首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
So far, there are no known peptidic effective receptor antagonists of both peripheral and central effects of cholecystokinin (CCK). Here, we describe a synthetic peptide derivative of CCK, t-butyloxycarbonyl-Tyr(SO3-)-Met-Gly-D-Trp-Nle-Asp 2-phenylethyl ester 1 (where Nle is norleucine), which is a potent CCK receptor antagonist. In rat and guinea pig dispersed pancreatic acini, this peptide derivative did not alter amylase secretion, but was able to antagonize the stimulation caused by cholecystokinin-related agonists. It caused a parallel rightward shift in the dose-response curve for the stimulation of amylase secretion with half-maximal inhibition of CCK-8-stimulated amylase release at a concentration of about 0.1 microM. Compound 1 was able to inhibit the binding of labeled CCK-9 (the C-terminal nonapeptide of CCK) to rat and guinea pig pancreatic acini (IC50 = 5 X 10(-8) M) as well as to guinea pig cerebral cortical membranes (IC50 = 5 X 10(-7) M). These results indicate that Compound 1 is a potent competitive CCK receptor antagonist.  相似文献   

2.
R B Murphy  G P Smith  J Gibbs 《Peptides》1987,8(1):127-134
The actions of cholecystokinin (CCK) in the production of a satiety-like state have been suggested to be mediated via receptors for CCK which are located in the pylorus. We investigated the actions of CCK and other pharmacological agents upon the isolated rat pylorus in vitro. We used the change in isometric tension of the tissue preparation (contraction amplitude) as the measure of the effects of the pharmacological agents. Cholecystokinin COOH-terminal octapeptide (CCK-8) was observed to elicit contraction in a dose-dependent manner, with the half-maximal dose (ED50) in the vicinity of 1 nM. Rapid desensitization to CCK was observed. The contraction amplitude was atropine-independent, and was not significantly antagonized by a wide variety of other pharmacological agents. The Na+-channel blocker tetrodotoxin was without effect upon contractile amplitude, as was the K+-channel blocker 4-aminopyridine, except at very high concentrations. Neurotensin, bombesin, and the substance P and bombesin antagonist spantide all elicited contraction in the isolated tissue; neurotensin had a similar potency to CCK-8 and bombesin was 10-15-fold less potent than CCK-8. Unsulfated CCK-8 was at least 170-fold less potent than sulfated CCK-8 and tetragastrin was at least 500-fold less potent than CCK-8. These results suggest that pyloric CCK receptors, which appear to have a pharmacological profile typical of peripheral CCK receptors, may have a physiological role in the peptidergic control of gastric emptying in the rat.  相似文献   

3.
Cholecystokinin COOH-terminal octapeptide (CCK-8) produces a satiating effect in the rat and other animals upon peripheral administration. Although it has been demonstrated that the receptors which mediate this action are located in the periphery and are of the CCK-A subtype, their anatomical location has not been firmly established. A dense population of CCK receptors in the pyloric sphincter has been suggested as a candidate. We here quantify the potency of several CCK antagonists to inhibit the contractile effect of CCK-8 on the rat pyloric sphincter in vitro. The potent and selective antagonist MK-329 has a Schild pK of 8.85; the less potent but selective antagonist lorglumide (CR-1409) a pK of 6.37; the related antagonist phenoxyacetylproglumide (phi oAc proglumide) a pK of 5.1; and the weak parent compound proglumide a pK of about 3.3. These data can be compared with the potencies of these compounds to inhibit the actions of CCK-8 to produce satiety in the rat; this comparison supports the contention that CCK receptors of the rat pyloric sphincter could in part mediate the satiety effect produced by exogenous CCK-8.  相似文献   

4.
The receptor binding of CCK analogues was determined in terms of the inhibition of [125I]CCK binding in isolated rat pancreatic acini. The inhibition curve produced by CCK-8 showed the same feature as that produced by synthetic human CCK-33. The relative potency values of CCK analogues to half-maximally inhibit specific CCK binding were calculated; CCK-8 was equal to human CCK-33, 3-fold stronger than natural porcine CCK-33 and 39, and 700-fold stronger than the unsulphated form of synthetic human CCK-33. Our data suggest that CCK-33, one of the longer molecular forms of CCK, is as important as CCK-8 in the mechanism of physiological actions of CCK.  相似文献   

5.
We examined receptor occupation, calcium mobilization and amylase release for cholecystokinin octapeptide (CCK-8) within a 3-min incubation period at 37 degrees C using dispersed acini from rat pancreas. Analysis of competitive binding inhibition data obtained after a 3-min incubation revealed the presence of only a single class of CCK receptors, while two classes of CCK receptor, i.e., high-affinity and low-affinity CCK receptors, were detected when binding reached a steady-state after a 60-min incubation. The IC50 of CCK receptors calculated from the 3-min binding data was 19.0 +/- 0.5 nM (mean +/- S.D.), close to the Kd of the low-affinity CCK receptors determined by equilibrium binding studies. Exposure of fura-2-loaded acini to 10-1000 pM CCK-8 caused an immediate and dose-dependent increase in [Ca2+]i followed by a gradual decrease in [Ca2+]i. The CCK-stimulated amylase release after 3 min of incubation was biphasic; amylase release increased over the dose range of 3-300 pM CCK-8, peaked at 300 pM CCK-8 and decreased with supramaximal concentrations of CCK-8. Our data suggest that occupation of the low-affinity, but not the high-affinity, CCK receptors is more directly associated with calcium mobilization and subsequent stimulation of amylase release in rat pancreatic acini.  相似文献   

6.
We investigated the importance of sulfation of gastrin or cholecystokinin (CCK) on influencing their affinity for gastrin or CCK receptors by comparing the abilities of sulfated gastrin-17 (gastrin-17-II), desulfated gastrin-17 (gastrin-17-I), CCK-8 and desulfated CCK-8 [des(SO3)CCK-8] to interact with CCK or gastrin receptors on guinea pig pancreatic acini. For inhibiting binding of 125I-gastrin to gastrin receptors, gastrin-17-II (Kd 0.08 nM) greater than CCK-8 (Kd 0.4 nM) greater than gastrin-17-I (Kd 1.5 nM) greater than des(SO3)CCK-8 (Kd 28 nM). For inhibiting binding of 125I-Bolton Hunter-labeled CCK-8 to CCK receptors the relative potencies were: CCK-8 much greater than des(SO3)CCK-8 = gastrin-17-II greater than gastrin-17-I. Each peptide interacted with both high and low affinity CCK binding sites. The relative abilities of each peptide to interact with high affinity CCK receptors showed a close correlation with their abilities to cause half-maximal stimulation of enzyme secretion. These results demonstrate that, in contrast to older studies, sulfation of both CCK and gastrin increase their affinities for both gastrin and CCK receptors. Moreover, the gastrin receptor is relatively insensitive to the position of the sulfate moiety, whereas the CCK receptor is extremely sensitive to both the presence and exact position of the sulfate moiety.  相似文献   

7.
The binding of biologically active 125I-Bolton-Hunter-CCK-33 to bullfrog brain and pancreatic membrane particles was characterized. Both tissues exhibited time-dependent, saturable, reversible, and high affinity binding without evidence for cooperative interaction. Both bullfrog CCK receptors resembled their mammalian counterparts in having acidic pH optima for tracer binding and a Kd of about 0.5 nM. However, the receptors differed from their mammalian counterparts in that (1) the bullfrog brain membranes bound more tracer per mg protein than did the pancreatic membranes, (2) both bullfrog CCK receptors were relatively insensitive to dibutyryl cGMP, and (3) both bullfrog brain and pancreatic CCK receptors exhibited the same general specificity toward a variety of CCK and gastrin peptides. For both tissues, the relative order of receptor binding potency was CCK-8 greater than caerulein = CCK-33 greater than gastrin-17-II greater than CCK-8-ns = gastrin-17-I greater than caerulein-ns greater than gastrin-4 with the sulfated CCK peptides being 1000-fold more potent than their nonsulfated analogs. Sulfated gastrin was also relatively potent, being only 10-fold weaker than CCK-8. Gastrin-4 was 20 000-fold weaker than CCK-8 in interacting with the brain CCK receptor. The latter finding is in sharp contrast to the mammalian brain CCK receptor. We conclude that the bullfrog brain and pancreas contain similar CCK receptors of probable physiological significance and may represent an ancestral condition from which the two distinct CCK receptors present in mammalian brain and pancreas have evolved.  相似文献   

8.
First incubating dispersed acini from rat pancreas with monensin, a cation ionophore that can inhibit recycling of receptors, inhibited binding of 125I-cholecystokinin 8 (125I-CCK-8) measured during a second incubation by as much as 50%. A maximal effect of monensin required 90 min of first incubation. Detectable inhibition of binding of 125I-CCK-8 occurred with 300 nM monensin, and inhibition increased progressively with concentrations of monensin up to 25 microM. Pancreatic acini possess two classes of receptors that bind 125I-CCK-8. One class has a high affinity (Kd = 461 pM) and a low capacity for CCK (512 fmol/mg DNA); the other class has a low affinity (Kd = 47 nM) and a high capacity for CCK (18 pmol/mg DNA). First incubating acini with monensin caused an 84% decrease in the number of high affinity CCK receptors with no change in the number of low affinity CCK receptors or the values of Kd for either class of receptors indicating that there is recycling of high affinity CCK receptors but not low affinity CCK receptors. First incubating acini with monensin did not alter CCK-stimulated amylase secretion indicating that in contrast to previous conclusions, occupation of low affinity CCK receptors mediates CCK-stimulated enzyme secretion. Moreover, the biphasic dose-response curve for CCK-stimulated enzyme secretion from monensin-treated acini suggests that pancreatic acini also possess a third, previously unrecognized class of very low affinity CCK receptors.  相似文献   

9.
A series of CCK analogues in which positions 28 and 31 have been replaced by N-methylnorleucine residues have been synthesized. It has been found that most of these N-methylnorleucine containing analogues of CCK are highly potent and some are extraordinarily selective for the central vs. peripheral receptor in two animal models (guinea pig and rat). [N-MeNle28,31]CCK26-33 nonsulfated exhibited both high potency (IC50 = 0.13 nM) and selectivity for central vs. peripheral receptors. The pancrease to brain cortex binding affinity ratio for this analogue is 5100 in the rat model. NMR studies reveal that there is cis/trans isomerism about the N-methylnorleucine residue that may be related to high selectivity.  相似文献   

10.
Prior calculations based on ECEPP (Empirical Conformational Energies for Peptides Program) of the low energy minima for cholecystokinin (CCK) and Met-enkephalin have demonstrated that significant structural features of these two peptides are identical. This result suggested the possibility that Met-enkephalin, as well as other enkephalin analogues of similar structure, could associate with receptors for CCK. To test this theoretical result, we examined the ability of Met-enkephalin and its analogues to bind to peripheral CCK receptors in the rat gastrointestinal tract; in particular, we measured the ability of the opiate peptide to inhibit the effects of CCK in a physiological assay system which we have previously characterized: CCK-induced contraction of the isolated rat pyloric sphincter. We find that Met-enkephalin is an antagonist of the CCK-8-induced contraction, with a IC50 of 110 nM. Furthermore, antibodies against CCK were found to cross-react with Met-enkephalin and its analogues in a manner which suggests a distinct structure-activity relationship. These experimental results strongly support the theoretical results of conformational analysis showing structural similarity between enkephalin and CCK. They further suggest that enkephalins could modulate the response of CCK systems under physiological conditions.  相似文献   

11.
Characterization of cholecystokinin receptors in toad retina   总被引:2,自引:0,他引:2  
E A Bone  S A Rosenzweig 《Peptides》1988,9(2):373-381
The binding characteristics, structure, and pharmacologic properties of a cholecystokinin binding protein in toad retinal membranes have been studied. In competition binding studies using 125I-CCK-8, toad retinal membranes exhibited a high affinity binding site having a Ki50 of 1.5 nM using CCK-8 as competitive ligand. The relative potencies of CCK-related peptides in inhibiting radioligand binding were caerulein greater than gastrin II approximately equal to CCK-8 approximately equal to CCK-33 greater than CCK-8-DS approximately equal to gastrin I. L-364,718, a potent inhibitor of peripheral CCK receptors, was ineffective at competition binding at concentrations up to 1 microM; dibutyryl cyclic GMP was modestly effective at competing (KD approximately 10 mM). Covalent binding of 125I-CCK-33 to toad retinal membranes using chemical cross-linkers or UV irradiation resulted in the labeling of a major Mr 62,000 protein and the intermittent labeling of minor components of Mr 105,000 and Mr 40,000 as determined by SDS-PAGE and autoradiography. The binding of 125I-CCK-33 to retinal membranes and the concomitant labeling of the Mr 62,000 component was specifically inhibited by CCK-8 (KD approximately 1.5 nM). Reduction of membranes with DTT abolished specific binding of 125I-CCK. SDS-PAGE analysis of affinity cross-linked membranes under non-reducing conditions revealed that the Mr 62,000 protein migrated with an apparently lower molecular weight. These results suggest that the Mr 62,000 CCK binding protein in the toad retina contains an intramolecular disulfide bond(s). The Mr 62,000 protein was retained on a wheat germ agglutinin-agarose column and eluted with N-acetyl D-glucosamine, suggesting the glycoprotein nature of this protein. Digestion of the Mr 62,000 protein with neuraminidase together with O-glycanase resulted in a discrete product of Mr approximately 60,000. These results indicate that the Mr 62,000 protein is a glycoprotein with O-linked oligosaccharide chains. Taken together, these data indicate that the CCK receptor in toad retina has a distinct structure compared to that described in rat pancreas or brain. It will be important to establish whether this difference is reflected in differences in signal transduction mechanisms.  相似文献   

12.
The binding of cholecystokinin (CCK) to its receptors on isolated rat pancreatic acini was investigated employing high specific activity, radioiodinated CCK (125I-BH-CCK), prepared by the conjugation of 125I-Bolton-Hunter reagent (125I-BH) to CCK. Binding was specific, time-dependent, reversible, and linearly related to the acinar protein concentration. After incubation for 30 min at 37 degrees C, the 125I-BH-CCK both in the incubation medium and bound to acini remained intact, as judged by gel filtration and trichloroacetic acid precipitation studies. Scatchard analysis was compatible with two classes of binding sites on acini: a very high affinity site (Kd, 64 pM) and a lower affinity site (Kd, 21 nM). 125I-BH-CCK binding to acini was competitively inhibited by CCK and four of its analogues in proportion to their biological potencies but not by unrelated hormones. Stimulation of amylase secretion by CCK and inhibition of 125I-BH-CCK binding by the same analogues carried out under identical conditions revealed a correlation (r = 0.99) between binding potency and amylase secretion. Stimulation of amylase secretion by CCK closely paralleled the occupancy of the high affinity CCK binding sites. It is concluded that the high affinity CCK binding sites most likely are the receptors mediating the stimulation of amylase secretion by CCK.  相似文献   

13.
The presence of high concentrations of both dopamine and cholecystokinin (CCK) in the striatum and in various limbic structures suggests that the CCK may not only influence dopaminergic transmission, but it also may be relevant to the psychopathology of schizophrenia and to the therapeutic effects of neuroleptics. By using a synaptosomal fraction isolated from the mouse cerebral cortex and [propionyl-3H]CCK8-sulphate ([3H]CCK8S) as a ligand, a single binding site for [3H]CCK8 with aK d value of 1.04 nM and aB max value of 42.9 fmol/mg protein was identified. The competitive inhibition of [3H]CCK8S binding by related peptides produced an order of potency of CCK8-sulphated (IC50=5.4 nM)>CCK8-unsulfated (IC50=40 nM) and >CCK4 (IC50=125 nM). The regional distribution of [3H]CCK8S binding in the mouse brain was highest in the olfactory bulb (34.3±5.6 fmol/mg protein) > cerebral cortex > cerebellum > olfactory tubercle > striatum > pons-medulla > mid brain > hippocampus > hypothalamus (12.4±2.1 fmol/mg protein). The repeated administration of haloperidol (2.5 mg/kg/tid) increased the binding of [3H]CCK8S in cerebral cortex from 31.8±1.7 to 38.9±5.2 fmol/mg protein. The varied distribution of CCK8S receptors may signify nonuniform functions for the octapeptide in the brain.  相似文献   

14.
In the light of the strong potency of gastrin-related peptides on pancreatic exocrine secretion in dog, we analyzed the binding properties of peptides related to cholecystokinin (CCK) and gastrin on dog pancreatic acini compared to guinea-pig acini. Moreover, we determined apparent molecular masses of photoaffinity labelled CCK/gastrin receptors in the two models. Using the CCK radioligand, receptor selectivity towards CCK/gastrin agonists and antagonists was found to be lower in dog acini than in guinea-pig acini. Performing the binding with CCK and gastrin radioligands in combination with N2,O2'-dibutyryl-guanosine 3',5'-monophosphate, revealed that in dog acini there exist two different sub-classes of CCK/gastrin receptors having high and low selectivity, the latter ones being able to bind gastrin with high affinity (Kd = 2.1 nM). SDS-PAGE analysis of covalently cross-linked receptors using several photosensitive CCK and gastrin probes of different peptide chain lengths demonstrated that in guinea-pig, CCK peptides bound to a 84-kDa component whereas in dog pancreas, CCK and gastrin peptides bound to three distinct molecular species (Mr approximately equal to 78,000, 45,000, 28,000). Performing cross-linking in the presence of 1 microM CCK indicated that a 45-kDa protein is the putative CCK/gastrin receptor in dog pancreas. Our results support the concept of heterogeneity of CCK/gastrin receptors.  相似文献   

15.
We have previously shown that the pancreatic cholecystokinin (CCK) receptor can be solubilized in 1% digitonin. In this study, digitonin-solubilized CCK receptors from rat pancreas were purified using sequential affinity chromatography on ricin-II agarose and on AffiGel-CCK. Electrophoresis of the radioiodinated purified receptors on SDS-polyacrylamide gels followed by autoradiography revealed two proteins: a major band of Mr = 80,000-90,000, and a minor band of Mr = 55,000. Through the purification procedure, the receptors preserved their agonist specificity (CCK-8 less than CCK-33 less than desulfated CCK-8 less than CCK-4) and binding affinity. Scatchard transformations of binding data for the purified receptor preparation were best fit by linear plots compatible with a single class of binding sites with Kd = 9.4 nM. The estimated purification was about 80,000 fold and consistent with the expected Bmax for a pure Mr = 80,000 protein binding one CCK molecule. This two-step purification procedure opens the possibility for molecular studies of the CCK receptor.  相似文献   

16.
High affinity binding of cholecystokinin to small cell lung cancer cells   总被引:2,自引:0,他引:2  
D G Yoder  T W Moody 《Peptides》1987,8(1):103-107
The binding of 125I-Bolton Hunter-cholecystokinin octapeptide (125I-BH-CCK-8) to small cell lung cancer cell lines was investigated. 125I-BH-CCK-8 bound with high affinity (Kd = 2.4 nM) to an apparent single class of sites (1700/cell) using cell line NCI-H209. Binding was time dependent and the ratio of specific/nonspecific binding was 8/1. Pharmacology studies indicated that gastrin, caerulein, CCK-33 and nonsulfated CCK-8 were potent inhibitors of specific 125I-BH-CCK-8 binding whereas CCK-26-32-NH2 was not. Because CCK receptors are present on small cell lung cancer cells, CCK may function as a regulatory peptide in this disease.  相似文献   

17.
Cyclic CCK analogues in which positions 28 and 31 have been replaced by lysine residues and whose side chains are bridged by a succinic moiety, were synthesized. They were tested for their ability to inhibit the binding of 125I-BH-CCK-8 to isolated rat pancreatic acini and to guinea pig brain membranes. These cyclic CCK-analogues were compared to the potent CCK analogue Boc-[Nle28,31]-CCK-7 and to Boc-Trp-Leu-Asp-Phe-NH2, analogue of CCK-4. These cyclic compounds appeared to be highly selective for central CCK receptors.  相似文献   

18.
Competitive inhibition binding studies on membranes from the rat pancreatic AR 4-2J cell line revealed the predominance (80%) of low selectivity CCK receptors (KD of 1 nM and 4 nM for, respectively, CCK-8 and gastrin-17I (G-17I] over selective receptors (20% with a KD of 1 nM and 1 microM for, respectively, CCK-8 and G-17I). Amylase secretion was stimulated by low concentrations of CCK-8, G-17I and CCK-4. G-17I-induced amylase secretion was unaffected by 100 nM of the selective peripheral CCK-A receptor antagonist L-364,718, suggesting that amylase hypersecretion followed non-selective CCK receptor activation, a function normally assumed by selective CCK-A receptors in rat pancreatic acini. Direct ultraviolet irradiation of AR 4-2J cell membranes preloaded with 125I-BH-CCK-33 or 125I(Leu)G(2-17)I resulted in covalent cross-linking with, respectively, a 90 kDa protein and a 106 kDa protein, both distinct from the 81 kDa CCK binding species revealed in normal rat pancreatic membranes. Gpp[NH]p increased the dissociation rate of CCK-8 and G-17I from AR 4-2J cell membranes, indicating a coupling of receptors with guanyl nucleotide regulatory protein(s) G. [32P]ADP-ribosylation of AR 4-2J cell membranes allowed to detect the presence of two Gs alpha (the 50 kDa form predominating over the 45 kDa form) and one Gi alpha (41 kDa). However, Gi and Gs may not be involved in gastrin stimulation of amylase secretion, as Bordetella pertussis toxin and cholera toxin pretreatment of cells did not suppress G-17I-dependent amylase secretion.  相似文献   

19.
Smooth muscle cells isolated from the longitudinal muscle layer of guinea pig ileum were used to determine the presence and type of cholecystokinin/gastrin receptor mediating contraction. This was accomplished with a series of cholecystokinin and gastrin agonists (CCK-8, des(SO3)CCK-8, gastrin-17, des(SO3)gastrin-17 and pentagastrin) and antagonists (glutaramic acid derivatives CR 1392, CR 1409, CR 1505 and proglumide). The order of potency of agonists based on EC50 values derived from concentration-response curves was: CCK-8 greater than des(SO3)CCK-8 greater than gastrin-17 greater than des(SO3)gastrin-17. The inhibitory dissociation constant (Ki) for the antagonist CR 1505 derived from Schild plots was the same whether sulfated CCK-8 or desulfated gastrin-17 was used as agonist (4.47 +/- 0.76 versus 4.68 +/- 0.78 nM). Pentagastrin acted as a partial agonist and inhibited partially the response to CCK-8. The Ki values determined for all antagonists with pentagastrin as agonist were similar to those with CCK-8 as agonist. The order of potency of agonists and the independence of Ki values from the type of agonist used implied that CCK and gastrin interact with one receptor type; the receptor is more sensitive to CCK-8 but is minimally influenced by sulfation of the tyrosine residue. In this respect, the receptor appears to be distinct from the CCK receptor on gallbladder muscle cells and pancreatic acinar cells.  相似文献   

20.
A new hepatapeptide cholecystokinin (CCK) analog, JMV-180 (Boc-Tyr(SO3-)-Nle-Gly-Trp-Nle-Asp-2-phenylethylester), acts as an agonist at high affinity CCK receptors on rat pancreatic acini to stimulate amylase release but unlike cholecystokinin octapeptide (CCK8) does not act on low affinity CCK receptors to inhibit amylase release (Galas, M. D., Lignon, M. F., Rodriguez, M., Mendre, C., Fulcrand, P., Laur, J., and Martinez, J. (1988) Am. J. Physiol. 254, G176-G188). To investigate the biochemical mechanisms initiated by CCK acting on each class of CCK receptor, the effects of JMV-180 and CCK8 on amylase release, Ca2+ mobilization, and phospholipid hydrolysis were studied in isolated rat pancreatic acini. When acini were loaded with the intracellular Ca2+ chelator BAPTA, amylase release stimulated by both JMV-180 and CCK8 was reduced. Measurement of 45Ca2+ efflux and cytosolic free calcium concentration ([Ca2+]i) by the fluorescence of fura-2-loaded acini in a stirred cuvette showed that JMV-180 induced a concentration-dependent increase but with a maximal response only two-thirds that induced by CCK8. When [Ca2+]i of individual fura-2-loaded acinar cells was measured by microspectrofluorometry, all concentrations of JMV-180 (1 nM-10 microM) induced repetitive transient [Ca2+]i spikes (Ca2+ oscillations). By contrast, stimulation with a high concentration of CCK8 (1 nM) caused a large increase in [CA2+]i followed by a small sustained elevation of [Ca2+]i. The measurement of inositol trisphosphate (IP3) production by both [3H]inositol labeling and 1,4,5-IP3 radioreceptor assay showed that JMV-180 had only minimal effects at 10 microM in contrast to the large increase induced by high concentrations of CCK8 (more than 1 nM). JMV-180 blocked the effect of a high concentration of CCK8 on both [Ca2+]i and 1,4,5-IP3 productions but did not affect the response to carbamylcholine. JMV-180 caused a delayed monophasic stimulation of 1,2-diacylglycerol (DAG) sustained to 60 min without the early increase in DAG observed in response to CCK8. Furthermore, JMV-180 stimulated the release of [3H]choline metabolites, primarily phosphorylated choline, from [3H]choline-labeled acini at low concentrations and to the same extent as CCK8. Since JMV-180 interacts not only with high affinity CCK receptors as an agonist but also with low affinity CCK receptors as a functional antagonist, the present results indicate that the occupancy of high affinity state receptors by CCK induces Ca2+ oscillations, DAG formation from phosphatidylcholine hydrolysis, and amylase release with minimal phosphatidylinositol 4,5-bisphosphate hydrolysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号