首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim:  To investigate the effect of native, heated and glycated bovine serum albumin (BSA) on the ulcerative colitis (UC) and non-UC colonic microbiota in vitro .
Methods and Results:  Continuous flow culture (CFC) models of the human colonic microbiota inoculated with faeces from UC and non-UC volunteers were maintained on BSA as growth substrate. Changes in bacterial populations and short-chain fatty acids were determined. UC and non-UC microbiota differed significantly in microbial populations, with elevated numbers of sulfate-reducing bacteria (SRB) and clostridia in the microbiota from UC patients. Compared with native BSA, glycated BSA modulated the gut microbiota of UC patients in vitro towards a more detrimental community structure with significant increases in putatively harmful bacteria (clostridia, bacteroides and SRB; P  < 0·009) and decreases in dominant and putatively beneficial bacterial groups (eubacteria and bifidobacteria; P  < 0·0004). The levels of beneficial short-chain fatty acids were significantly decreased by heated or glycated BSA, but were increased significantly by native BSA.
Conclusion:  The UC colonic microbiota maintained in CFC was significantly modified by glycated BSA.
Significance and Impact of the Study:  Results suggest that dietary glycated protein may impact upon the composition and activity of the colonic microbiota, an important environmental variable in UC.  相似文献   

2.
Grazing on filamentous algae by herbivorous zooplankton   总被引:8,自引:0,他引:8  
SUMMARY. 1. Feeding experiments were conducted to examine filtering rates and selectivity of a variety of zooplankton taxa (including cladocerans, copepods and a rotifer) for filamentous diatoms, green and blue-green algae.
2. Most herbivores were capable of consuming some filamentous algae at rates similar to or higher than those on unicellular algae. Only feeding of Diaphanosoma brachyurum Liéven and Moina micrura Kurz seemed to be primarily limited by the filamentous morphology.
3. Filtering rates and selectivities of most herbivores were much higher for the diatom Melosira granulata angustissima Müller than for similarly sized blue-green algal filaments, indicating that chemical factors strongly influence consumption of filamentous algae.
4. The toxic blue-green algal filament Anabaena flos-aquae De Brébisson NRC 44–1 had a much strong inhibitory effect on zooplankton feeding than other filaments. The only herbivores that were not inhibited by this strain have been shown to be resistant to blue-green algal toxins, or strongly avoided consuming the blue-green alga. These results indicate that the inhibitory effect of filamentous algae is due more to toxic or noxious chemicals than to the filamentous morphology.
5. Selectivities of zooplankton for filamentous algae were largely independent of herbivore body size. The small-bodied cladoceran Bosmina longirostris Müller had the highest selectivities for filamentous algae.  相似文献   

3.
Aims:  Using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME), we investigated the chemopreventive potential of prebiotic chicory inulin towards the in vitro bioactivation of 2-amino-1-methyl-6-phenylimidazo[4,5- b ]pyridine (PhIP) by human intestinal microbiota.
Methods and Results:  HPLC data revealed that inulin significantly decreased the formation of the genotoxic PhIP-M1 metabolite, with the highest inhibitory activity in the colon ascendens (87% decrease). Interestingly, this chemopreventive effect correlated with alterations of bacterial community composition and metabolism in the different colon compartments. Conventional culture-based techniques and PCR-DGGE analysis on the SHIME colon suspension revealed significant bifidogenic effects during inulin treatment, whereas the overall microbial community kept relatively unchanged. Additionally, the production of short-chain fatty acids increased with 12%, 3% and 7%, while ammonia concentrations decreased with 3%, 4% and 3% in the ascending, transverse and descending colon compartments, respectively.
Conclusions:  These results indicate that the prebiotic effects from inulin may also purport protective effects towards microbial PhIP bioactivation.
Significance and Impact of the Study:  As the colonic microbiota may contribute significantly to the carcinogenic potential of PhIP, the search for dietary constituents that decrease the formation of this harmful metabolite, may help in preventing its risk towards human health.  相似文献   

4.
BackgroundTotal glucosides of peony (TGP), extracted from the root and rhizome of Paeonia lactiflora Pall, has well-confirmed immunomodulatory efficacy in the clinic. However, the mechanism and active ingredients remain largely unclear.Hypothesis/PurposeOur previous study revealed a low systemic exposure but predominant gut distribution of TGP components. The aim of this study was to investigate involvement of the gut microbiota in the immunoregulatory effects and identify the active component.MethodsMice received 3% DSS to establish a model of colitis. The treatment group received TGP or single paeoniflorin (PF) or albiflorin (AF). Body weight, colon length, inflammatory and histological changes were assessed. Gut microbiota structure was profiled by 16s rRNA sequencing. Antibiotic treatment and fecal transplantation were used to explore the involvement of gut microbiota. Metabolomic assay of host and microbial metabolites in colon was performed.ResultsTGP improved colonic injury and gut microbial dysbiosis in colitis mice, and PF was responsible for the protective effects. Fecal microbiota transfer from TGP-treated mice conferred resilience to colitis, while antibiotic treatment abrogated the protective effects. Both TGP and PF decreased colonic indole-3-lactate (ILA), a microbial tryptophan metabolite. ILA was further identified as an inhibitor of epithelial autophagy and ILA supplementation compromised the benefits of TGP.ConclusionOur findings suggest that TGP acts in part through a gut microbiota-ILA-epithelial autophagy axis to alleviate colitis.  相似文献   

5.
Over the past decade, emerging evidence has linked alterations in the gut microbial composition to a wide range of diseases including obesity, type 2 diabetes, and cardiovascular disease. Toll-like receptors (TLRs) are the major mediators for the interactions between gut microbiota and host innate immune system, which is involved in the localization and structuring of host gut microbiota. A previous study found that TLR5 deficient mice (TLR5KO1) had altered gut microbial composition which led to the development of metabolic syndrome including hyperlipidemia, hypertension, insulin resistance and increased adiposity. In the current study, a second TLR5-deficient mouse model was studied (TLR5KO2). TLR5 deficient mice did not manifest metabolic abnormalities related to the metabolic syndrome compared with littermate controls maintained on normal chow or after feeding a high fat diet. Analysis of the gut microbial composition of littermate TLR5KO2 and wild type mice revealed no significant difference in the overall microbiota structure between genotypes. However, the TLR5KO2 microbiota was distinctly different from that previously reported for TLR5KO1 mice with metabolic syndrome. We conclude that an altered composition of the microbiota in a given environment can result in metabolic syndrome, but it is not a consequence of TLR5 deficiency per se.  相似文献   

6.
目的:探究高脂饮食中添加短链菊粉对小鼠肠道菌群的影响。方法:选择8周龄雄性小鼠,5只喂食高脂饲料,5只喂食10%菊粉复合型高脂饲料,喂食8周后收集小鼠粪便,检测小鼠粪便中三种主要的短链脂肪酸。同时,提取小鼠粪便中的细菌基因组,对菌群基因组16S rRNA基因V4高变区进行测序,对数据进行PCoA分析、Alpha多样性分析、LEfSe分析和16S功能预测。结果:菊粉添加后,小鼠粪便中含有的细菌DNA量增多,短链脂肪酸增加。菊粉组和对照组PCoA图可以看到明显聚类。菊粉组物种多样性低于对照组。菊粉组小鼠粪便中S24_7菌科丰度上升;Lachnospiraceae(毛螺菌科),Ruminococcaceae(瘤胃菌科)和Deferribacteraceae(脱铁杆菌科)丰度下降。16S基因功能预测发现22个第二层级的KEGG通路发生变化。结论:高脂饮食情况下短链菊粉的添加会改变小鼠肠道菌群,继而影响肠道菌群的功能。  相似文献   

7.
Maintenance of a reduced body weight is accompanied by a decrease in energy expenditure beyond that accounted for by reduced body mass and composition, as well as by an increased drive to eat. These effects appear to be due--in part--to reductions in circulating leptin concentrations due to loss of body fat. Gut microbiota have been implicated in the regulation of body weight. The effects of weight loss on qualitative aspects of gut microbiota have been studied in humans and mice, but these studies have been confounded by concurrent changes in diet composition, which influence microbial community composition. We studied the impact of 20% weight loss on the microbiota of diet-induced obese (DIO: 60% calories fat) mice on a high-fat diet (HFD). Weight-reduced DIO (DIO-WR) mice had the same body weight and composition as control (CON) ad-libitum (AL) fed mice being fed a control diet (10% calories fat), allowing a direct comparison of diet and weight-perturbation effects. Microbial community composition was assessed by pyrosequencing 16S rRNA genes derived from the ceca of sacrificed animals. There was a strong effect of diet composition on the diversity and composition of the microbiota. The relative abundance of specific members of the microbiota was correlated with circulating leptin concentrations and gene expression levels of inflammation markers in subcutaneous white adipose tissue in all mice. Together, these results suggest that both host adiposity and diet composition impact microbiota composition, possibly through leptin-mediated regulation of mucus production and/or inflammatory processes that alter the gut habitat.  相似文献   

8.
Studies have suggested links between colonic fermentation of dietary fibers and improved metabolic health. The objectives of this study were to determine if non-digestible feruloylated oligo- and polysaccharides (FOPS), a maize-derived dietary fiber, could counteract the deleterious effects of high-fat (HF) feeding in mice and explore if metabolic benefits were linked to the gut microbiota. C57BL/6J mice (n = 8/group) were fed a low-fat (LF; 10 kcal% fat), HF (62 kcal% fat), or HF diet supplemented with FOPS (5%, w/w). Pronounced differences in FOPS responsiveness were observed: four mice experienced cecal enlargement and enhanced short chain fatty acid production, indicating increased cecal fermentation (F-FOPS). Only these mice displayed improvements in glucose metabolism compared with HF-fed mice. Blooms in the gut microbial genera Blautia and Akkermansia were observed in three of the F-FOPS mice; these shifts were associated with reductions in body and adipose tissue weights compared with the HF-fed control mice. No improvements in metabolic markers or weights were detected in the four mice whose gut microbiota did not respond to FOPS. These findings demonstrate that FOPS-induced improvements in weight gain and metabolic health in mice depended on the ability of an individual’s microbiota to ferment FOPS.  相似文献   

9.
Aims:  Prebiotics are a potential alternative to in-feed antimicrobials to improve performance of chickens. We investigated the effects of mannanoligosaccharide (MOS) and fructooligosaccharide (FOS) on growth, performance and the intestinal microbiota.
Methods and Results:  Cobb 500 birds were fed either: Control, starter diet without antimicrobials; ZnB, Control + 50 ppm zinc bacitracin; MOS, Control + 5 g kg−1 MOS; or FOS, Control + 5 g kg−1 FOS. An energy metabolism study was conducted and intestinal microbial communities assessed by T-RFLP and Lac PCR-DGGE. Diet did not influence performance. Ileal microbial communities were significantly different in ZnB-fed birds compared to all diets, and FOS-fed chickens compared to Control. MOS-fed chickens had a different caecal profile to ZnB and FOS-fed birds. Consensus Lac PCR-DGGE profiles indicated Lactobacillus communities clustered according to diet with Lactobacillus johnsonii characteristic of ZnB diet. Control and MOS-fed chickens displayed significantly different jejunal Lactobacillus profiles to each other whilst ileal profiles were different between MOS and FOS-fed birds.
Conclusion:  Prebiotics influenced the intestinal microbiota, but did not affect performance.
Significance and Impact of the Study:  In light of pressure for in-feed antimicrobial withdrawal, the impact of alternative compounds on the intestinal microbiota and bird performance is critical to the poultry industry.  相似文献   

10.
The increasing recognition that the gut microbiota plays a central role in behavior and cognition suggests that the manipulation of microbial taxa through diet may provide a means by which behavior may be altered in a reproducible and consistent manner in order to achieve a beneficial outcome for the host. Resistant starch continues to receive attention as a dietary intervention that can benefit the host through mechanisms that include altering the intestinal microbiota. Given the interest in dietary approaches to improve health, the aim of this study was to investigate whether the use of dietary resistant starch in mice to alter the gut microbiota also results in a change in behavior. Forty-eight 6 week-old male Swiss-Webster mice were randomly assigned to 3 treatment groups (n = 16 per group) and fed either a normal corn starch diet (NCS) or diets rich in resistant starches HA7 diet (HA7) or octenyl-succinate HA7 diet (OS-HA7) for 6 week and monitored for weight, behavior and fecal microbiota composition. Animals fed an HA7 diet displayed comparable weight gain over the feeding period to that recorded for NCS-fed animals while OS-HA7 displayed a lower weight gain as compared to either NCS or HA7 animals (ANOVA p = 0.0001; NCS:HA7 p = 0.244; HA7:OS-HA7 p<0.0001; NCS:OS-HA7 p<0.0001). Analysis of fecal microbiota using 16s rRNA gene taxonomic profiling revealed that each diet corresponded with a unique gut microbiota. The distribution of taxonomic classes was dynamic over the 6 week feeding period for each of the diets. At the end of the feeding periods, the distribution of taxa included statistically significant increases in members of the phylum Proteobacteria in OS-HA7 fed mice, while the Verrucomicrobia increased in HA7 fed mice over that of mice fed OS-HA7. At the class level, members of the class Bacilli decreased in the OS-HA7 fed group, and Actinobacteria, which includes the genus Bifidobacteria, was enriched in the HA7 fed group compared to the control diet. Behavioral analysis revealed that animals demonstrated profound anxiety-like behavior as observed by performance on the elevated-plus maze with time spent by the mice in the open arm (ANOVA p = 0.000; NCS:HA7 p = 0.004; NCS:OS-HA7 p = 1.000; HA7:OS-HA7 p = 0.0001) as well as entries in the open arm (ANOVA p = 0.039; NCS:HA7 p = 0.041; HA7:OS-HA7 p = 0.221; NCS:OS-HA7 p = 1.000). Open-field behavior, a measure of general locomotion and exploration, revealed statistically significant differences between groups in locomotion as a measure of transitions across quadrant boundaries. Additionally, the open-field assay revealed decreased exploration as well as decreased rearing in HA7 and OS-HA7 fed mice demonstrating a consistent pattern of increased anxiety-like behavior among these groups. Critically, behavior was not correlated with weight. These results indicate that diets based on resistant starch can be utilized to produce quantifiable changes in the gut microbiota and should be useful to “dial-in” a specific microbiome that is unique to a particular starch composition. However, undesirable effects can also be associated with resistant starch, including lack of weight gain and increased anxiety-like behaviors. These observations warrant careful consideration when developing diets rich in resistant starch in humans and animal models.  相似文献   

11.
Green kiwifruit modulates the colonic microbiota in growing pigs   总被引:1,自引:0,他引:1  
Aims: To investigate whether green kiwifruit modulates the composition of colonic microbiota in growing pigs. Methods and Results: Thirty‐two pigs were fed the control diet or one of the three test diets containing either cellulose, freeze‐dried kiwifruit or kiwifruit fibre as the sole fibre source for 14‐day study. A Ward’s dendrogram of similarity cluster analysis on PCR‐DGGE gels revealed that inclusion of freeze‐dried kiwifruit and kiwifruit fibre into diets altered the bacterial community, indicating the presence of two distinct clusters. Quantification of different bacterial groups by qPCR demonstrated that pigs fed the freeze‐dried kiwifruit or kiwifruit fibre diets had a significantly higher number (P < 0·05) of total bacteria and Bacteroides group and a lower number of Enterobacteria and Escherichia coli group, as well as a greater ratio of Lactobacillus to Enterobacteria when compared to pigs fed the control or cellulose diets. Conclusions: Green kiwifruit, mainly because of fibre, modulated the colonic microbiota, leading to an improved intestinal environment in growing pigs. Significance and Impact of the Study: This is the first report regarding the effect of green kiwifruit on gut microbiota using the in vivo pig model. These results provide the first evidence of interaction between green kiwifruit and colonic microbiota.  相似文献   

12.
It has long been recognized that the mammalian gut microbiota has a role in the development and activation of the host immune system. Much less is known on how host immunity regulates the gut microbiota. Here we investigated the role of adaptive immunity on the mouse distal gut microbial composition by sequencing 16 S rRNA genes from microbiota of immunodeficient Rag1−/− mice, versus wild-type mice, under the same housing environment. To detect possible interactions among immunological status, age and variability from anatomical sites, we analyzed samples from the cecum, colon, colonic mucus and feces before and after weaning. High-throughput sequencing showed that Firmicutes, Bacteroidetes and Verrucomicrobia dominated mouse gut bacterial communities. Rag1 mice had a distinct microbiota that was phylogenetically different from wild-type mice. In particular, the bacterium Akkermansia muciniphila was highly enriched in Rag1−/− mice compared with the wild type. This enrichment was suppressed when Rag1−/− mice received bone marrows from wild-type mice. The microbial community diversity increased with age, albeit the magnitude depended on Rag1 status. In addition, Rag1−/− mice had a higher gain in microbiota richness and evenness with increase in age compared with wild-type mice, possibly due to the lack of pressure from the adaptive immune system. Our results suggest that adaptive immunity has a pervasive role in regulating gut microbiota''s composition and diversity.  相似文献   

13.
Links between the gut microbiota and host metabolism have provided new perspectives on obesity. We previously showed that the link between the microbiota and fat deposition is age- and time-dependent subject to microbial adaptation to diet over time. We also demonstrated reduced weight gain in diet-induced obese (DIO) mice through manipulation of the gut microbiota with vancomycin or with the bacteriocin-producing probiotic Lactobacillus salivarius UCC118 (Bac+), with metabolic improvement achieved in DIO mice in receipt of vancomycin. However, two phases of weight gain were observed with effects most marked early in the intervention phase. Here, we compare the gut microbial populations at the early relative to the late stages of intervention using a high throughput sequencing-based analysis to understand the temporal relationship between the gut microbiota and obesity. This reveals several differences in microbiota composition over the intervening period. Vancomycin dramatically altered the gut microbiota composition, relative to controls, at the early stages of intervention after which time some recovery was evident. It was also revealed that Bac+ treatment initially resulted in the presence of significantly higher proportions of Peptococcaceae and significantly lower proportions of Rikenellaceae and Porphyromonadaceae relative to the gut microbiota of L. salivarius UCC118 bacteriocin negative (Bac-) administered controls. These differences were no longer evident at the later time. The results highlight the resilience of the gut microbiota and suggest that interventions may need to be monitored and continually adjusted to ensure sustained modification of the gut microbiota.  相似文献   

14.
The gut microbiota–host co-metabolites are good indicators for representing the cross-talk between host and gut microbiota in a bi-direct manner. There is increasing evidence that levels of aromatic amino acids (AAAs) are associated with the alteration of intestinal microbial community though the effects of long-term microbial disturbance remain unclear. Here we monitored the gut microbiota composition and host–microbiota co-metabolites AAA profiles of mice after gentamicin and ceftriaxone treatments for nearly 4 months since their weaning to reveal the relationship between host and microbiome in long- term microbial disturbances. The study was performed employing targeted LC-MS measurement of AAA-related metabolites and 16S RNA sequence of mice cecal contents. The results showed obvious decreased gut microbial diversity and decreased Firmicutes/Bacteroidetes ratio in the cecal contents after long-term antibiotics treatment. The accumulated AAA (tyrosine, phenylalanine and tryptophan) and re-distribution of their downstreaming metabolites that produced under the existence of intestinal flora were found in mice treated with antibiotics for 4 months. Our results suggested that the long-term antibiotic treatment significantly changed the composition of the gut microbiota and destroyed the homeostasis in the intestinal metabolism. And the urinary AAA could be an indicator for exploring interactions between host and gut microbiota.  相似文献   

15.
The most important trigger for immune system development is the exposure to microbial components immediately after birth. Moreover, targeted manipulation of the microbiota can be used to change host susceptibility to immune-mediated diseases. Our aim was to analyze how differences in early gut colonization patterns change the composition of the resident microbiota and future immune system reactivity. Germ-free (GF) mice were either inoculated by single oral gavage of caecal content or let colonized by co-housing with specific pathogen-free (SPF) mice at different time points in the postnatal period. The microbiota composition was analyzed by denaturing gradient gel electrophoresis for 16S rRNA gene followed by principal component analysis. Furthermore, immune functions and cytokine concentrations were analyzed using flow cytometry, ELISA or multiplex bead assay. We found that a single oral inoculation of GF mice at three weeks of age permanently changed the gut microbiota composition, which was not possible to achieve at one week of age. Interestingly, the ex-GF mice inoculated at three weeks of age were also the only mice with an increased pro-inflammatory immune response. In contrast, the composition of the gut microbiota of ex-GF mice that were co-housed with SPF mice at different time points was similar to the gut microbiota in the barrier maintained SPF mice. The existence of a short GF postnatal period permanently changed levels of systemic regulatory T cells, NK and NKT cells, and cytokine production. In conclusion, a time window exists that enables the artificial colonization of GF mice by a single oral dose of caecal content, which may modify the future immune phenotype of the host. Moreover, delayed microbial colonization of the gut causes permanent changes in the immune system.  相似文献   

16.
SUMMARY 1. Large in situ enclosures were used to study the effects of experimentally induced cyanobacterial blooms on zooplankton communities. A combination of N and P was added to shallow (2 m) and deep enclosures (5 m) with the goal of reducing the TN : TP ratio to a low level (∼5 : 1) to promote cyanobacterial growth. After nutrient additions, high biomass of cyanobacteria developed rapidly in shallow enclosures reaching levels only observed during bloom events in eutrophic lakes.
2. In the shallow enclosures, particulate phosphorus (PP) was on average 35% higher in comparison with deep enclosures, suggesting that depth plays a key role in P uptake by algae. Phytoplankton communities in both deep and shallow enclosures were dominated by three cyanobacteria species – Aphanizomenon flos-aquae , Anabaena flos-aquae and Microcystis aeruginosa – which accounted for up to 70% of total phytoplankton biomass. However, the absolute biomass of the three species was much higher in shallow enclosures, especially Aphanizomenon flos-aquae . The three cyanobacteria species responded in contrasting ways to nutrient manipulation because of their different physiology.
3. Standardised concentrations of the hepatotoxic microcystin-LR increased as a result of nutrient manipulations by a factor of four in the treated enclosures. Increased biomass of inedible and toxin producing cyanobacteria was associated with a decline in Daphnia pulicaria biomass caused by a reduction in the number of individuals with a body length of >1 mm. Zooplankton biomass did not decline at moderate cyanobacteria biomass, but when cyanobacteria reached high biomass large cladocerans were reduced.
4. Our results demonstrate that zooplankton communities can be negatively affected by cyanobacterial blooms and therefore the potential to use herbivory to reduce algal blooms in such eutrophic lakes appears limited.  相似文献   

17.
Cultivable bacterial diversity from the human colon   总被引:1,自引:0,他引:1  
Knowledge of the composition of the colonic microbiota is important for our understanding of how the balance of these microbes is influenced by diet and the environment, and which bacterial groups are important in maintaining gut health or promoting disease. Molecular methodologies have advanced our understanding of the composition and diversity of the colonic microbiota. Importantly, however, it is the continued isolation of bacterial representatives of key groups that offers the best opportunity to conduct detailed metabolic and functional studies. This also permits bacterial genome sequencing which will accelerate the linkage to functionality. Obtaining new human colonic bacterial isolates can be challenging, because most of these are strict anaerobes and many have rather exact nutritional and physical requirements. Despite this many new species are being isolated and described that occupy distinct niches in the colonic microbial community. This review focuses on these under-studied yet important gut anaerobes.  相似文献   

18.
Aim:  To compare caecal microbiota from mdr1a –/– and wild type (FVB) mice to identify differences in the bacterial community that could influence the intestinal inflammation.
Methods and Results:  Caecal microbiota of mdr1a –/– and FVB mice were evaluated at 12 and 25 weeks of age using denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR. DGGE fingerprints of FVB and mdr1a –/– mice (with no intestinal inflammation) at 12 weeks revealed differences in the presence of DNA fragments identified as Bacteroides fragilis , B. thetaiotaomicron , B. vulgatus and an uncultured alphaproteobacterium. Escherichia coli and Acinetobacter sp. were only identified in DGGE profiles of mdr1a –/– mice at 25 weeks (with severe intestinal inflammation), which also had a lower number of total bacteria in the caecum compared with FVB mice at same age.
Conclusions:  Differences found in the caecal microbiota of FVB and mdr1a –/– mice (12 weeks) suggest that the lack of Abcb1 transporters in intestinal cells due to the disruption of the mdr1a gene might lead to changes in the caecal microbiota. The altered microbiota along with the genetic defect could contribute to the development of intestinal inflammation in mdr1a –/– mice.
Significance and Impact of the Study:  Differences in caecal microbiota of mdr1a –/– and FVB mice (12 weeks) suggest genotype specific colonization. The results provide evidence that Abcb1 transporters may regulate host interactions with commensal bacteria. Future work is needed to identify the mechanisms involved in this possible cross-talk between the host intestinal cells and microbiota.  相似文献   

19.
20.
Resistance to high-fat diet-induced obesity (DIR) has been observed in mice fed a high-fat diet and may provide a potential approach for anti-obesity drug discovery. However, the metabolic status, gut microbiota composition, and its associations with DIR are still unclear. Here, ultraperformance liquid chromatography-tandem mass spectrometry-based urinary metabolomic and 16S rRNA gene sequencing-based fecal microbiome analyses were conducted to investigate the relationship between metabolic profile, gut microbiota composition, and body weight of C57BL/6J mice on chow or a high-fat diet for 8 weeks. PICRUSt analysis of 16S rRNA gene sequences predicted the functional metagenomes of gut bacteria. The results demonstrated that feeding a high-fat diet increased body weight and fasting blood glucose of high-fat diet-induced obesity (DIO) mice and altered the host-microbial co-metabolism and gut microbiota composition. In DIR mice, high-fat diet did not increase body weight while fasting blood glucose was increased significantly compared to chow fed mice. In DIR mice, the urinary metabolic pattern was shifted to a distinct direction compared to DIO mice, which was mainly contributed by xanthine. Moreover, high-fat diet caused gut microbiota dysbiosis in both DIO and DIR mice, but in DIR mice, the abundance of Bifidobacteriaceae, Roseburia, and Escherichia was not affected compared to mice fed a chow diet, which played an important role in the pathway coverage of FormylTHF biosynthesis I. Meanwhile, xanthine and pathway coverage of FormylTHF biosynthesis I showed significant positive correlations with mouse body weight. These findings suggest that gut microbiota-mediated xanthine metabolism correlates with resistance to high-fat DIO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号