首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lysophospholipid mediators of immunity and neoplasia   总被引:7,自引:0,他引:7  
Lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P) and some other structurally related lysophospholipids are active growth factors and stimuli for diverse cellular functions. LPA and S1P promote early T cell migration to tissue sites of immune responses and regulate T cell proliferation and secretion of numerous cytokines. Edg-4 (LPA2) LPA receptors, which are constitutively expressed by helper T cells, and Edg-2 (LPA1) LPA receptors, which are expressed only by activated helper T cells, transduce opposite effects of LPA on some T cell responses. A similar mechanism is observed for fine regulation of Edg R-mediated effects of LPA on ovarian cancer cells. Edg-4 (LPA2) R transduces proliferative responses, recruitment of autocrine protein growth factors, and migration of ovarian cancer cells, whereas Edg-2 (LPA1) R transduces inhibition of Edg-4 (LPA2) R-mediated responses and concurrently elicits apoptosis and anoikis of ovarian cancer cells. Edg-4 (LPA2) R is a distinctive functional marker for ovarian carcinoma, and is expressed both as the wild-type and a carboxyl-terminally extended gain-of-function mutant. Newly discovered non-lipid agonists and antagonists for individual Edg receptors will permit more sophisticated analyses of their respective contributions in human biology and pathophysiology, and may represent novel therapeutic modalities in immune disorders and cancer.  相似文献   

3.
Lysophosphatidic acid and its role in reproduction   总被引:1,自引:0,他引:1  
Lysophosphatidic acid (LPA) belongs to a new family of lipid mediators that are endogenous growth factors and that elicit diverse biological effects, usually via the activation of G protein-coupled receptors. LPA can be generated after cell activation through the hydrolysis of preexisting phospholipids in the membranes of stimulated cells. A dramatic elevation of LPA levels was found in serum of patients suffering from ovarian carcinoma. Because these high LPA amounts can be detected as early as stage I of the disease, LPA has been introduced as a new marker for ovarian cancer. Progression of the malignancy is correlated with a differential expression of various LPA receptor subtypes. The presence of LPA in the follicular fluid of healthy individuals implicates that this biological mediator may be relevant to normal ovarian physiology. LPA induces proliferation and mitogenic signaling of prostate cancer cells, and a novel LPA receptor isoform has been recognized in healthy prostate tissues. This evidence indicates multiple roles for LPA in both male and female reproductive physiology and pathology. In this review, we summarize the literature on LPA generation, the way it is degraded, and the mechanisms by which signals are transduced by various LPA receptors in reproductive tissues, and we discuss possible future research directions in these areas.  相似文献   

4.
Lysophosphatidic acids (LPA) exert growth factor-like effects through specific G protein-coupled receptors. The presence of different LPA receptors often determines the specific signaling mechanisms and the physiological consequences of LPA in different environments. Among the four members of the LPA receptor family, LPA(2) has been shown to be overexpressed in colon cancer suggesting that the signaling by LPA(2) may potentiate growth and survival of tumor cells. In this study, we examined the effect of LPA on survival of colon cancer cells using Caco-2 cells as a cell model system. LPA rescued Caco-2 cells from apoptosis elicited by the chemotherapeutic drug, etoposide. This protection was accompanied by abrogation of etoposide-induced stimulation of caspase activity via a mechanism dependent on Erk and PI3K. In contrast, perturbation of cellular signaling mediated by the LPA(2) receptor by knockdown of a scaffold protein NHERF2 abrogated the protective effect of LPA. Etoposide decreased the expression of Bcl-2, which was reversed by LPA. Etoposide decreased the phosphorylation level of the proapoptotic protein Bad in an Erk-dependent manner, without changing Bad expression. We further show that LPA treatment resulted in delayed activation of Erk. These results indicate that LPA protects Caco-2 cells from apoptotic insult by a mechanism involving Erk, Bad, and Bcl-2.  相似文献   

5.
Colorectal cancer (CRC) is still considered as the third most frequent cancer in the world. Microsatellite instability (MSI), inflammation, and microRNAs have been demonstrated as the main contributing factors in CRC. Subtype 1 CRC is defined by NK cells infiltration, induction of Th1 lymphocyte and cytotoxic T cell responses as well as upregulation of immune checkpoint proteins including programmed cell death-1 (PD-1). Based on the diverse features of CRC, such as the stage and localization of the tumor, several treatment approaches are available. However, the efficiency of these treatments may be decreased due to the development of diverse resistance mechanisms. It has been proven that monoclonal antibodies (mAbs) can increase the effectiveness of CRC treatments. Nowadays, several mAbs including nivolumab and pembrolizumab have been approved for the treatment of CRC. Immune checkpoint receptors including PD-1 can be inhibited by these antibodies. Combination therapy gives an opportunity for advanced treatment for CRC patients. In this review, an update has been provided on the molecular mechanisms involved in MSI colorectal cancer immune microenvironment by focusing on PD-ligand 1 (PD-L1) and treatment of patients with advanced immunotherapy, which were examined in the different clinical trial phases. Considering induced expression of PD-L1 by conventional chemotherapeutics, we have summarized the role of PD-L1 in CRC, the chemotherapy effects on the PD-1/PD-L1 axis and novel combined approaches to enhance immunotherapy of CRC by focusing on PD-L1.  相似文献   

6.
The biological roles of phospholipid growth factors lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) have been broadly investigated. The cellular effects of LPA and S1P are mediated predominantly via endothelial differentiation gene (EDG) receptors. Yet, the biological significance of LPA, S1P and their EDG receptors in cells of the liver remains unclear. Recent data demonstrate the presence of EDG2 and EDG4 mRNA for LPA receptor in a murine hepatocyte cell line transformed with human TGF-alpha, and in primary mouse hepatocytes. EDG2 receptor protein is expressed in mouse liver, where it appears to be located in nonparenchymal cells. Moreover, we have obtained data suggesting that proliferation of small hepatocyte-progenitors and stem (oval) cells during liver injury is associated with the expression of EDG2 and EDG4 receptors. LPA, and possibly S1P, appear to be essential factors that control proliferation and motility of hepatic stellate cells (HSC) and hepatoma cells. It is proposed that LPA, S1P and their respective EDG receptors play important roles in pathophysiology of chronic liver injury and fibrogenesis. The underlying mechanisms recruited by LPA and S1P in pathogenesis of liver injury remain to be investigated.  相似文献   

7.
Bone is a common metastatic site for solid cancers. Bone homeostasis is tightly regulated by intimate cross-talks between osteoblast (bone forming cells) and osteoclasts (bone resorbing cells). Once in the bone microenvironment, metastatic cells do not alter bone directly but instead perturb the physiological balance of the bone remodeling process controlled by bone cells. Tumor cells produce growth factors and cytokines stimulating either osteoclast activity leading to osteolytic lesions or osteoblast function resulting in osteoblastic metastases. Growth factors, released from the resorbed bone matrix or throughout osteoblastic bone formation, sustain tumor growth. Therefore, bone metastases are the sites of vicious cycles wherein tumor growth and bone metabolism sustain each other. Lysophosphatidic acid (LPA) promotes the growth of primary tumors and metastatic dissemination of cancer cells. We have shown that by acting on cancer cells via the contribution of blood platelets and the LPA-producing enzyme Autotaxin (ATX), LPA promotes the progression of osteolytic bone metastases in animal models. In the light of recent reports it would appear that the role of LPA in the context of bone metastases is complex involving multiple sources of lipid combined with direct and indirect effects on target cells. This review will present our current knowledge on the LPA/ATX axis involvement in osteolytic and osteoblastic skeletal metastases and will discuss the potential activity of LPA upstream and downstream metastasis seeding of cancer cells to bone as well as its implication in cancer induced bone pain. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

8.
9.
Lysophosphatidic acid (LPA), which interacts with at least three G protein-coupled receptors (GPCRs), LPA1/Edg-2, LPA2/Edg-4, and LPA3/Edg-7, is a lipid mediator with diverse effects on various cells. Here, we investigated the expression profiles of LPA receptors and patterns of LPA-induced migration in gastric cancer cells. Northern blot analysis revealed that various gastric cancer cells expressed variable levels of LPA1, LPA2, and LPA3 without a consistent pattern. Using a Boyden chamber assay, LPA markedly increased cell migration of LPA1-expressing cells, the effects of which were almost totally abrogated by Ki16425, an LPA antagonist against LPA1 and LPA3. In contrast, LPA by itself did not significantly induce migration in MKN28 and MKN74 cells, which exclusively expressed LPA2. However, when hepatocyte growth factor (HGF) was placed with LPA in the lower chamber, LPA induced migration of these cells in a dose-dependent manner. Immunoprecipitation analysis revealed that LPA induced transient tyrosine phosphorylation of c-Met in LPA2-expressing cells, which suggests that the transactivation of c-Met by LPA causes a cooperative migratory response with HGF to these cells. Our results indicate that LPA regulates the migration of gastric cancer cells in a receptor-specific manner and suggest that the expression pattern of LPA receptors may affect the metastatic behavior of gastric cancer.  相似文献   

10.
11.
12.
13.
Colorectal cancer (CRC) is the third most prevalent cancer in the world. There are many risk factors involved in CRC. According to recent findings, the tumor microenvironment and feces samples of patients with CRC are enriched by Fusobacterium nucleatum. Thus, F. nucleatum is proposed as one of the risk factors in the initiation and progression of CRC. The most important mechanisms of Fusobacterium nucleatum involved in CRC carcinogenesis are immune modulation (such as increasing myeloid-derived suppressor cells and inhibitory receptors of natural killer cells), virulence factors (such as FadA and Fap2), microRNAs (such as miR-21), and bacteria metabolism. The aim of this review was to evaluate the mechanisms underlying the action of F. nucleatum in CRC.  相似文献   

14.
Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors and mediate a variety of cellular responses through the binding of LPA. So far, six types of LPA receptors (LPA receptor-1 (LPA?) to LPA?) have been identified. Recently, it has been demonstrated that each LPA receptor has opposite effects on malignant property of cancer cells. In this study, to evaluate an involvement of LPA receptors on angiogenic process in mammary tumor cells, we generated Lpar1- and Lpar3-expressing (FM3A-a1 and FM3A-a3A9, respectively) cells from FM3A cells, and investigated the effects on cell proliferation and migration abilities of endothelial F-2 cells by those cells. In Vegf-A and Vegf-C genes, FM3A-a1 cells indicated high expression and FM3A-a3A9 cells showed low expression, compared with control cells. When F-2 cells were cultured with a supernatant from FM3A-a1 cells, the cell growth rate and migration ability of F-2 cells was significantly higher than control cells. By contrast, a supernatant from FM3A-a3A9 cells significantly inhibited those abilities of F-2 cells. These results suggest that LPA? and LPA? may play opposite roles on the regulation of endothelial cells in mouse mammary tumor FM3A cells.  相似文献   

15.
CE Lin  SU Chen  CC Lin  CH Chang  YC Lin  YL Tai  TL Shen  H Lee 《PloS one》2012,7(7):e41096
Clinical evidence suggests that lymphangiogenesis and lymphatic metastasis are important processes during the progression of prostate cancer. Vascular endothelial growth factor (VEGF)-C was shown to be a key regulator in these processes. Our previous studies demonstrated that lysophosphatidic acid (LPA), a low-molecular-weight lipid growth factor, enhances VEGF-C expression in human endothelial cells. We previously demonstrated that the LPA receptor plays an important role in lymphatic development in zebrafish embryos. However, the effects of LPA on VEGF-C expression in prostate cancer are not known. Herein, we demonstrate that LPA up-regulated VEGF-C expression in three different human prostate cancer cell lines. In PC-3 human prostate cancer cells, the enhancing effects of LPA were mediated through both LPA1 and LPA3. In addition, reactive oxygen species (ROS) production and lens epithelium-derived growth factor (LEDGF) expression were involved in LPA(1/3)-dependent VEGF-C expression. Furthermore, autotaxin (ATX), an enzyme responsible for LPA synthesis, also participates in regulating VEGF-C expression. By interrupting LPA(1/3) of PC-3, conditioned medium (CM) -induced human umbilical vein endothelial cell (HUVEC) lymphatic markers expression was also blocked. In summary, we found that LPA enhances VEGF-C expression through activating LPA(1/3)-, ROS-, and LEDGF-dependent pathways. These novel findings could potentially shed light on developing new strategies for preventing lymphatic metastasis of prostate cancer.  相似文献   

16.
Meng Y  Kang S  Fishman DA 《FEBS letters》2005,579(5):1311-1319
Conflicting reports exist on the effect of actin depolymerization in anti-Fas-induced apoptosis. Lysophosphatidic acid (LPA) has been found to inhibit apoptosis in variable cell types. In this study, we evaluated LPA's protective effects on anti-Fas-induced apoptosis enhanced by actin depolymerization and possible mechanisms in epithelial ovarian cancer. OVCAR3 cells were pretreated with vehicle or LPA, then treated with Cytochalasin D (Cyto D), followed with anti-Fas mAb to induce apoptosis. Cells were stained with apoptotic markers and analyzed by flow cytometry. We report that LPA inhibited anti-Fas-induced apoptosis enhanced by actin depolymerization. Immunoprecipition of Fas death-inducing signaling complex (DISC) and Western blot suggested that the actin depolymerization accelerated caspase-8 activation, while LPA inhibited the association and activation of caspase-8 at the DISC. LPA inhibited caspase-3 and 7 activation induced by anti-Fas and/or Cyto D in cytosols. Phosphorylation of ERK and Bad112 by LPA may play a role in preventing caspase-3 activation through mitochondrial pathway induced by Cyto D. Our investigation found that LPA inhibited anti-Fas-induced apoptosis enhanced by actin depolymerization, and LPA may protect epithelial ovarian cancer from immune cell attack and cytoskeleton disrupting reagents induced apoptosis through multiple pathways.  相似文献   

17.
Leucine zipper-EF-hand–containing transmembrane protein 1 (LETM1) is a mitochondrial inner membrane protein that is highly expressed in various cancers. Although LETM1 is known to be associated with poor prognosis in colorectal cancer (CRC), its roles in autophagic cell death in CRC have not been explored. In this study, we examined the mechanisms through which LETM1 mediates autophagy in CRC. Our results showed that LETM1 was highly expressed in CRC tissues and that down-regulation of LETM1 inhibited cell proliferation and induced S-phase arrest. LETM1 silencing also suppressed cancer stem cell–like properties and induced autophagy in CRC cells. Additionally, the autophagy inhibitor 3-methyladenine reversed the inhibitory effects of LETM1 silencing on proliferation and stemness, whereas the autophagy activator rapamycin had the opposite effects. Mechanistically, suppression of LETM1 increased the levels of reactive oxygen species (ROS) and mitochondrial ROS by regulation of SOD2, which in turn activated AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), initiated autophagy, and inhibited proliferation and stemness. Our findings suggest that silencing LETM1 induced autophagy in CRC cells by triggering ROS-mediated AMPK/mTOR signalling, thus blocking CRC progression, which will enhance our understanding of the molecular mechanism of LETM1 in CRC.  相似文献   

18.
19.
20.
《Genomics》2023,115(4):110636
Colorectal cancer (CRC) is the fourth most frequently diagnosed cancer worldwide. Bone marrow stromal cells (BMSCs) play an essential role in tumor development by secreting exosomes. Scavenger receptor class A member 5 (SCARA5) is a newly identified tumor suppressor. This study aimed to investigate the effects of BMSCs-derived exosomes (BMSCs-Exos) on CRC development and to explore their regulatory mechanisms. BMSCs-Exos showed an oval-shaped, bilayer membrane structure. BMSCs-Exos inhibited growth and motility of CRC cells, while BMSCs-Exos with SCARA5 knockdown significantly promoted cell proliferation and movement. Exosomal SCARA5 also effectively suppressed colorectal tumor growth in mouse xenografts. Further analysis revealed that exosomal SCARA5 inhibited the phosphorylation of protein kinase B and phosphoinositide 3-kinase in both CRC cells and tumors. In conclusion, SCARA5 in BMSCs-Exos inhibited CRC progression by inactivating PI3K/Akt, thus suggesting the potential clinical application of SCARA5-containing BMSCs-Exos for CRC treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号