首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human milk contains a large diversity of free glycans beyond lactose, but their functions are not well understood. To explore their functional recognition, here we describe a shotgun glycan microarray prepared from isolated human milk glycans (HMGs), and our studies on their recognition by viruses, antibodies, and glycan-binding proteins (GBPs), including lectins. The total neutral and sialylated HMGs were derivatized with a bifunctional fluorescent tag, separated by multidimensional HPLC, and archived in a tagged glycan library, which was then used to print a shotgun glycan microarray (SGM). This SGM was first interrogated with well defined GBPs and antibodies. These data demonstrated both the utility of the array and provided preliminary structural information (metadata) about this complex glycome. Anti-TRA-1 antibodies that recognize human pluripotent stem cells specifically recognized several HMGs that were then further structurally defined as novel epitopes for these antibodies. Human influenza viruses and Parvovirus Minute Viruses of Mice also specifically recognized several HMGs. For glycan sequencing, we used a novel approach termed metadata-assisted glycan sequencing (MAGS), in which we combine information from analyses of glycans by mass spectrometry with glycan interactions with defined GBPs and antibodies before and after exoglycosidase treatments on the microarray. Together, these results provide novel insights into diverse recognition functions of HMGs and show the utility of the SGM approach and MAGS as resources for defining novel glycan recognition by GBPs, antibodies, and pathogens.  相似文献   

2.
Sets of isomeric anti-lactose antibodies with specificity for the lactose units of a cell wall polysaccharide fromStreptococcus faecalis strain N were induced in rabbits immunized with a vaccine of nonviable cells of the organism. Such sets of anti-lactose antibodies were isolated from the serum of immunized animals by affinity chromatography on lactosyl-Sepharose. Gel electrofocusing experiments showed that the preparations consisted of multiprotein components. One preparation of antibodies of 13 isomers was separated into homogeneous components by liquid isoelectrofocusing. The individual isomeric antibodies exhibit specificity for the lactose units of the antigenic polysaccharide, possess isoelectric points in the range of 5.9–8.0, and belong to the IgG class of immunoglobulins, and each member yields one light chain and one heavy chain on dissociation in sodium dodecyl sulfate (SDS) and mercaptoethanol. These results have been interpreted as evidence for the assembly of the chains of isomeric antibodies by a single-chain pairing mechanism.  相似文献   

3.
The glycoprotein nature and antigenicity of a fungal D-glucosyltransferase   总被引:1,自引:0,他引:1  
D-Glucosyltransferase (EC 2.4.1.24) from Aspergillus niger has been prepared in pure form by chromatography on DEAE-cellulose. The enzyme transfers D-glucosyl units from maltose and other alpha-linked D-glucosyl oligosaccharides to glucosyl co-substrates resulting in the synthesis of new types of oligosaccharides. The glucosyltransferase has been found to be a glycoprotein containing 20% of carbohydrate consisting of mannose, glucose, and galactose. The carbohydrate residues are attached as either single units or as short oligosaccharide chains by O-glycosyl linkages to the serine and threonine residues of the protein. Antibodies directed against glucosyltransferase have been induced in animals by appropriate immunization regimes. These antibodies combine with the carbohydrate components of the enzyme and, therefore, the carbohydrate residues are the immunodeterminant groups of the glucosyltransferase.  相似文献   

4.
In a series of studies, we have shown that Candida albicans synthesizes a glycolipid, phospholipomannan (PLM), which reacted with antibodies specific for beta-1,2-oligomannosides and was biosynthetically labeled by [(3)H]mannose, [(3)H]palmitic acid, and [(32)P]phosphorus. PLM has also been shown to be released from the C. albicans cell wall and to bind to and stimulate macrophage cells. In this study, we show by thin layer chromatography scanning of metabolically radiolabeled extracts that the C. albicans PLM corresponds to a family of mannose and inositol co-labeled glycolipids. We describe the purification process of the molecule and the release of its glycan fraction through alkaline hydrolysis. Analysis of this glycan fraction by radiolabeling and methylation-methanolysis confirmed the presence of inositol and of 1, 2-linked mannose units. NMR studies evidenced linear chains of beta-1,2-oligomannose as the major PLM components. Mass spectrometry analysis revealed that these chains were present in phosphoinositolmannosides with degrees of polymerization varying from 8 to 18 sugar residues. The PLM appears as a new type of eukaryotic inositol-tagged glycolipid in relationship to both the absence of glucosamine and the organization of its glycan chains. This first structural evidence for the presence of beta-1, 2-oligomannosides in a glycoconjugate other than the C. albicans phosphopeptidomannan may have some pathophysiological relevance to the adhesive, protective epitope, and signaling properties thus far established for these residues.  相似文献   

5.
Two sets of anti-carbohydrate antibodies, one with specificity for D-xylose residues of flaxseed polysaccharides and the other with specificity for D-galacturonic acid residues, have been isolated by affinity chromatography from the immune serum of rabbits immunized with a vaccine of the polysaccharides and Freunds complete adjuvant. A number of properties of the antibodies are described. Of special note is the finding that, like other anti-carbohydrate antibodies, the new antibodies are biosynthesized in multi-molecular forms.  相似文献   

6.
The high-molecular-weight glycopeptides characteristic of early embryonic cells were isolated from F9 embryonal carcinoma cells grown in vitro and also from the cells grown in vivo as subcutaneous tumors. The two preparations had similar carbohydrate compositions. The major components were galactose and N-acetylglucosamine (molar ratio 1:0.86) in the glycan isolated from the cultured cells. In addition, small amounts of fucose, N-acetylgalactosamine and mannose were present. The glycan from the in vitro grown cells was found to have a molecular weight of more than 10,000 by gel filtration after mild alkaline treatment or hydrazinolysis. The structural characteristics of the core portion of the glycan were studied by using the radioactively labeled glycopeptide from the in vitro grown cells. Methylation analysis provided the following informations. 1) The glycan was highly branched at galactosyl residues. 2) Large numbers of galactosyl residues were also present at non-reducing termini. 3) Monosubstitution of galactose occurred at C-3. 4) Glucosamine residues were mainly monosubstituted. That the disaccharide GlcNAc-Gal was the major structural unit of the glycan was suggested by the isolation of the deacetylated disaccharide after alkaline thiophenol cleavage followed by acid hydrolysis. Furthermore, methylation analysis of the glycan from the in vivo grown tumors indicated that monosubstitution of glucosamine occurred at C-4 and that disubstitution of galactose occurred at least mainly at C-3 and C-6. We propose that the basic structural unit of the core portion is 4GlcNAc 1 leads to 3Gal, and that the galactosyl residue serves as a branching point at C-6. Thus, the structural unit of the core portion of the large glycan appears to be the same as that of lactosaminoglycans found in adult cells.  相似文献   

7.
Monoclonal antibodies specific for the lactose repressor protein have been purified from three mouse hybridoma cell lines, and ascitic fluids from five other cell lines producing repressor antibodies have been assayed for immunoglobulin subclass and antigenic specificity. The chymotryptic core region (amino acids 57-360) of the repressor reacted with all antibodies examined, while no reaction with the NH2-terminal domain (1-56) could be detected. All of the purified antibodies and ascitic fluids reacted with the carboxyl-terminal fragment (amino acids 281-360) produced by cyanylation and base-catalyzed cleavage at the cysteine residues. Although none of the purified antibodies associated with native, tetrameric lac repressor, reaction was observed with repressor which had been denatured or dissociated into monomers by treatment with low levels of sodium dodecyl sulfate. Additionally, a mutant repressor which exists as a monomer in solution reacted with the antibodies in the absence of any denaturing treatments. These data indicate the carboxyl-terminal region is inaccessible in the intact repressor tetramer and further suggest that denaturation/dissociation of a protein during the initial immunologic challenge may result in the production of monoclonal antibodies to antigenic areas of the protein which are not exposed in the native conformation.  相似文献   

8.
To investigate the microheterogeneity of the glycan chain of rat transferrin, either the protein moiety was labeled with 125I or the sialyl residues with 3H. The molecule was then subjected to Con A chromatography. Three components were obtained. Each was enzymatically desialylated and sialyl/protein molar ratios were calculated. The native protein as well as the 3 components were also subjected to isoelectric focusing. The results indicated that rat transferrin may have 3 types of glycan chain: The major type (60%) corresponds to a molecular species with triantennary branching, while 30% consists of molecules with biantennary and 10% with tetraantennary branching. The last species has not been previously described.  相似文献   

9.
The molecular structure and immunological properties of an antigenic glycan from the cell wall of Streptococcus bovis, strain C3, a member of the Group D Streptococci, have been determined by methylation analysis, periodate oxidation, and hapten inhibition methods. The glycan is shown to be a tetraheteroglycan composed of 6-deoxy-l-talose, l-rhamnose, d-galactose, and d-glucuronic acid. The sugar sequence and the types of glycosidic linkages of the glycan are: a main chain of l-rhamnosyl-(1,3)-d-galactosyl- (1,2)-l-rhamnosyl-(1,3)-6-deoxy-l-talosyl-(1,3)- units with d-glucuronosyl residues attached to position 4 of the first rhamnose of each repeating unit of the main chain. The d-glucuronic acid moiety is the primary immunodeterminant group of the glycan. On the basis of hapten inhibition data, it has been concluded that the binding of the antigen to the antibody occurs at the hydroxyl groups at positions 2 and 3 and the carboxyl group at position 6 of the d-glucuronic acid moieties. The antigen has been used to prepare antiserum with anti-glucuronic acid antibodies.  相似文献   

10.
Two pure, acidic polysaccharides have been isolated from the hemicellulose of slash pine in yields of 1–2% and 4–5%. Their properties are compared, and the structure of one of them has been investigated by methylation analysis. The results indicate that the glycan is a β-D-(1→4)-linked xylan chain with many branch points. 4-O-Methyl-D-glucopyranosyluronic acid, L-arabinofuranose, and D-xylopyranose residues occur as non-reducing end groups. The uronic acid occurs as single-unit attachments to the main chain. Some of the D-xylose residues in the polysaccharide are doubly branched. The total hemicellulose components of the wood probably represent a complex mixture of chemical types, from which the two pure fractions described above may be separated fortuitously by careful, fractional precipitation.  相似文献   

11.
Glycosylation of proteins is important for protein stability, secretion, and localization. In this study, we have investigated the glycan synthesis pathways of 12 filamentous fungi including those of medical/agricultural/industrial importance for which genomes have been recently sequenced. We have adopted a systems biology approach to combine the results from comparative genomics techniques with high confidence information on the enzymes and fungal glycan structures, reported in the literature. From this, we have developed a composite representation of the glycan synthesis pathways in filamentous fungi (both N- and O-linked). The N-glycosylation pathway in the cytoplasm and endoplasmic reticulum was found to be highly conserved evolutionarily across all the filamentous fungi considered in the study. In the final stages of N-glycan synthesis in the Golgi, filamentous fungi follow the high mannose pathway as in Saccharomyces cerevisiae, but the level of glycan mannosylation is reduced. Highly specialized N-glycan structures with galactofuranose residues, phosphodiesters, and other insufficiently trimmed structures have also been identified in the filamentous fungi. O-Linked glycosylation in filamentous fungi was seen to be highly conserved with many mannosyltransferases that are similar to those in S. cerevisiae. However, highly variable and diverse O-linked glycans also exist. We have developed a web resource for presenting the compiled data with user-friendly query options, which can be accessed at www.fungalglycans.org. This resource can assist attempts to remodel glycosylation of recombinant proteins expressed in filamentous fungal hosts.  相似文献   

12.
Glycose 1-phosphate moieties are emerging as important structural units of macromolecular substances imparting special biological functions to these molecules. In the present study, beta-D-glucose 1-phosphate moieties are shown to be structural units and immunological determinants of a bacterial glycan. The glycan is a tetraheteroglycan from the cell wall of Streptococcus faecalis, strain N and is composed of glucose, galactose, rhamnose, N-acetylgalactosamine, and phosphate. Several lines of evidence have been obtained for the presence of beta-D-glucose 1-phosphate units in the glycan, including the liberation of glucose by mild acid hydrolysis, the inhibition of the precipitin reaction by beta-D-glucose 1-phosphate, and the formation of levoglucosan on treatment of the glycan with alkali. Work on the preparation of affinity adsorbents for isolating the new types of antibodies directed at the beta-D-glucose 1-phosphate moieties is in progress.  相似文献   

13.
Anti-glycan antibodies are an abundant subpopulation of serum antibodies with critical functions in many immune processes. Changes in the levels of these antibodies can occur with the onset of disease, exposure to pathogens, or vaccination. As a result, there has been significant interest in exploiting anti-glycan antibodies as biomarkers for many diseases. Serum contains a mixture of anti-glycan antibodies that can recognize the same antigen, and competition for binding can potentially influence the detection of antibody subpopulations that are more relevant to disease processes. The most abundant antibody isotypes in serum are IgG, IgM, and IgA, but little is known regarding how these different isotypes compete for the same glycan antigen. In this study, we developed a multiplexed glycan microarray assay and applied it to evaluate how different isotypes of anti-glycan antibodies (IgA, IgG, and IgM) compete for printed glycan antigens. While IgG and IgA antibodies typically outcompete IgM for peptide or protein antigens, we found that IgM outcompete IgG and IgA for many glycan antigens. To illustrate the importance of this effect, we provide evidence that IgM competition can account for the unexpected observation that IgG of certain antigen specificities appear to be preferentially transported from mothers to fetuses. We demonstrate that IgM in maternal sera compete with IgG resulting in lower than expected IgG signals. Since cord blood contains very low levels of IgM, competition only affects maternal IgG signals, making it appear as though certain IgG antibodies are higher in cord blood than matched maternal blood. Taken together, the results highlight the importance of competition for studies involving anti-glycan antibodies.  相似文献   

14.
For many years, polyclonal antibodies raised against the plant glycoprotein horseradish peroxidase have been used to specifically stain the neural and male reproductive tissue of Drosophila melanogaster. This epitope is considered to be of carbohydrate origin, but no glycan structure from Drosophila has yet been isolated that could account for this cross-reactivity. Here we report that N-glycan core alpha1,3-linked fucose is, as judged by preabsorption experiments, indispensable for recognition of Drosophila embryonic nervous system by anti-horseradish peroxidase antibody. Further, we describe the identification by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry and high performance liquid chromatography of two Drosophila N-glycans that, as already detected in other insects, carry both alpha1,3- and alpha1,6-linked fucose residues on the proximal core GlcNAc. Moreover, we have isolated three cDNAs encoding alpha1,3-fucosyltransferase homologues from Drosophila. One of the cDNAs, when transformed into Pichia pastoris, was found to direct expression of core alpha1,3-fucosyltransferase activity. This recombinant enzyme preferred as substrate a biantennary core alpha1,6-fucosylated N-glycan carrying two non-reducing N-acetylglucosamine residues (GnGnF6; Km 11 microm) over the same structure lacking a core fucose residue (GnGn; Km 46 microm). The Drosophila core alpha1,3-fucosyltransferase enzyme was also shown to be able to fucosylate N-glycan structures of human transferrin in vitro, this modification correlating with the acquisition of binding to anti-horseradish peroxidase antibody.  相似文献   

15.
Galectins are a family of metazoan proteins that show binding to various β-galactoside-containing glycans. Because of a lack of proper tools, the interaction of galectins with their specific glycan ligands in the cells and tissues are largely unknown. We have investigated the localization of galectin ligands in Caenorhabditis elegans using a novel technology that relies on the high binding specificity between galectins and their endogenous ligands. Fluorescently labeled recombinant galectin fusions are found to bind to ligands located in diverse tissues including the intestine, pharynx, and the rectal valve. Consistent with their role as galactoside-binding proteins, the interaction with their ligands is inhibited by galactose or lactose. Two of the galectins, LEC-6 and LEC-10, recognize ligands that co-localize along the intestinal lumen. The ligands for LEC-6 and LEC-10 are absent in three glycosylation mutants bre-1, fut-8, and galt-1, which have been shown to be required to synthesize the Gal-β1,4-Fuc modifications of the core N-glycans unique to C. elegans and several other invertebrates. Both galectins pull down the same set of glycoproteins in a manner dependent on the presence of these carbohydrate modifications. Endogenous LEC-6 and LEC-10 are expressed in the intestinal cells, but they are localized to different subcellular compartments that do not appear to overlap with each other or with the location of their glycan targets. An altered subcellular distribution of these ligands is found in mutants lacking both galectins. These results suggest a model where LEC-6 and LEC-10 interact with glycoproteins through specific glycans to regulate their cellular fate.  相似文献   

16.
The monosaccharide sequence and glycosidic bond-types have been determined for an antigenic diheteroglycan of D-glucose and L-rhamnose from the cell wall of Streptococcus bovis, strain C3, by use of an integrated analytical scheme based on methylation analysis, periodate oxidation, oxidation with chromium trioxide, enzymic hydrolysis, and chemical degradation. A typical molecule of the glycan consists of a main chain of L-rhamnosyl residues and isomaltose side-chains, with 16 repetitions of the structure, -α-L-rhamnosyl-(1→3)-[α-D)-glucosyl-(1→6)-α-D-glucosyl-(1→2)]-α-L-rhamnosyl-(1→2)-α-L-rhamnosyl-, linked alternately by α-L-(1→3) and α-L-(1→2) linkages. The isomaltose side-chains of the glycan are the immunodeterminant groups. The new antigenic glycan is ideally suited for use in the preparation of anti-isomaltose antibodies, which should be of value in the detection of other antigens having isomaltose determinants.  相似文献   

17.
Antibodies directed against recombinant erythropoietin have been obtained by immunization of rabbits with the hormone in Freund's complete adjuvant. Two sets of antibodies are present in the serum of the immunized rabbits. The results of oxidation of the erythropoietin with periodate, inhibition of the antibodies with the structural monosaccharide residues of the hormone, and reaction of the antibodies with lectins of known carbohydrate specificity have established the antibodies to be anti-carbohydrate antibodies. These antibodies may be of value as tracking agents for some diseases and should be useful for detecting abuses of the hormone in enhancing performance in athletic competitions.  相似文献   

18.
High levels of protection can be attained against Haemonchus contortus challenge infection in sheep using native antigens isolated from the gut of the adult parasite. However, vaccination with recombinant forms of these antigens, or components thereof, has disappointingly failed to generate similar levels of protection, suggesting that appropriate nematode glycosylation may be a prerequisite for protection. The free-living nematode, Caenorhabditis elegans is closely related to H. contortus and has been shown to share similar glycan moieties. In order to investigate the potentially protective role of these glycan moieties, a complex set of glycoproteins was isolated from C. elegans using ConA-lectin chromatography and their efficacy as immunogens against H. contortus challenge infection evaluated in sheep. Despite the generation of a high titre systemic IgG antibody response to the C. elegans glycoproteins and the ability of these antibodies to bind to the microvillar surface of the gut of H. contortus, no protection against challenge infection was observed. Serum antibodies to the C. elegans glycoproteins cross-reacted with the H. contortus host-protective antigen, H-gal-GP, by ELISA, although the level of cross-reactivity was not of a magnitude considered protective. Qualitative differences were also determined between the glycan epitopes of the C. elegans ConA-binding proteins and those of H-gal-GP, suggesting the presence of H. contortus-specific patterns of glycosylation.  相似文献   

19.
Elastin, one of the extracellular matrix components, is present in tissues requiring extensibility and resilience such as the aorta, lungs, ligaments and skin. Degradation of elastin is observed in diseases such as atherosclerosis, emphysema and metastasis. It has been suggested that degraded elastin-derived peptides interact with a variety of cell types and are involved in development of diseases. Two nonapeptides, Ala-Gly-Val-Pro-Gly-Leu-Gly-Val-Gly (AGVPGFGVG) and Ala-Gly-Val-Pro-Gly-Phe-Gly-Val-Gly (AGVPGFGVG), exist in hydrophobic regions of elastin. In this paper, we characterized these elastin-derived nonapeptides by macrophage migration assay. Both nonapeptides induced a maximal migration at 10(-8) M and elicited the same degree of responsiveness. To investigate the role of the sixth residue of the nonapeptides, seven analog peptides in which Leu or Phe is substituted by Ile, Val, Ala, Gly, Pro, Lys or Glu were synthesized and their macrophage migration activity tested. Among the nonapeptide analogs, only Ala-Gly-Val-Pro-Gly-Ile-Gly-Val-Gly induced the migration of macrophages at the optimal concentration of 10(-9) M and its responsiveness was the same as that of parent nonapeptide AGVPGFGVG. Results of the deactivation tests and the effect of lactose on macrophage migration showed that a lactose-insensitive receptor which mainly recognizes Ala-Gly-Val-Pro-Gly-Ile-Gly-Val-Gly is presumably present on the membrane of macrophages in addition to the elastin-binding protein (EBP) sensitive to lactose. These results suggest that Leu, Phe and Ile residues at the sixth position of elastin-derived nonapeptides are crucial for inducing macrophage migration and in particular, Ile residue is important for the recognition by receptor insensitive to lactose.  相似文献   

20.
Phaseolin, the major storage protein of the common bean (Phaseolus vulgaris), is a glycoprotein which is synthesized during seed development and accumulates in protein storage vacuoles or protein bodies. The protein has three different N-linked oligosaccharide side chains: Man9(GlcNAc)2, Man7(GlcNAc)2, and Xyl-Man3(GlcNAc)2 (where Xyl represents xylose). The structures of these glycans were determined by 1H NMR spectroscopy. The Man9(GlcNAc)2 glycan has the typical structure found in plant and animal glycoproteins. The structures of the two other glycans are shown below. (Formula; see text) Phaseolin was separated by electrophoresis on denaturing gels into four size classes of polypeptides. The two abundant ones have two oligosaccharides each, whereas the less abundant ones have only one oligosaccharide each. Polypeptides with two glycans have Man7(GlcNAc)2 attached to Asn252 and Man9(GlcNAc)2 attached to Asn341. Polypeptides with only one glycan have Xyl-Man3(GlcNAc)2 attached to Asn252. Both these asparagine residues are in canonical glycosylation sites; the numbering starts with the N-terminal methionine of the signal peptide of phaseolin. The presence of the Man7(GlcNAc)2 and of Xyl-Man3(GlcNAc)2 at the same asparagine residue (position 252) of different polypeptides seems to be controlled by the glycosylation status of Asn341. When Asp341 is unoccupied, the glycan at Asn252 is complex. When Asn341 is occupied, the glycan at Asn252 is only modified to the extent that 2 mannosyl residues are removed. The processing of the glycans, after the removal of the glucose residues, involves enzymes in the Golgi apparatus as well as in the protein bodies. Formation of the Xyl-Man3(GlcNAc)2 glycan is a multistep process that involves the Golgi apparatus-mediated removal of 6 mannose residues and the addition of 2 N-acetylglucosamine residues and 1 xylose. The terminal N-acetylglucosamine residues are later removed in the protein bodies. The conversion of Man9(GlcNAc)2 to Man7(GlcNAc)2 is a late processing event which occurs in the protein bodies. Experiments in which [3H]glucosamine-labeled phaseolin obtained from the endoplasmic reticulum (i.e. precursor phaseolin) is incubated with jack bean alpha-mannosidase show that the high mannose glycan on Asn252, but not the one on Asn341, is susceptible to enzyme degradation. Incubation of [3H] glucosamine-labeled phaseolin obtained from the Golgi apparatus with jack bean beta-N-acetylglucosaminidase results in the removal of the terminal N-acetylglucosamine residues from the complex chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号