首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenomena occurring in the heme pocket after photolysis of carbonmonoxymyoglobin (MbCO) below about 100 K are investigated using temperature-derivative spectroscopy of the infrared absorption bands of CO. MbCO exists in three conformations (A substrates) that are distinguished by the stretch bands of the bound CO. We establish connections among the A substates and the substates of the photoproduct (B substates) using Fourier-transform infrared spectroscopy together with kinetic experiments on MbCO solution samples at different pH and on orthorhombic crystals. There is no one-to-one mapping between the A and B substates; in some cases, more than one B substate corresponds to a particular A substate. Rebinding is not simply a reversal of dissociation; transitions between B substates occur before rebinding. We measure the nonequilibrium populations of the B substates after photolysis below 25 K and determine the kinetics of B substate transitions leading to equilibrium. Transitions between B substates occur even at 4 K, whereas those between A substates have only been observed above about 160 K. The transitions between the B substates are nonexponential in time, providing evidence for a distribution of substates. The temperature dependence of the B substate transitions implies that they occur mainly by quantum-mechanical tunneling below 10 K. Taken together, the observations suggest that the transitions between the B substates within the same A substate reflect motions of the CO in the heme pocket and not conformational changes. Geminate rebinding of CO to Mb, monitored in the Soret band, depends on pH. Observation of geminate rebinding to the A substates in the infrared indicates that the pH dependence results from a population shift among the substates and not from a change of the rebinding to an individual A substate.  相似文献   

2.
Two-dimensional (2D) infrared vibrational echoes were performed on horse heart carbonmonoxymyoglobin (MbCO) in water over a range of temperatures. The A(1) and A(3) conformational substates of MbCO are found to have different dephasing rates with different temperature dependences. A frequency-frequency correlation function derived from molecular dynamics simulations on MbCO at 298 K is used to calculate the vibrational echo decay. The calculated decay shows substantial agreement with the experimentally measured decays. The 2D vibrational echo probes protein dynamics and provides an observable that can be used to test structural assignments for the MbCO conformational substates.  相似文献   

3.
Insight into the dynamic properties of alpha-lytic protease (alpha LP) has been obtained through the use of low-temperature X-ray crystallography and multiple-conformation refinement. Previous studies of alpha LP have shown that the residues around the active site are able to move significantly to accommodate substrates of different sizes. Here we show a link between the ability to accommodate ligands and the dynamics of the binding pocket. Although the structure of alpha LP at 120 K has B-factors with a uniformly low value of 4.8 A2 for the main chain, four regions stand out as having significantly higher B-factors. Because thermal motion should be suppressed at cryogenic temperatures, the high B-factors are interpreted as the result of trapped conformational substates. The active site residues that are perturbed during accommodation of different substrates are precisely those showing conformational substates, implying that substrate binding selects a subset of conformations from the ensemble of accessible states. To better characterize the precise nature of these substates, a protein model consisting of 16 structures has been refined and evaluated. The model reveals a number of features that could not be well-described by conventional B-factors: for example, 40% of the main-chain residue conformations are distributed asymmetrically or in discrete clusters. Furthermore, these data demonstrate an unexpected correlation between motions on either side of the binding pocket that we suggest is a consequence of "dynamic close packing." These results provide strong evidence for the role of protein dynamics in substrate binding and are consistent with the results of dynamic studies of ligand binding in myoglobin and ribonuclease A.  相似文献   

4.
The rebinding kinetics of CO to myoglobin after flash photolysis is nonexponential in time below approximately 180 K; the kinetics is governed by a distribution of enthalpic barriers. This distribution results from inhomogeneities in the protein conformation, referred to as conformational substates. Hole-burning experiments on the Soret and IR CO-stretch bands test the assumption that an inhomogeneous distribution of conformational substates results in inhomogeneously broadened spectra. CO was slowly photolyzed at different wavelengths in the Soret band at 10 K. Both the Soret band and the CO-stretch band A1, centered at 1,945 cm-1, shift during photolysis, demonstrating that different wavelengths excite different parts of the distributed population. We have also done kinetic hole-burning experiments by measuring peak shifts in the Soret and A1 bands as the CO molecules rebind. The shifts indicate that the spectral and enthalpic distributions are correlated. In the A1 band, the spectral and enthalpic distributions are highly correlated while in the Soret the correlation is weak. From the peak shifts in the spectral and kinetic hole-burning experiments the inhomogeneous broadening is estimated to be approximately 15% of the total width in the Soret band and approximately 60% in A1. We have previously measured the tilt angle alpha between the bound CO and the heme normal (Ormos, P., D. Braunstein, H. Frauenfelder, M. K. Hong, S.-L. Lin, T. B. Sauke, and R. D. Young. 1988. Proc. Natl. Acad. Sci. USA. 85:8492-8496) and observed a wave number dependence of the tilt angles within the CO-stretch A bands. Thus the spectral and enthalpic distributions of the A bands are coupled to a heterogeneity of the structure.  相似文献   

5.
Time-resolved polarized fluorescence spectroscopy has been applied to the bound FAD in the structurally related flavoproteins lipoamide dehydrogenase from Azotobacter vinelandii (LipDH-AV) and glutathione reductase (GR) from human erythrocytes. The fluorescence parameters as obtained from the maximum entropy analysis differ considerably in both enzymes, reflecting the unique properties of the flavin microenvironment. Three conformational substates are revealed in LipDH-AV and five in GR. Almost 90% of the population of GR molecules has a fluorescence lifetime in the order of 30 ps which originates from efficient exciplex formation with Tyr197. Equilibrium fluctuations between conformational substates are observed for LipDH-AV on a nanosecond time scale in the temperature range 277-313 K. Interconversion between conformational substates in GR is slow, indicating that large activation barriers exist between the states. In agreement with these results, a model is postulated which ascribes a role in catalysis to equilibrium fluctuations between conformational substates in GR and LipDH-AV. From time-resolved fluorescence anisotropy as a function of temperature, distinction can be made between flavin reorientational motion and interflavin energy transfer. In both proteins intersubunit energy transfer between the prosthetic groups is observed. Furthermore, it is revealed that only the flavin in glutathione reductase exhibits rapid restricted reorientational motion. Geometric information concerning the relative orientation and distance of the flavins can be extracted from the parameters describing the energy-transfer process. The obtained spatial arrangement of the flavins is in excellent agreement with crystallographic data.  相似文献   

6.
Time-resolved polarized flavin fluorescence was used to study the active site dynamics of Escherichia coli glutathione reductase (GR). Special consideration was given to the role of Tyr177, which blocks the access to the NADPH binding-site in the crystal structure of the enzyme. By comparing wild-type GR with the mutant enzymes Y177F and Y177G, a fluorescence lifetime of 7 ps that accounts for approximately 90% of the fluorescence decay could be attributed to quenching by Y177. Based on the temperature invariance for this lifetime, and the very high quenching rate, electron transfer from Y177 to the light-excited isoalloxazine part of flavin adenine dinucleotide (FAD) is proposed as the mechanism of flavin fluorescence quenching. Contrary to the mutant enzymes, wild-type GR shows a rapid fluorescence depolarization. This depolarization process is likely to originate from a transient charge transfer interaction between Y177 and the light-excited FAD, and not from internal mobility of the flavin, as has previously been proposed. Based on the fluorescence lifetime distributions, the mutants Y177F and Y177G have a more flexible protein structure than wild-type GR: in the range of 223 K to 277 K in 80% glycerol, both tyrosine mutants mimic the closely related enzyme dihydrolipoyl dehydrogenase. The fluorescence intensity decays of the GR enzymes can only be explained by the existence of multiple quenching sites in the protein. Although structural fluctuations are likely to contribute to the nonexponential decay and the probability of quenching by a specific site, the concept of conformational substates need not be invoked to explain the heterogeneous fluorescence dynamics.  相似文献   

7.
8.
We report the low temperature carbon monoxide recombination kinetics after photolysis and the temperature dependence of the visible absorption spectra of the isolated alpha SH-CO and beta SH-CO subunits from human hemoglobin A in ethylene glycol/water and in glycerol/water mixtures. Kinetic measurements on sperm whale (Physeter catodon) myoglobin and previously published optical spectroscopy data on the latter protein and on human hemoglobin A, in both solvents, (Cordone, L., A. Cupane, M. Leone, E. Vitrano, and D. Bulone. 1988. J. Mol. Biol. 199:312-218) are taken as reference. Low temperature flash photolysis data are analyzed within the multiple substates model proposed by Frauenfelder and co-workers (Austin, R. H., K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus. 1975. Biochemistry. 14:5355-5373). Within this model a distribution of activation enthalpies for ligand binding accounts for the structural heterogeneity of the protein, while the preexponential factor, containing also the entropic contribution to the free energy of the process, is considered to be constant for all conformational substates. Optical spectra are deconvoluted in gaussian components and the temperature dependence of the moments of the resulting bands is analyzed, within the harmonic Frank-Condon approximation, to obtain information on the stereodynamic properties of the heme pocket. The kinetic and spectral parameters thus obtained are found to be protein dependent also with respect to their sensitivity to changes in the composition of the external medium. A close correlation between the kinetic and spectral features is observed for the proteins examined under all experimental conditions studied. The results reported are discussed in terms of differences in the heme pocket structure and in the conformational heterogeneity among the various proteins, as related to their different capability to accommodate constraints imposed by the external medium.  相似文献   

9.
10.
The switch in the bacteriorhodopsin photocycle, which reorients access of the retinal Schiff base from the extracellular to the cytoplasmic side, was suggested to be an M1----M2 reaction (Váró and Lanyi. 1991. Biochemistry. 30:5008-5015, 5016-5022). Thus, in this light-driven proton pump it is the interconversion of proposed M substates that gives direction to the transport. We find that in monomeric, although not purple membrane-lattice immobilized, D115N bacteriorhodopsin, the absorption maximum of M changes during the photocycle: in the time domain between its rise and decay it shifts 15 nm to the blue relative to the spectrum at earlier times. This large shift strongly supports the existence of two M substates. Since D115 is located near the beta-ionone ring of the retinal, the result raises questions about the possible involvement of the retinal chain or protein residues as far away as 10 A from the Schiff base in the mechanism of the switching reaction.  相似文献   

11.
The neurotoxin fasciculin-2 (FAS2) is a picomolar inhibitor of synaptic acetylcholinesterase (AChE). The dynamics of binding between FAS2 and AChE is influenced by conformational fluctuations both before and after protein encounter. Submicrosecond molecular dynamics trajectories of apo forms of fasciculin, corresponding to different conformational substates, are reported here with reference to the conformational changes of loop I of this three-fingered toxin. This highly flexible loop exhibits an ensemble of conformations within each substate corresponding to its functions. The high energy barrier found between the two major substates leads to transitions that are slow on the timescale of the diffusional encounter of noninteracting FAS2 and AChE. The more stable of the two apo substates may not be the one observed in the complex with AChE. It seems likely that the more stable apo form binds rapidly to AChE and conformational readjustments then occur in the resulting encounter complex.  相似文献   

12.
Hierarchical organization of free energy landscape (FEL) for native globular proteins has been widely accepted by the biophysics community. However, FEL of native proteins is usually projected onto one or a few dimensions. Here we generated collectively 0.2 milli-second molecular dynamics simulation trajectories in explicit solvent for hen egg white lysozyme (HEWL), and carried out detailed conformational analysis based on backbone torsional degrees of freedom (DOF). Our results demonstrated that at micro-second and coarser temporal resolutions, FEL of HEWL exhibits hub-like topology with crystal structures occupying the dominant structural ensemble that serves as the hub of conformational transitions. However, at 100ns and finer temporal resolutions, conformational substates of HEWL exhibit network-like topology, crystal structures are associated with kinetic traps that are important but not dominant ensembles. Backbone torsional state transitions on time scales ranging from nanoseconds to beyond microseconds were found to be associated with various types of molecular interactions. Even at nanoseconds temporal resolution, the number of conformational substates that are of statistical significance is quite limited. These observations suggest that detailed analysis of conformational substates at multiple temporal resolutions is both important and feasible. Transition state ensembles among various conformational substates at microsecond temporal resolution were observed to be considerably disordered. Life times of these transition state ensembles are found to be nearly independent of the time scales of the participating torsional DOFs.  相似文献   

13.
The interaction of Brevetoxin 3 (Pbtx-3), a sodium channel activator, with the cardiac sodium channel was studied at the single channel level. It was found that Pbtx-3 (20 microM) shifted steady-state activation to negative potentials, without major effects on the time course of macroscopic activation or macroscopic currents decay, as calculated from averaged single-channel records. Single-channel open times were found to be prolonged. Under the influence of the toxin, sodium channel openings could be observed frequently even at maintained depolarisation. These openings occurred to at least nine different subconductance levels of the open state with smaller conductivities than the maximal one and differed in their open times. Current amplitudes of these open substates were found to cluster around certain amplitude values. Appearance of substates at maintained depolarisation was dependent on the transmembrane potential (Em): Substates with smaller conductivity appeared more frequently at lower Em values whereas at higher Em values substates with higher conductivity values dominated. Furthermore, it was demonstrated that appearance of substates did not result from incomplete recovery from inactivation. From these observations it was concluded that the open substates observed correspond to different conformational states of the channel's activation gates. Under physiological conditions, when the sodium channel opens directly from its closed state these 'incomplete'-open states of the cardiac sodium channel are obscured by fast gating transitions between the corresponding, electrically silent, preopen states. Thus, Pbtx-3 acts mainly via stabilisation of the channel's preopen and different open states. A classification of sodium channel modifiers, based on their interaction with different conformational states of the channel is suggested.  相似文献   

14.
Energy transfer in the purple membrane of Halobacterium halobium.   总被引:7,自引:2,他引:5       下载免费PDF全文
The absorption spectrum of the primary photoproduct (the bathoproduct, or K) of the purple membrane protein (PM) at-196 degrees C has a maximum at 628 nm and an extinction coefficient of 87,000. Knowing the absorption spectrum allowed us to calculate the quantum efficiencies for PM to K and K to PM conversion at -196 degrees C. Direct measurements of these quantum yeilds at -196 degrees C gave 0.33 +/- 0.05 and 0.67 +/- 0.04, respectively. Determination of relative quantum efficiencies for PM to K and K to PM conversion by analysis of the absorption spectra of several photostationary-state mixtures of PM and K at -196 degrees C, however, gave wavelength-dependent quantum efficiencies that appear to be greater than 1. These anomolous results can be readily explained in terms of energy transfer from PM to K within the trimer clusters of pigment molecules which exist in the purple membrane. A model for such a transfer predicts an efficiency of energy transfer from PM to K of about 43%.  相似文献   

15.
L Zimányi  J K Lanyi 《Biochemistry》1989,28(4):1662-1666
Photostationary states of halorhodopsin (HR, a retinal protein in the halobacterial membrane) and their further thermal conversions were investigated at 140-230 K by absorption spectroscopy in the visible. The difference spectra confirm several steps of the all-trans-HR photocycle, in the presence of chloride, proposed earlier on the basis of room temperature flash spectroscopy. Thus, at 140 K, the spectra reveal the HR600----HR520 reaction, and at 170-230 K the HR640----HR578 and the HR520----HR578 reactions can be seen. No evidence for the expected HR520 in equilibrium HR640 process was found, however. From the difference spectra at various temperatures, exact absorption spectra of HR600 and HR520 were calculated, and an estimate of the HR640 spectrum in a mixture also containing HR520 was obtained. The low-temperature absorption maxima of HR578 and its photointermediates relate to the room temperature maxima differently from what is expected from the spectra of the corresponding intermediates in the bacteriorhodopsin photocycle.  相似文献   

16.
Kloppmann E  Becker T  Ullmann GM 《Proteins》2005,61(4):953-965
The color tuning mechanism of the rhodopsin protein family has been in the focus of research for decades. However, the structural basis of the tuning mechanism in general and of the absorption shift between rhodopsins in particular remains under discussion. It is clear that a major determinant for spectral shifts between different rhodopsins are electrostatic interactions between the chromophore retinal and the protein. Based on the Poisson-Boltzmann equation, we computed and compared the electrostatic potential at the retinal of three archaeal rhodopsins: bacteriorhodopsin (BR), halorhodopsin (HR), and sensory rhodopsin II (SRII) for which high-resolution structures are available. These proteins are an excellent test case for understanding the spectral tuning of retinal. The absorption maxima of BR and HR are very similar, whereas the spectrum of SRII is considerably blue shifted--despite the structural similarity between these three proteins. In agreement with their absorption maxima, we find that the electrostatic potential is similar in BR and HR, whereas significant differences are seen for SRII. The decomposition of the electrostatic potential into contributions of individual residues, allowed us to identify seven residues that are responsible for the differences in electrostatic potential between the proteins. Three of these residues are located in the retinal binding pocket and have in fact been shown to account for part of the absorption shift between BR and SRII by mutational studies. One residue is located close to the beta-ionone ring of retinal and the remaining three residues are more than 8 A away from the retinal. These residues have not been discussed before, because they are, partly because of their location, no obvious candidates for the spectral shift among BR, HR, and SRII. However, their contribution to the differences in electrostatic potential is evident. The counterion of the Schiff base, which is frequently discussed to be involved in the spectral tuning, does not contribute to the dissimilarities between the electrostatic potentials.  相似文献   

17.
Some photochemical reactions of horseradish peroxidase compounds I and II (HRP-I and HRP-II, respectively) have been studied by electronic absorption spectroscopy over the temperature range 297 degrees K-10 degrees K. In glassy matrices below 80 degrees K HRP-I is rapidly converted to hrp-ii when irradiated with low power white light. The native enzyme and HRP-II are not photochemically active at these temperatures with low power irradiation. At room temperature the spontaneous decay of both HRP-I and HRP-II is catalyzed by irradiation with white light. It is shown that the photolysis is dependent upon light in the region 450-320 nm. It is concluded that the HRP-I and HRP-II conformations are closely related with only a low transition energy in the presence of electrons generated by the light. The conversion of HRP-II to HRP is accompanied by large conformational changes and so is inhibited at low temperatures.  相似文献   

18.
Previous studies have suggested that the Ca2+-saturated E140Q mutant of the C-terminal domain of calmodulin exhibits equilibrium exchange between "open" and "closed" conformations similar to those of the Ca2+-free and Ca2+-saturated states of wild-type calmodulin. The backbone dynamics of this mutant were studied using15N spin relaxation experiments at three different temperatures. Measurements at each temperature of the15N rate constants for longitudinal and transverse auto-relaxation, longitudinal and transverse cross-correlation relaxation, and the1H-15N cross-relaxation afforded unequivocal identification of conformational exchange processes on microsecond to millisecond time-scales, and characterization of fast fluctuations on picosecond to nanosecond time-scales using model-free approaches. The results show that essentially all residues of the protein are involved in conformational exchange. Generalized order parameters of the fast internal motions indicate that the conformational substates are well folded, and exclude the possibility that the exchange involves a significant population of unfolded or disordered species. The temperature dependence of the order parameters offers qualitative estimates of the contribution to the heat capacity from fast fluctuations of the protein backbone, revealing significant variation between the well-ordered secondary structure elements and the more flexible regions. The temperature dependence of the conformational exchange contributions to the transverse auto-relaxation rate constants directly demonstrates that the microscopic exchange rate constants are greater than 2.7x10(3)s-1at 291 K. The conformational exchange contributions correlate with the chemical shift differences between the Ca2+-free and Ca2+-saturated states of the wild-type protein, thereby substantiating that the conformational substates are similar to the open and closed states of wild-type calmodulin. Taking the wild-type chemical shifts to represent the conformational substates of the mutant and populations estimated previously, the microscopic exchange rate constants could be estimated as 2x10(4)to 3x10(4)s-1at 291 K for a subset of residues. The temperature depen dence of the exchange allows the characterization of apparent energy barriers of the conformational transition, with results suggesting a complex process that does not correspond to a single global transition between substates.  相似文献   

19.
Pochapsky TC  Kostic M  Jain N  Pejchal R 《Biochemistry》2001,40(19):5602-5614
Putidaredoxin (Pdx), a Cys4Fe2S2 ferredoxin from Pseudomonas putida, exhibits redox-dependent binding to its physiological redox partner, cytochrome P450(cam) (CYP101), with the reduced form of Pdx (Pdx(r)) binding with greater affinity to oxidized camphor-bound CYP101 than the oxidized form, Pdx(o). It has been previously shown that Pdx(o) is more dynamic than Pdx(r) on all accessible time scales, and it has been proposed that Pdx(r) samples only a fraction of the conformational substates populated by Pdx(o) on a time average. It is postulated that the ensemble subset populated by Pdx(r) is the same subset that binds CYP101, providing a mechanism for coupling the Pdx oxidation state to binding affinity for CYP101. Evidence from a variety of sources, including redox-dependent shifts of 15N and 13C resonances, indicates that the metal cluster binding loop of Pdx is the primary determinant of redox-dependent conformational selection. Patterns of paramagnetic effects suggest that the metal cluster binding loop contracts around the metal cluster upon reduction, possibly due to the strengthening of hydrogen bonds between the sulfur atoms of the metal cluster and the surrounding polypeptide NH and OH groups. Effects of this perturbation are then transmitted mechanically to other affected regions of the protein. A specific mutation has been introduced into the metal binding loop of Pdx, G40N, that slows conformational exchange sufficiently that the ensemble of conformational substates in Pdx(o) are directly observable as severe broadenings or splittings in affected NMR resonances. Many of the residues most affected by the mutation also show significant exchange contributions to 15N T(2) relaxation in wild-type Pdx(o). As predicted, G40N Pdx(r) shows a collapse of many of these multiplets and broadened lines to form much sharper resonances that are essentially identical to those observed in wild-type Pdx(r), indicating that Pdx(r) occupies fewer conformational substates than does Pdx(o). This is the first direct observation of such redox-dependent ensembles at slow exchange on the chemical shift time scale. These results confirm that conformational selection within the Fe2S2 cluster binding loop is the primary source of redox-dependent changes in protein dynamics in Pdx.  相似文献   

20.
We have measured the VFe-His Raman band of horse heart deoxymyoglobin dissolved in an aqueous solution as a function of temperature between 10 and 300 K. The minimal model to which these data can be fitted in a statistically significant and physically meaningful way comprises four different Lorentzian bands with frequencies at 197, 209, 218, and 226 cm-1, and a Gaussian band at 240 cm-1, which exhibit halfwidths between 10 and 12.5 cm-1. All these parameters were assumed to be independent of temperature. The temperature dependence of the apparent total band shape's frequency is attributed to an intensity redistribution of the subbands at omega 1 = 209 cm-1, omega 2 = 218 cm-1, and omega 3 = 226 cm-1, which are assigned to Fe-N epsilon (HisF8) stretching modes in different conformational substrates of the Fe-HisF8 linkage. They comprise different out-of-plane displacements of the heme iron. The two remaining bands at 197 and 240 cm-1 result from porphyrin modes. Their intensity ratio is nearly temperature independent. The intensity ratio I3/I2 of the vFe-His subbands exhibits a van't Hoff behavior between 150 and 300 K, bending over in a region between 150 and 80 K, and remains constant between 80 and 10 K, whereas I2/I1 shows a maximum at 170 K and approaches a constant value at 80 K. These data can be fitted by a modified van't Hoff expression, which accounts for the freezing into a non-equilibrium distribution of substates below a distinct temperature Tf and also for the linear temperature dependence of the specific heat of proteins. The latter leads to a temperature dependence of the entropic and enthalpic differences between conformational substates. The fits to the intensity ratios of the vFe-His subbands yield a freezing temperature of Tf = 117 K and a transition region of delta T = 55 K. In comparison we have utilized the above thermodynamic model to reanalyze earlier data on the temperature dependence of the ratio Ao/A1 of two subbands underlying the infrared absorption band of the CO stretching vibration in CO-ligated myoglobin (A. Ansari, J. Berendzen, D. Braunstein, B. R. Cowen, H. Frauenfelder, M. K. Kong, I. E. T. Iben, J. Johnson, P. Ormos, T. B. Sauke, R. Scholl, A. Schulte, P. J. Steinbach, R. D. Vittitow, and R. D. Young, 1987, Biophys. Chem. 26:237-335).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号