders of magnitude below the optinzal concentrations for induction of drug metabolizing enzymes. Growth stimuladon by TCDD was dependent on the presence of growth-related hormones; in primary rat hepatocytes, TCDD acted synergistically with insulin and epidermal growth factor (EGF) and antagonized the growth inhibition by dexamethasone. Under culture conditions allowing high rates of DNA synthesis, e.g., at low concentrations of dexamethasone, in the presence of EGF plus alphal-adrenergic agonists or rat serum, no significant effect of TCDD on cellular growth was observed. Furthermore, TCDD failed to stimulate DNA synthesis in a rat hepatoma cell line, H4IIE, which is less sensitive to growth controlling factors than normal hepatocytes. Therefore, the results suggest that the growth modulation of primary rat hepatocytes by TCDD is the most sensitive parameter of the agent thus far observed. This effect may involve both a release from the growth inhibition caused, for instance, by glucocorticoids, as well as a direct growth-stimulating effect, synergistic to the one induced by insulin.Abbreviations Ah aryl hydrocarbon - EGF epidermal growth factor - EROD 7-ethoxyresorufin-0-deethylase - 3HdT [3H]thymidine - TCB 3,4,3,4-tetrachlorobiphenyl - TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin  相似文献   

13.
Astroglial conditioned media (ACM) influence the development and maturation of cultured nerve cells and modulate neuron-glia interaction. To clarify mechanisms of astroglial cell proliferation/differentiation in culture, incorporation of [methyl-3H]-thymidine or [5,6-3H]-uridine in cultured astrocytes was assessed. Cultures were pre-treated with epidermal growth factor (EGF), insulin (INS), insulin-like growth factor-I (IGF-I), and basic fibroblast growth factor (bFGF) and subsequently with ACM. DNA labeling revealed a marked stimulatory effect of ACM from 15 days in vitro (DIV) cultures in 30 DIV astrocytes after12 h pre-treatment with growth factors. The main effects were found after INS or EGF pre-treatment in 30 DIV cultures. ACM collected from 15 or 60 or 90 DIV increased RNA labeling of 15 and 30 DIV astrocyte cultures, being the highest value that of 30 DIV cultures added with ACM from 90 DIV. The findings of increased DNA labeling after EGF or INS pre-treatment in 30 DIV cultures, followed by addition of ACM from 15 DIV cultures, suggest that these phenomena may depend by extra cellular signal-regulated kinase 1 (ERK1) activation.  相似文献   

14.
The Wobbler mouse, a model of amyotrophic lateral sclerosis (ALS), presents motorneuron degeneration and pronounced astrogliosis in the spinal cord. We have studied factors controlling astrocyte proliferation in cultures derived from Wobbler and control mice spinal cord. Basal rate of [3H]thymidine incorporation was 15 times lower in Wobbler astrocytes. While in control cultured cells interleukin-1 (IL-1) and corticosterone (CORT) significantly increased proliferation, both agents were inactive in Wobbler astrocytes. The lack of response to CORT was not due to the absence of glucocorticoid receptors, because similar receptor amounts were found in Wobbler and control astrocytes. In contrast to IL-1 and CORT, transforming growth factor-1 (TGF-1) substantially increased proliferation of Wobbler astrocytes but not of control cells. Differences in response to TGF-1 were also obtained by measuring glial fibrillary acidic protein (GFAP) immunoreaction intensity, which was substantially higher in Wobbler astrocytes. Thus, abnormal responses to different mitogens characterized Wobbler astrocytes in culture. We suggest that TGF-1 may play a role in the reactive gliosis and GFAP hyperexpression found in the degenerating spinal cord of this model of ALS.  相似文献   

15.
《Bone and mineral》1990,8(2):145-156
The effects of acidic fibroblast growth factor (aFGF) and epidermal growth factor (EGF) were examined in subconfluent fetal rat calvaria cell cultures, in the presence of 2% serum. Maximal effect of aFGF and EGF on DNA synthesis measured by [3H]thymidine incorporation was observed after 18 h. aFGF stimulated DNA synthesis by 3.5-fold with an ED50 of 0.75 ng/ml while a 2.3-fold EGF stimulation was recorded with an ED50 of 0.067 ng/ml. 5-Bromo-2-deoxyuridine staining showed a higher stimulation of proliferation in the scattered cells than in the cell clusters. An 18 h aFGF or EGF treatment decreased alkaline phosphatase (ALP) activity by 40 and 23%, respectively, as compared with control cultures. This inhibition was more pronounced after 48 h in the presence of the effectors but no modification of the ALP electrophoretic mobility was observed. These data suggest that aFGF is a less potent mitogen than EGF and a higher inhibitor of ALP activity in fetal rat calvaria cell culture.  相似文献   

16.
Summary To measure the passage of epidermal growth factor (EGF) through the blood-brain barrier (BBB) 125Ilabeled EGF was injected intravenously into adult rats. The distribution of 125I-EGF in the blood and cerebrospinal fluid (CSF) was determined over a time period of several hours. Between 2 to 6 h a stable distribution of intact 125IEGF in CSF was measured to be approximately 1/500 of the blood-borne EGF, an equilibrium value below those obtained by other investigators for BBB-impermeable compounds, such as inulin and bovine serum albumin. Our data indicate that 125I-EGF, although clearly detectable in the CSF, does not cross the BBB at a higher rate or in higher quantities than would be expected from its molecular size.Abbreviations BBB blood-brain barrier - BSA bovine serum albumin - CSF cerebrospinal fluid - EGF epidermal growth factor - PBS phosphate-buffered saline - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis - TBS Tris-buffered saline  相似文献   

17.
ZF-L cells were derived from normal adult zebrafish liver, and have been growing in culture for more than 100 generations. The cells were derived in basal nutrient medium supplemented with fetal bovine serum (FBS), trout serum, trout embryo extract, bovine insulin and mouse epidermal growth factor. After 50 generations in culture, optimal growth of the cells was achieved in medium supplemented with FBS (5%) and trout serum (0.5%). ZF-L cells were hypodiploid (modal chromosome number= 46) and exhibited an epithelial morphology. ZF-L cell homogenates exhibited alanine and aspartate aminotransferase, glucose-6-phosphatase and alkaline phosphatase enzyme activities. The cells synthesized and released several proteins into the culture medium, including a 70 kDa protein recognized by anti-bovine serum albumin IgG.Abbreviations NF -naphthoflavone - EGF epidermal growth factor - EROD 7-ethoxyresorufinO-deethylase - FBS fetal bovine serum - PBS phosphate-buffered saline - PMSF phenylmethylsulfonyl fluoride - TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin  相似文献   

18.
Serum-free mouse embryo (SFME) cells are an epidermal growth factor (EGF)-dependent established line derived from brains of 16-d-old Balb/c mouse embryos. SFME cells grow indefinitely in serum-free medium without replicative senescence, chromosomal abnormalities, or malignant transformation. SFME cells express nestin, a neural stem cell marker, under serum-free conditions. Exposure to serum or transforming growth factor β (TGF-β) leads to a marked increase in differentiation toward the astrocytic lineage with expression of glial fibrillary acidic protein and other astrocyte markers. In this study, we show that treatment of SFME cells with bone morphogenetic protein-4 (BMP-4), another member of the TGF-β family, led to differentiation toward a neuronal lineage under conditions of low mitogenic stimulation (0.5 ng/mL) by EGF and fibroblast growth factor. Maximum mitogenic stimulation with 50 ng/mL EGF blocked the BMP-4 effect on neuronal differentiation, but did not block TGF-β-induced expression of markers of the astrocytic lineage. BMP-4 treatment also enhanced the activity of the neuron-specific enolase (NSE) promoter in SFME-NSE-lacZ cells that carry the gene for bacterial β-galactosidase under the control of the NSE promoter. Extended BMP-4 treatment caused SFME cells to express a neuronal phenotype synthesizing gamma-aminobutyric acid. These results indicate that SFME cells have the capacity to generate both neurons and astrocytes in vitro, which resemble the behavior of EGF-dependent multipotential stem cells in the central nervous system, and establish a relationship between effects of BMP-4 and degree of mitogenic stimulation by other peptide growth factors.  相似文献   

19.
Summary 1. We have previously shown that acute exposure to the HIV coat protein gp120 interferes with the -adrenergic regulation of astroglial and microglial cells (Leviet al., 1993). In particular, exposure to 100 pM gp120 for 30 min depressed the phosphorylation of vimentin and glial fibrillary acidic protein (GFAP) induced by isoproterenol in rat cortical astrocyte cultures. In the present study we have extended our analysis on the effects of gp120 on astroglial protein phosphorylation.2. We found that chronic (3-day) treatment of the cells with 100 pM gp120 before exposure to isoproterenol was substantially more effective than acute treatment in depressing the stimulatory effect of the -adrenergic agonist on vimentin and GFAP phosphorylation.3. Even after chronic treatment with gp120, no differences were found in the levels and solubility of these proteins.4. Besides stimulating the phosphorylation of intermediate filament proteins, isoproterenol inhibited the incorporation of32P into a soluble acidic protein of 80,000M r , which was only minimally present in Triton X-100-insoluble extracts.5. Treatment of astrocytes with a phorbol ester or exposure to3H-myristic acid indicated that the acidic 80,000M r protein is a substrate for protein kinase C (PKC) and is myristoylated, thus suggesting that it is related to the MARCKS family of PKC substrates.6. Acute (30-min) treatment with 100 pM gp120 totally prevented the inhibitory effect of isoproterenol on the phorphorylation of the 80,000M r MARCKS-like protein.7. Our studies corroborate the hypothesis that viral components may contribute to the neuropathological changes observed in AIDS through the alteration of signal transduction systems in glial cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号