首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether oxygen-derived free radicals play an important role in the pathogenesis of stress-induced tissue injury, the effect of a superoxide dismutase derivative, which binds to albumin and circulates with a half-life of 6 h in intact rats, on acute gastric mucosal lesion was observed in rats which were given water-immersion-restraint. This enzyme derivative also circulated bound to albumin with a half-life of 8 h in rats which were challenged with water-immersion-restraint. This treatment significantly perturbed systemic circulation of animals by decreasing the effective volume of circulating blood, increased vascular permeability of the gastric mucosa, and induced acute gastric mucosal lesion. Intravenous administration of this enzyme derivative normalized both systemic circulation and vascular permeability of the gastric mucosa and prevented the occurrence of stress-induced gastric injury. These findings suggest that the superoxide radical and/or its metabolite(s) plays an important role in the pathogenesis of stress-induced acute gastric mucosal lesion.  相似文献   

2.
Extracellular superoxide dismutase (EC SOD) is generally the least abundant SOD isozyme in tissues, while the intracellular Cu,Zn SOD is usually the most abundant isozyme. The biological significance of EC SOD is unknown. Immunolocalization studies show that EC SOD is in the connective tissue surrounding smooth muscle in vessels and airways within the lung. Endothelium derived relaxing factor, thought to be a nitric oxide (NO·) species, is a primary mediator of vascular relaxation. During NO·′ diffusion between the endothelium and smooth muscle, extracellular superoxide would be the most efficient scavenger of NO·. High levels of extracellualar superoxide dismutase in vessels could, therefore, be essential to enable NO' to modulate vascular tone. To evaluate the hypothesis that vessel walls are functionally rich in extracellular superoxide scavenging capacity, this study quantitates the EC SOD levels in pulmonary and systemic vessels and in airways. Both pulmonary and systemic arteries in humans and baboons were found to contain high activities of EC SOD. The level of EC SOD in all human and baboon arteries examined is greater than or equal to the level of intracellular Cu,Zn SOD, and EC SOD accounted for over 70% of the total SOD activity in some vessels examined. Immunolocalization of EC SOD in human and baboon vessels show similar distributions of this enzyme in pulmonary and systemic vessels. EC SOD is located beneath the endothelium, surrounding smooth muscle cells, and throughout the adventitia of vessels. The high level of EC SOD in vessels, and its localization between endothelial and smooth muscle cells, suggest that regulation of superoxide may be particularly important in this region, possibly in regulating vascular tone.  相似文献   

3.
Developmental regulation of rat lung Cu,Zn-superoxide dismutase.   总被引:2,自引:0,他引:2       下载免费PDF全文
In the present investigation we found that lung Cu,Zn-superoxide dismutase (SOD) activity (units/mg of DNA) increases steadily in the rat from birth to adulthood. The specific activity (units/micrograms of enzyme) of Cu,Zn-SOD was unchanged from birth to adulthood, excluding enzyme activation as a mechanism responsible for the increase in enzyme activity. Lung synthesis of Cu,Zn-SOD peaked at 1 day before birth and decreased thereafter to adult values. Calculations, based on rates of Cu,Zn-SOD synthesis and the tissue content of the enzyme, indicated that lung Cu,Zn-SOD activity increased during development owing to the rate of enzyme synthesis exceeding its rate of degradation by 5-10%. These calculations were supported by measurements of enzyme degradation in the neonatal (half-life, t1/2, = 12 h) and adult lung (t1/2 = greater than 100 h); the difference in half-life did not reflect the rates of overall protein degradation in the lung, since these rates were not different in lungs from neonatal and adult rats. We did not detect differences in the Mr or pI of Cu,Zn-SOD during development, but the susceptibility of the enzyme to inactivation by heat or copper chelation decreased with increasing age of the rats. We conclude that the progressive increase in activity of Cu,Zn-SOD is due to a rate of synthesis that exceeds degradation of the enzyme. The data also suggest that increased stabilization of enzyme conformation accounts for the greater half-life of the enzyme in lungs of adult compared with neonatal rats.  相似文献   

4.
Because zinc (Zn) is an important component for cell protection against certain oxygen species, it has been suggested that Zn deficiency impairs the potent oxidant defense capacity, which is constitutively provided in the vascular system. However, the influence of dietary Zn deficiency on systemic blood pressure and vascular system is controversial and unclear. We therefore examine the effect of dietary Zn deficiency on systemic blood pressure, a potent superoxide scavenger, aortic Cu/Zn superoxide dismutase (SOD) activity, a most representative synthase of the endothelium-derived relaxing factor, and aortic endothelial nitric oxide synthase (eNOS) expression. Furthermore, the direct effects of intravenous administration of NOS inhibitor, N ω-nitro-l-arginine methyl ester (l-NAME), and a SOD mimetic compound, tempol, in normotensives were tested in Wistar-Kyoto (WKY) rats. A Zn-deficient diet (4 wk) contributed to growth retardation, the decrease in thymus weight, and the lower levels of serum Zn compared with the standard diet group. However, no significant difference in conscious systolic and diastolic blood pressure was found in the Zn-deficiency group. The administration of l-NAME caused an increase in the mean arterial pressure (MAP) levels in the two groups of rats and the involvement of the vasodilator nitric oxide (NO) in the regulation of systemic BP in the normotensive state. On the other hand, administration of the superoxide scavenger, tempol, led to a decrease in MAP levels in the two groups of rats, indicating the participation of the oxygen free radical, superoxide, in the maintenance of the systemic BP in a normotensive state. There were no significant differences between the Zn-deficient diet group and the standard diet group in the normotensive state. eNOS expression and Cu/Zn SOD activity in the aorta were also intact in Zn-deficient normotensive rats. These findings suggest that the 4 wk of Zn deficiency was inadequate to alter systemic blood pressure and focal NO signaling in the normotensive state. Long-term Zn deficiency affects the neuronal, immune, and hematopoietic systems, which contribute to systemic and/or local circulation. However, Zn deficiency alone does not cause hypertension and local vascular dysfunction in the normotensive state.  相似文献   

5.
Superoxide radical (O2-) is a free radical that may be involved in various toxic processes. Cu--Zn superoxide dismutase catalyses the dismutation of the superoxide free radical and protects cells from oxidative damage, and it has been used clinically. The concentration of Ni2+ and Cu--Zn superoxide dismutase activity were measured in lungs of rats at time intervals of 5, 12, 19, 26, 33, and 40 days following an intratracheal injection of 127 nmol of NiCl2. Nickel chloride increased nickel content and resulted in a significant increase of Cu--Zn superoxide dismutase activity in lungs. This elevation of Cu--Zn superoxide dismutase activity was highest on the 12th day (approximately threefold) and is at levels comparable to controls rats on day 40 onwards. Since Cu--Zn superoxide dismutase activity was increased in lung throughout our experimental period without corresponding increases of Cu2+ and Zn2+, we speculate that the elevation of Cu--Zn superoxide dismutase activity might be due to an increased half-life of the enzyme, induced by nickel.  相似文献   

6.

Background

Hydrogen-rich saline has been reported to have antioxidant and anti-inflammatory effects and effectively protect against organ damage. Oxidative stress and inflammation contribute to the pathogenesis and/or development of pulmonary hypertension. In this study, we investigated the effects of hydrogen-rich saline on the prevention of pulmonary hypertension induced by monocrotaline in a rat model.

Methods

In male Sprague-Dawley rats, pulmonary hypertension was induced by subcutaneous administration of monocrotaline at a concentration of 6 mg/100 g body weight. Hydrogen-rich saline (5 ml/kg) or saline was administred intraperitoneally once daily for 2 or 3 weeks. Severity of pulmonary hypertension was assessed by hemodynamic index and histologic analysis. Malondialdehyde and 8-hydroxy-desoxyguanosine level, and superoxide dismutase activity were measured in the lung tissue and serum. Levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6) in serum were determined with enzyme-linked immunosorbent assay.

Results

Hydrogen-rich saline treatment improved hemodynamics and reversed right ventricular hypertrophy. It also decreased malondialdehyde and 8-hydroxy-desoxyguanosine levels, and increased superoxide dismutase activity in the lung tissue and serum, accompanied by a decrease in pro-inflammatory cytokines.

Conclusions

These results suggest that hydrogen-rich saline ameliorates the progression of pulmonary hypertension induced by monocrotaline in rats, which may be associated with its antioxidant and anti-inflammatory effects.  相似文献   

7.
Although the possible involvement of superoxide radical and its metabolite(s) in the pathogenesis of various types of edema have been suggested, direct evidence supporting this concept is lacking. Since intravenously administered Cu2+Zn2(+)-type superoxide dismutase (SOD) rapidly disappeared from the circulation with a half-life of 4 min, the enzyme could not be used to test whether superoxide radicals played a critical role in the modulation of vascular permeability. We previously synthesized a SOD derivative (SM-SOD) by linking poly(styrene co-maleic acid butyl ester) (SM) to the enzyme (Ogino, T., Inoue, M., Ando, Y., Awai, M., Maeda, H. and Morino Y. (1988) Int. J. Pept. Protein Res. 32, 1583-1588); SM-SOD circulates bound to albumin with a half-life of 6 h. To test whether superoxide radicals play an important role in the regulation of vascular permeability, the effect of SM-SOD on experimental paw edema was studied in the rat. Subcutaneous injections of carrageenin to the paw rapidly induced local edema by increasing vascular permeability. Intravenous administration of SM-SOD markedly inhibited the carrageenin-induced increase in vascular permeability and suppressed the development of paw edema. In contrast, the same dose of SOD showed no such inhibitory effect. These results suggest that superoxide radical and/or its metabolite(s) might play a critical role in the pathogenesis of carrageenin-induced vasogenic edema.  相似文献   

8.
A newborn rat model of retinopathy of prematurity was used to test the hypothesis that a lack of superoxide dismutase contributes to the retinal vaso-attenuation seen during exposure of the animals to hyperoxic conditions. To determine the endogenous superoxide dismutase activity of the retina under hyperoxic conditions, litters of albino rats were placed in either constant 80% ambient oxygen (constant hyperoxia), or placed in 21% oxygen (room air) immediately after birth. Every other day, for 14 days, several rat pups were sacrificed and their retinas removed for the determination of total superoxide dismutase (SOD) activity and manganese-associated SOD activity. An attempt was made to increase retinal SOD activity by intraperitoneal administration of exogenous SOD encapsulated in polyethylene glycol-modified liposomes. Additional litters were exposed to the same oxygen treatments and supplemented twice daily with either liposome-encapsulated superoxide dismutase in saline or liposomes containing saline without SOD. Animals were sacrificed at various time points for the determination of total superoxide dismutase activity and computer-assisted analysis of vessel density and avascular area. Animals raised in an atmosphere of constant 80% oxygen had significantly reduced levels of retinal superoxide dismutase activity through 6 days of life when compared to their room air-raised littermates. At 6 days of age, daily supplementation with liposome-encapsulated SOD had significantly increased retinal superoxide dismutase activity and reduced oxygen-induced vaso-attenuation as evidenced by increased vessel density and decreased avascular area, when compared to littermates exposed to constant hyperoxia that received control liposomes. Superoxide dismutase had no adverse effects on any of the animals regardless of treatment. Tracing experiments demonstrated that liposomes entered the retina and were found in cells morphologically resembling mi-croglia. Delivery of SOD to the retina via long-circulating liposomes proved beneficial, suggesting that restoration and/or supplementation of endogenous antioxidants in oxygen-damaged retinal tissue is a potentially valuable therapeutic strategy.  相似文献   

9.
The aim of this study was to investigate the protective effects of erdosteine and vitamins C and E (VCE) on the lungs after performing hind limb ischemia–reperfusion (I/R) by assessing oxidative stress, plasma copper (Cu), and zinc (Zn) analysis. The animals were divided randomly into four groups as nine rats each as follows: control, I/R, I/R plus erdosteine, and I/R plus VCE combination. I/R period for 60 min was performed on the both hind limbs of all the rats in the groups of I/R, erdosteine with I/R, VCE with I/R allowing 120 min of reperfusion. The animals received orally erdosteine one time in a day and 3 days before I/R in the erdosteine group. In the VCE group, the animals VCE combination received one time in a day and 3 days before I/R, although placebo was given to control and I/R group animals. Lung lipid peroxidation (malondialdehyde [MDA]) level, superoxide dismutase (SOD), and catalase activities were increased, although lung glutathione (GSH) and plasma Zn levels decreased in I/R group in lung tissue compared with the control group. Serum MDA level, creatine kinase, and lactate dehydrogenase activities were increased in I/R group compared with the control. Lung MDA and plasma Zn levels and lung SOD activity were decreased by erdosteine administration, whereas lung GSH levels after I/R increased. The plasma Zn levels and lung SOD activity were decreased by VCE administration, although the plasma Cu and lung GSH levels increased after I/R. In conclusion, erdosteine has an antioxidant role on the values in the rat model, and it has more protective affect than in VCE in attenuating I/R-induced lung injury in rats.  相似文献   

10.
Systemic sclerosis (SSc) is a chronic disease of connective tissue characterized by vascular damage, autoantibody production and extensive fibrosis of skin, skeletal muscles, vessels and visceral organs. Fibrosis is a biological process involving inflammatory response and reactive oxygen species (ROS) accumulation leading to fibroblast activation. Extracellular superoxide dismutase (SOD3), a copper and zinc superoxide dismutase, which is expressed in selected tissues, is secreted into the extracellular space and catalyzes the dismutation of superoxide radical to hydrogen peroxide and molecular oxygen. Moreover, SOD3 is associated to inflammatory responses in some experimental models. In this paper we analysed, by RT-PCR and immunofluorescence, SOD3 expression and intracellular localization in dermal fibroblasts from both healthy donors and patients affected by diffuse form of SSc. Moreover, we determined SOD3 enzymatic activity in fibroblast culture medium with the xanthine/xanthine oxidase method. Increased expression of SOD3 mRNA was detected in systemic sclerosis fibroblasts (SScF), as compared to control healthy fibroblasts (HF), and SOD3 immunofluorescence staining displayed a characteristic pattern of secretory proteins in both HF and SScF. Superoxide dismutase assay demonstrated that SOD3 enzymatic activity in SScF culture medium is four times more than in HF culture medium. These data suggest that an alteration in SOD3 expression and activity could be associated to SSc fibrosis.  相似文献   

11.
Strenuous physical exercise in the form of swimming in female albino rats increased the oxidative reactions, probably leading to the generation of oxy-free radicals in the lung tissue. Free radical-mediated lipid peroxidation measured in the form of lipid peroxides increased in the pulmonary tissue in response to exhaustive exercise, indicating such a possibility. Dietary supplementation of vitamin E (Vit.E) and selenium (Se) for a period of 12 weeks reduced the oxidative reactions and the ensuing lipid peroxidation in the pulmonary tissue. Physical exercise in control animals induced the activity of superoxide dismutase (SOD), the superoxide anion radical (O2-.) quencher. However, the SOD levels in nutrient-fed animals at rest and after exercise remained well below the control levels, indicating the decreased generation of oxy-free radicals in them. Similarly, selenium-dependent glutathione peroxidase (Se-GSH Px), the enzyme involved in the reduction of organic and inorganic peroxides, and glutathione S- transferase (GST), the multifunctional protein involved in the detoxification of a number of xenobiotics, were increased in response to exercise in control animals, but were significantly decreased in nutrient-fed animals upon exercise. The induction of GST seems to be more towards the peroxidase activity of GST, i.e., non-selenium glutathione peroxidase (Non-Se-GSH Px), which is primarily involved in the reduction of endoperoxides. The studies thus indicate the induction of oxidative stress in the pulmonary tissue upon exhaustive physical exercise and the effectiveness of vit.E and Se independently and more so in combination in combating the exercise-induced oxidant stress.  相似文献   

12.
Gemcitabine, a nucleoside analogue for treating lung cancer, is clinically administered as an intravenous infusion. To achieve better patient compliance and more direct effect on the lung, we explored a new gemcitabine pulmonary delivery route and evaluated the pharmacokinetics and acute lung injury aspects in animals. Pharmacokinetics of gemcitabine were measured in Sprague-Dawley rats after intravenous (i.v.), intratracheal instillation by tracheotomy (i.t.t.), intratracheal instillation via orotrachea (i.t.o.), and intragastric (i.g.) administration of gemcitabine. Acute lung injury effects of the pulmonary delivery of gemcitabine were performed in Sprague-Dawley rats after i.t.o. and i.v. administration of gemcitabine and i.t.o. administration of lipopolysaccharide (LPS) as a positive control and physiological saline as a blank control. Indicators for acute lung injury that were evaluated included lung morphology, lung histopathology, lung coefficient, lung wet/dry weight ratio, total cell and classification counts in bronchoalveolar lavage cells (BALC), and total protein and TNF-alpha levels in bronchoalveolar lavage fluids (BALF). After i.t.t. or i.t.o. administration, gemcitabine was quickly absorbed, but i.g. administration led to an undetectable plasma gemcitabine concentration. Absolute bioavailability of gemcitabine after i.t.t. and i.t.o. administration was 91% and 65%, respectively. Gemcitabine given as i.t.o. administration did not cause any overt acute lung injury. All indicators for acute lung injury in the i.t.o. group were similar to those in the i.v. group or in the blank control, but significantly different from those in the positive control. In conclusion, the pharmacokinetics and acute lung injury studies suggest that pulmonary gemcitabine delivery would be a new and promising administration route.  相似文献   

13.
Reduction of paraquat toxicity by superoxide dismutase   总被引:5,自引:0,他引:5  
A P Autor 《Life sciences》1974,14(7):1309-1319
The effect of intravenously administered superoxide dismutase on paraquat-treated rats kept either in air or an atmosphere of 90%–95% oxygen was investigated. Of those rats maintained in the oxygen-enriched atmosphere, 50% died within 30 hours whereas, 50 hours elapsed before 50% mortality was observed for the superoxide dismutase-treated rats. Those animals allowed to remain in air were more responsive to superoxide dismutase treatment. Of those animals for which paraquat was fatal, untreated rats showed 50% cumulative mortality within 35 hours after paraquat administration, whereas those rats treated with superoxide dismutase showed 50% mortality after 80 hours. Sections of lung tissue examined at low magnification indicated that the extensive alveolar and vascular damage caused by paraquat was ameliorated with the administration of superoxide dismutase. These findings may have particular relevance in the treatment of paraquat intoxication in humans.  相似文献   

14.
Chronic hypoxia induces lung vascular remodeling, which results in pulmonary hypertension. We hypothesized that a previously found increase in collagenolytic activity of matrix metalloproteinases during hypoxia promotes pulmonary vascular remodeling and hypertension. To test this hypothesis, we exposed rats to hypoxia (fraction of inspired oxygen = 0.1, 3 wk) and treated them with a metalloproteinase inhibitor, Batimastat (30 mg/kg body wt, daily ip injection). Hypoxia-induced increases in concentration of collagen breakdown products and in collagenolytic activity in pulmonary vessels were inhibited by Batimastat, attesting to the effectiveness of Batimastat administration. Batimastat markedly reduced hypoxic pulmonary hypertension: pulmonary arterial blood pressure was 32 +/- 3 mmHg in hypoxic controls, 24 +/- 1 mmHg in Batimastat-treated hypoxic rats, and 16 +/- 1 mmHg in normoxic controls. Right ventricular hypertrophy and muscularization of peripheral lung vessels were also diminished. Batimastat had no influence on systemic arterial pressure or cardiac output and was without any effect in rats kept in normoxia. We conclude that stimulation of collagenolytic activity in chronic hypoxia is a substantial causative factor in the pathogenesis of pulmonary vascular remodeling and hypertension.  相似文献   

15.
The activities of three enzymes cytosolic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSHP), and malonyldialdehyde (MDA), a by-product of lipid peroxidation, were determined in whole lungs of normal and bleomycin-treated rats. Two days after bleomycin treatment total lung SOD, CAT, and GSHP activities were significantly (p less than .025) depressed between 15 and 25%. The activities of all three enzymes increased 4 days after bleomycin treatment with only SOD significantly increased at days 4 and 7. Total lung CAT activity remained near normal levels while GSHP activity increased only at day 28 (160.5%, p less than .01) indicating a specificity of the response of lung SOD and GSHP levels. Total lung MDA levels were increased by 17% at 2 and 4 days (p less than .05) after bleomycin treatment, and returned to normal levels at 7 and 28 days. These data suggest that impairment of the lung's ability to detoxify O2 metabolites may play an important role in the development of bleomycin-induced pulmonary fibrosis.  相似文献   

16.
M Inoue  I Ebashi  N Watanabe  Y Morino 《Biochemistry》1989,28(16):6619-6624
Protection of tissues from oxidative stress is one of the major prerequisites for aerobic life. Since intravenously injected Cu2+/Zn2+-type superoxide dismutase (SOD) disappears from the circulation with a short half-life of 5 min, its clinical use as a scavenger for superoxide radical is limited. We synthesized a human erythrocyte type SOD derivative (SM-SOD) by linking 2 mol of hydrophobic organic anion, alpha-4-[( 6-(N-maleimido)hexanoyloxymethyl]cumyl]half-butyl-esterified poly(styrene-co-maleic acid) (SM), to the cysteinyl residues of the dimeric enzyme without decreasing enzymic activity. SM-SOD, but not SOD, bound to an albumin-Sepharose column; the bound SM-SOD was eluted by a buffer solution containing 0.5% sodium dodecyl sulfate or 10 mM warfarin, suggesting that SM-SOD reversibly binds to the warfarin site on albumin. Due to the amphipathic nature of the SMI moiety, SM-SOD bound also to cell membranes particularly when the pH was decreased. In vivo analysis in the rat revealed that intravenously injected SM-SOD circulated bound to albumin with a half-life of 6 h. Postischemic reperfusion arrhythmias were almost completely prevented by a single dose of SM-SOD, but not SOD. Thus, the prolonged half-life of SM-SOD in the circulation and its preferential accumulation in an injured site with decreased pH appeared to be responsible for preventing myocardial injury. These results suggest that superoxide radical and/or its metabolite(s) would play an important role in the pathogenesis of postischemic reperfusion arrhythmias and that SM-SOD may be useful for decreasing tissue injury in ischemic heart disease.  相似文献   

17.
为探讨蕨菜黄酮对染矽尘小鼠的抗氧化应激及肺纤维的影响,采用超声雾化石英粉尘混悬液,使小鼠染尘,蕨菜黄酮(Pteridium aqulinum flavonoids,PAF)连续灌胃染尘小鼠3周,取血测血清中超氧化物歧化酶(superoxide dismutase,S0D)、丙二醛(malonaldehyde,MDA),并测肺组织中SOD、MDA、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)、羟脯氨酸(hydroxyproline,Hyp),计算肺质量系数,取右肺下叶做病理组织观察;结果显示蕨菜黄酮组血及肺组织MDA值显著下降、SOD活力显著升高,肺组织GSH-Px活力显著升高,肺Hyp含量及肺指数显著下降,肺纤维化进程延缓,表明蕨菜黄酮对染矽尘小鼠具有较好的抗氧化应激效应,延缓了肺纤维化进程。  相似文献   

18.
We constructed conjugates of superoxide dismutase (SOD) and the Fc fragment of human immunoglobulin G. The lysyl residues of bovine erythrocyte Cu,Zn-SOD were covalently linked with cysteine residues of the Fc fragment using N-succinimidyl 4-(N-maleimido)-butylate as a crosslinking agent. Analysis by gel filtration and SDS-PAGE revealed that the conjugates were composed of one molecule of SOD linked with one molecule of Fc [SOD-(Fc)1] and one SOD molecule linked with several Fc molecule [SOD-(Fc)n]. The resulting SOD-Fc conjugates retained more than 90% of the enzyme activity of SOD. When those conjugates were administered intravenously to mice, the half-lives of SOD activity in the circulation were 29 and 42 h for SOD-(Fc)1 and SOD-(Fc)n, respectively, while free SOD had a half-life of 5 min. Intravenous administration of the conjugates to mice markedly repressed the increase in serum glutamic-oxaloacetic transaminase (GOT) activity induced by paraquat. These results suggest that SOD-Fc conjugates, which have long half-lives, effectively perform dismutation of superoxide radicals and may be useful for preventing tissue injury caused by hazardous oxygen metabolites.  相似文献   

19.
M C Carrillo  K Kitani  S Kanai  Y Sato  G O Ivy 《Life sciences》1992,50(25):1985-1992
In a previous study we have shown that chronic administration of (-)deprenyl increases activities of superoxide dismutase (SOD) and catalase (CAT) in rat striatum (1). The present study attempted to clarify how specific the effect of deprenyl is to certain tissues and brain regions in the rat. Two mg/kg/day of deprenyl was continuously infused s.c. in young male Fischer-344 rats. On the 22nd day, rats were sacrificed and enzyme activities of SOD and CAT were determined in several different brain regions and the liver. Activities of both SOD and CAT were significantly increased in striatum and substantia nigra but not in hippocampus, cerebellum or liver. Both types of SOD (i.e. Cu Zn-SOD and Mn-SOD) were significantly increased in striatum, substantia nigra. Interestingly, in cerebral cortices of three different regions, activities also tended to increase (especially those of Mn-SOD), although the increase was not so striking as in substantia nigra and striatum. The results confirm the previous observation that (-)deprenyl can increase free radical scavenger enzyme activities in striatum and provide further evidence that this effect is selective to certain brain regions and tissue types.  相似文献   

20.
The role of interleukin (IL)-18 in the protection from interstitial pneumonia and pulmonary fibrosis induced by bleomycin (BLM) was investigated by comparing the severity of BLM-induced lung injuries between wild-type and C57BL/6 mice with a targeted knockout mutation of the IL-18 gene (IL-18-/- mice). IL-18-/- mice showed much worse lung injuries than wild-type mice, as assessed by the survival rate, histological images, and leukocyte infiltration in the bronchoalveolar lavage fluid and myeloperoxidase activity. In wild-type mice, administration of IL-18 before BLM instillation resulted in suppression of lung injuries, increases in the hydroxyproline content, and decreases in the granulocyte-macrophage colony-stimulating factor content in the lung. Preadministration of IL-18 also resulted in prevention of the reduction of the lung IL-10 content caused by BLM-induced damage of alveolar epithelial. BLM instillation suppressed superoxide dismutase (SOD) activity in IL-18-/- mice to a greater extent than in wild-type mice. Pretreatment of IL-18 augmented Mn-containing superoxide dismutase (Mn-SOD) messenger RNA expression and SOD activity in the lung and prevented the reduction of SOD activity caused by BLM in both wild-type and IL-18-/- mice. These results suggest that IL-18 plays a protective role against BLM-induced lung injuries by upregulating a defensive molecule, Mn-SOD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号