首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human brain glutamate decarboxylase 65 (hGAD65) was found to exist as full-length and truncated forms when the glutathione S-transferase-tagged hGAD65 fusion protein was subjected to factor Xa cleavage. The truncated form is produced by cleavage at arginine 69 based on N-terminal amino acid sequence analysis, and has a molecular weight of 58 kD. It is resistant to further factor Xa cleavage or mild trypsin treatment and is more active and more stable than the full-length form. Both the full-length and truncated forms of GAD are also observed in brain preparations in the presence of protease inhibitors. Furthermore, full-length GAD could be converted to the truncated form by endogenous proteases, suggesting that the conversion of full-length to truncated GAD mediated by endogenous protease may represent an important mechanism in the regulation of GABA biosynthesis in the brain.  相似文献   

2.
Wei J  Lin CH  Wu H  Jin Y  Lee YH  Wu JY 《Journal of neurochemistry》2006,98(5):1688-1695
Previously, we reported that l-glutamic acid decarboxylase isoform 65 (GAD65) could be cleaved in vitro to release a stable truncated form which lacks amino acid 1-69 from the N-terminus, GAD65(Delta1-69). However, whether such a truncated form is also present under certain physiological conditions remains elusive. In the present study, we showed that, upon sustained neuronal stimulation, GAD65 could be cleaved into a truncated form in a rat synaptosomal preparation. This truncated form had similar electrophoretic mobility to purified recombinant human GAD65(Delta1-69). Furthermore, we demonstrated that this conversion was calcium dependent. Calcium-chelating reagents such as EDTA and 1,2-bis-(o-aminphenoxy)-ethane-N,N,N',N'-tetra-acetic acid tetra-acetoxy-methyl ester prevented the cleavage of GAD65. In addition, our data suggested that calpain, a calcium-dependent cysteine protease, is activated upon neuronal stimulation and could be responsible for the conversion of full-length GAD65 to truncated GAD65 in the brain. Moreover, calpain inhibitors such as calpain inhibitor I or calpastatin could block the cleavage. Results of our in vitro cleavage assay using purified calpain and immunopurified rat GAD65 also supported the idea that GAD65 could be directly cleaved by calpain.  相似文献   

3.
Glutamic acid decarboxylase 65 (GAD65) is one of the major autoantigens in type 1 diabetes. We investigated whether there is variation in the processing of GAD65 epitopes between individuals with similar HLA backgrounds and whether the processing characteristics of certain immunogenic epitopes are different in distinct APC subpopulations. Using DR401-restricted T cell hybridomas specific for two immunogenic GAD65 epitopes (115-127 and 274-286), we demonstrate an epitope-specific presentation pattern in human B-lymphoblastoid cell lines (B-LCL). When pulsed with the GAD protein, some DRB1*0401-positive B-LCL, which presented GAD65 274-286 epitope efficiently, were unable to present the GAD65 115-127 epitope. However, all B-LCL presented synthetic peptides corresponding to either GAD epitope. In addition, when pulsed with human serum albumin, all cell lines gave equal stimulation of a DR4-restricted human serum albumin-specific T hybridoma. GAD65-transfected cell lines displayed the same presentation phenotype, showing that lack of the presentation of the 115-127 epitope was not due to inefficient uptake of the protein. Blood mononuclear adherent cells, B cells, or dendritic cells derived from the same individual displayed the same presentation pattern as observed in B cell lines, suggesting that the defect most likely is genetically determined. Therefore, individual differences in Ag processing may result in the presentation of distinct set of peptides derived from an autoantigen such as GAD65. This may be an important mechanism for the deviation of the immune response either into a regulatory pathway or into an inflammatory autoimmune reactivity.  相似文献   

4.
Type 1 diabetes is a T cell-mediated disease in which B cells serve critical Ag-presenting functions. In >95% of type 1 diabetic patients the B cell response to the glutamic acid decarboxylase 65 (GAD65) autoantigen is exclusively directed at conformational epitopes residing on the surface of the native molecule. We have examined how the epitope specificity of Ag-presenting autoimmune B cell lines, derived from a type 1 diabetic patient, affects the repertoire of peptides presented to DRB1*0401-restricted T cell hybridomas. The general effect of GAD65-specific B cells was to enhance Ag capture and therefore Ag presentation. The enhancing effect was, however, restricted to T cell determinants located outside the B cell epitope region, because processing/presentation of T cell epitopes located within the autoimmune B cell epitope were suppressed in a dominant fashion. A similar effect was observed when soluble Abs formed immune complexes with GAD65 before uptake and processing by splenocytes. Thus, GAD65-specific B cells and the Abs they secrete appear to modulate the autoimmune T cell repertoire by down-regulating T cell epitopes in an immunodominant area while boosting epitopes in distant or cryptic regions.  相似文献   

5.
The genetic factors that contribute to the etiology of type 1 diabetes are still largely uncharacterized. However, the genes of the MHC (HLA in humans) have been consistently associated with susceptibility to disease. We have used several transgenic mice generated in our laboratory, bearing susceptible or resistant HLA alleles, in the absence of endogenous MHC class II (Abetao), to study immune responses to the autoantigen glutamic acid decarboxylase (GAD) 65 and its relevance in determining the association between autoreactivity and disease pathogenesis. Mice bearing diabetes-susceptible haplotypes, HLA DR3 (DRB1*0301) or DQ8 (DQB1*0302), singly or in combination showed spontaneous T cell reactivity to rat GAD 65, which is highly homologous to the self Ag, mouse GAD 65. The presence of diabetes-resistant or neutral alleles, such as HLA DQ6 (DQB1*0602) and DR2 (DRB1*1502) prevented the generation of any self-reactive responses to rat GAD. In addition, unmanipulated Abetao/DR3, Abetao/DQ8, and Abetao/DR3/DQ8 mice recognized specific peptides, mainly from the N-terminal region of the GAD 65 molecule. Most of these regions are conserved between human, mouse, and rat GAD 65. Further analysis revealed that the reactivity was mediated primarily by CD4(+) T cells. Stimulation of these T cells by rat GAD 65 resulted in the generation of a mixed Th1/Th2 cytokine profile in the Abetao/DR3/DQ8, Abetao/DR3, and Abetao/DQ8 mice. Thus, the presence of diabetes-associated genes determines whether immune tolerance is maintained to islet autoantigens, but autoreactivity in itself is not sufficient to induce diabetes.  相似文献   

6.
Peptide-based immunotherapy is one strategy by which to selectively suppress the T cell-mediated destruction of beta cells and treat insulin-dependent diabetes mellitus (IDDM). Here, we investigated whether a panel of T cell epitopes derived from the beta cell autoantigen glutamic acid decarboxylase 65 (GAD65) differ in their capacity to induce Th2 cell function in nonobese diabetic (NOD) mice and in turn prevent overt IDDM at different preclinical stages of disease development. The panel consists of GAD65-specific peptides spanning aa 217-236 (p217), 247-265 (p247), 290-309 (p290), and 524-543 (p524). Our studies revealed that all of the peptides effectively prevented insulitis and diabetes when administered to NOD mice before the onset of insulitis. In contrast, only a mixture of p217 and p290 prevented progression of insulitis and overt IDDM in NOD mice exhibiting extensive beta cell autoimmunity. Immunization with the GAD65-specific peptides did not block IDDM development in NOD mice deficient in IL-4 expression. These findings demonstrate that GAD65-specific peptide immunotherapy effectively suppresses progression to overt IDDM, requires the production of IL-4, and is dependent on the epitope targeted and the extent of preexisting beta cell autoimmunity in the recipient.  相似文献   

7.

Background  

Human glutamic acid decarboxylase 65 (hGAD65) is a key autoantigen in type 1 diabetes, having much potential as an important marker for the prediction and diagnosis of type 1 diabetes, and for the development of novel antigen-specific therapies for the treatment of type 1 diabetes. However, recombinant production of hGAD65 using conventional bacterial or mammalian cell culture-based expression systems or nuclear transformed plants is limited by low yield and low efficiency. Chloroplast transformation of the unicellular eukaryotic alga Chlamydomonas reinhardtii may offer a potential solution.  相似文献   

8.
Six clones were obtained that secrete anti-angiotensin II antibodies after somatic cell fusions between splenocytes of immunized BALB/c or outbred OF1 mice and NS-1 myeloma cells. The dissociation constants for angiotensin II ranged from 0.3 to 2.9 nM. A panel of 20 structural analogs of the hormone were used as probes to analyze the specificity of binding. From the binding studies and the putative three-dimensional structures of the tested peptides, three families of antibodies could be distinguished that recognized overlapping epitopes; the conservation of the native conformation of the angiotensin II molecule in the analogs appeared essential for the preservation of a high affinity to the antibodies. With one antibody, the affinities of the angiotensin II analogs have been correlated with their intrinsic biologic activities (as measured by in vivo pressor tests), and not with their binding affinity to the membrane receptor. These results are interpreted as mimicry, by the antibody binding site, of the active conformation of the receptor site.  相似文献   

9.
Variability of taurine (2-aminoethane sulfonic acid) was studied as a function of size in the mussel Mytilus galloprovincialis and tissue specificity. Isometric and/or allometric relationships were established with regard to total soft mass of the mussels between 20 and 60 mm shell length. Relative amounts of taurine dropped significantly with increasing mass of whole soft tissues with an allometric coefficient value of -0.15. The inverse relationship between taurine and increasing size of mussels was confirmed for gill epithelium and labial palp (allometric coefficient values of -0.16 and -0.10, respectively), tissues that, in turn, represented isometric functions with regard to total soft mass. Although relative amounts of taurine were significantly different in digestive gland, mantle and foot, relationships with increasing size of mussels remained unchanged in these tissues. Gill area of mussels was related to soft mass with an allometric coefficient of 0.70 by 2D Image Analysis, but increased to 0.85 when introducing a third dimension, i.e. gill thickness. Results are discussed according to gill structure analysis and taurine functionality.  相似文献   

10.
The smaller isoform of the GABA-synthesizing enzyme, glutamic acid decarboxylase 65 (GAD65), is unusually susceptible to becoming a target of autoimmunity affecting its major sites of expression, GABA-ergic neurons and pancreatic beta-cells. In contrast, a highly homologous isoform, GAD67, is not an autoantigen. We used homolog-scanning mutagenesis to identify GAD65-specific amino acid residues which form autoreactive B-cell epitopes in this molecule. Detailed mapping of 13 conformational epitopes, recognized by human monoclonal antibodies derived from patients, together with two and three-dimensional structure prediction led to a model of the GAD65 dimer. GAD65 has structural similarities to ornithine decarboxylase in the pyridoxal-5'-phosphate-binding middle domain (residues 201-460) and to dialkylglycine decarboxylase in the C-terminal domain (residues 461-585). Six distinct conformational and one linear epitopes cluster on the hydrophilic face of three amphipathic alpha-helices in exons 14-16 in the C-terminal domain. Two of those epitopes also require amino acids in exon 4 in the N-terminal domain. Two distinct epitopes reside entirely in the N-terminal domain. In the middle domain, four distinct conformational epitopes cluster on a charged patch formed by amino acids from three alpha-helices away from the active site, and a fifth epitope resides at the back of the pyridoxal 5'-phosphate binding site and involves amino acid residues in exons 6 and 11-12. The epitopes localize to multiple hydrophilic patches, several of which also harbor DR*0401-restricted T-cell epitopes, and cover most of the surface of the protein. The results reveal a remarkable spectrum of human autoreactivity to GAD65, targeting almost the entire surface, and suggest that native folded GAD65 is the immunogen for autoreactive B-cells.  相似文献   

11.
We have reported previously that nonobese diabetic (NOD) fetal pancreas organ cultures lose the ability to produce insulin when maintained in contact with NOD fetal thymus organ cultures (FTOC). Initial studies indicated that exposure to glutamic acid decarboxylase (GAD65) peptides in utero resulted in delay or transient protection from insulin-dependent diabetes mellitus (IDDM) in NOD mice. We also found that exposure of young adult NOD mice to the same peptides could result in acceleration of the disease. To more closely examine the effects of early and late exposure to diabetogenic Ags on T cells, we applied peptides derived from GAD65 (GAD AA 246-266, 509-528, and 524-543), to our "in vitro IDDM" (ivIDDM) model. T cells derived from NOD FTOC primed during the latter stages of organ culture, when mature T cell phenotypes are present, had the ability to proliferate to GAD peptides. ivIDDM was exacerbated under these conditions, suggesting that GAD responsiveness correlates with the ivIDDM phenotype, and parallels the acceleration of IDDM we had seen in young adult NOD mice. When GAD peptides were present during the initiation of FTOC, GAD proliferative responses were inhibited, and ivIDDM was reduced. This result suggests that tolerance to GAD peptides may reduce the production of diabetogenic T cells or their capacity to respond, as suggested by the in utero therapies studied in NOD mice.  相似文献   

12.
Crayfish glutamic acid decarboxylase (GAD) is inhibited by some aliphatic carboxylic acid analogs of glutamate and gamma-amino-n-butyric acid (GABA). Variations in the length of the carbon skeleton, substitution of a keto for a methylene group, replacement of the carboxyl group or attachment of a bulky basic moiety to the amino terminus of GABA all lead to a drastic reduction in its inhibitory activity. Substitution of a methyl group for the amino group of GABA is a permissible alteration which does not reduce the inhibitory potency. Some structural analogs of glutamate are inhibitory also, particularly if they possess a comparable carbon skeleton and a keto group in the alpha position or a sulfhydryl group. Most of the sulfhydryl analogs are significantly more potent as inhibitors than the corresponding compounds in which the SH group is replaced by an H atom.  相似文献   

13.
Particular HLA class II allelic sequences are associated with susceptibility to type I diabetes. To understand the mechanism, knowledge of the molecular nature of the specific TCR/peptide/class II interactions involved in the disease process is required. To this end, we have introduced the diabetes-associated human class II HLA-DQ8 allele (DQA1*0301/DQB1*0302) as a transgene into mice and analyzed T cell responses restricted by this molecule to an important Ag in human diabetes, human glutamic acid decarboxylase 65. Hybridomas were used to determine the particular peptides from this Ag presented by HLA-DQ8 to T cells and to map the core minimal epitopes required for T cell stimulation. Analysis of these core epitopes reveals a motif and relevant features for peptides that are immunogenic to T cells when presented by HLA-DQ8. The major immunogenic epitopes of glutamic acid decarboxylase 65 do not contain a negatively charged residue that binds in the P9 pocket of the HLA-DQ8 molecule. PBMC from HLA-DQ8+ diabetic and nondiabetic individuals respond to these peptides, confirming that the mouse model is a useful tool to define epitopes of autoantigens that are processed by human APC and recognized by human T cells.  相似文献   

14.
The smaller isoform of the GABA synthesizing enzyme glutamic acid decarboxylase, GAD65, is synthesized as a soluble protein that undergoes post-translational modification(s) in the NH2-terminal region to become anchored to the membrane of small synaptic-like microvesicles in pancreatic beta cells, and synaptic vesicles in GABA-ergic neurons. A soluble hydrophilic form, a soluble hydrophobic form, and a hydrophobic firmly membrane-anchored form have been detected in beta cells. A reversible and hydroxylamine sensitive palmitoylation has been shown to distinguish the firmly membrane-anchored form from the soluble yet hydrophobic form, suggesting that palmitoylation of cysteines in the NH2-terminal region is involved in membrane anchoring. In this study we use site-directed mutagenesis to identify the first two cysteines in the NH2-terminal region, Cys 30 and Cys 45, as the sites of palmitoylation of the GAD65 molecule. Mutation of Cys 30 and Cys 45 to Ala results in a loss of palmitoylation but does not significantly alter membrane association of GAD65 in COS-7 cells. Deletion of the first 23 amino acids at the NH2 terminus of the GAD65 30/45A mutant also does not affect the hydrophobicity and membrane anchoring of the GAD65 protein. However, deletion of an additional eight amino acids at the NH2 terminus results in a protein which is hydrophilic and cytosolic. The results suggest that amino acids 24-31 are required for hydrophobic modification and/or targeting of GAD65 to membrane compartments, whereas palmitoylation of Cys 30 and Cys 45 may rather serve to orient or fold the protein at synaptic vesicle membranes.  相似文献   

15.
The role of K396 in the enzymatic catalysis and the antigenicity of the 65 kDa isoform of glutamate decarboxylase (GAD65) was analyzed using the K396R GAD65 mutant. GAD65 is a major autoantigen in Type 1 diabetes and autoantibodies directed to GAD65 are widely used markers for this disease. We found that (1) recombinant human GAD65 is fully enzymatically active; (2) the K396R mutation abolished GAD65 activity; and (3) the K396R mutant retained full antigenicity to GAD65 autoantibodies in serum from Type 1 diabetes patients, but not to polyclonal antibodies raised to the catalytic domain.  相似文献   

16.
17.
We previously demonstrated that administration of plasmid DNAs (pDNAs) encoding IL-4 and a fragment of glutamic acid decarboxylase 65 (GAD65) fused to IgGFc induces GAD65-specific Th2 cells and prevents insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice. To assess the general applicability of pDNA vaccination to mediate Ag-specific immune deviation, we examined the immunotherapeutic efficacy of recombinants encoding murine insulin A and B chains fused to IgGFc. Insulin was chosen based on studies demonstrating that administration of insulin or insulin B chain by a variety of strategies prevents IDDM in NOD mice. Surprisingly, young NOD mice receiving i.m. injections of pDNA encoding insulin B chain-IgGFc with or without IL-4 exhibited an accelerated progression of insulitis and developed early diabetes. Exacerbation of IDDM correlated with an increased frequency of IFN-gamma-secreting CD4(+) and CD8(+) T cells in response to insulin B chain-specific peptides compared with untreated mice. In contrast, treatment with pDNAs encoding insulin A chain-IgGFc and IL-4 elicited a low frequency of IL-4-secreting Th cells and had no effect on the progression of IDDM. Vaccination with pDNAs encoding GAD65-IgGFc and IL-4, however, prevented IDDM. These results demonstrate that insulin- and GAD65-specific T cell reactivity induced by pDNA vaccination has distinct effects on the progression of IDDM.  相似文献   

18.
Self peptide-MHC ligands create and maintain the mature T cell repertoire by positive selection in the thymus and by homeostatic proliferation in the periphery. A low affinity/avidity interaction among T cells, self peptides, and MHC molecules has been suggested for these events, but it remains unknown whether or how this self-interaction is involved in tolerance and/or autoimmunity. Several lines of evidence implicate the glutamic acid decarboxylase 65 (GAD-65) peptide, p524-543, as a specific, possibly low affinity, stimulus for the spontaneously arising, diabetogenic T cell clone BDC2.5. Interestingly, BDC2.5 T cells, which normally are unresponsive to p524-543 stimulation, react to the peptide when provided with splenic APC obtained from mice immunized with the same peptide, p524-543, but not, for example, with hen egg white lysozyme. Immunization with p524-543 increases the susceptibility of the NOD mice to type 1 diabetes induced by the adoptive transfer of BDC2.5 T cells. In addition, very few CFSE-labeled BDC2.5 T cells divide in the recipient's pancreas after transfer into a transgenic mouse that overexpresses GAD-65 in B cells, whereas they divide vigorously in the pancreas of normal NOD recipients. A special relationship between the BDC2.5 clone and the GAD-65 molecule is further demonstrated by generation of a double-transgenic mouse line carrying both the BDC2.5 TCR and GAD-65 transgenes, in which a significant reduction of BDC2.5 cells in the pancreas has been observed, presumably due to tolerance induction. These data suggest that unique and/or altered processing of self Ags may play an essential role in the development and expansion of autoreactive T cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号