首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accessibility of the heme binding site of two apomyoglobins, i.e. tuna and sperm whale apomyoglobin, has been evaluated by quenching the fluorescence of their ANS-conjugates. The quenching pattern obtained by using charged and uncharged quenchers revealed that the heme pocket of tuna apomyoglobin is more accessible than that of sperm whale. Moreover, a larger number of positively charged groups is present in the heme pocket of tuna apomyoglobin as indicated by comparing the extent of quenching produced by iodide and cesium ion. The relaxation time of ANS bound to tuna apomyoglobin is lower than that of the same chromophore bound to sperm whale globin thus indicating that there is some localized flexibility in the tuna globin.  相似文献   

2.
E Bismuto  I Sirangelo  G Irace 《Biochemistry》1989,28(19):7542-7545
The extent of conformational substates of two apomyoglobins, i.e., sperm whale and tuna apomyoglobin, was investigated by examining the fluorescence decay in the frequency domain of the extrinsic fluorophore TNS [6-(p-toluidino)-2-naphthalenesulfonic acid] bound to the heme binding site. Data analysis was performed in terms of a continuous, unimodal lifetime distribution having a Lorentzian shape. The results were compared with those for the free fluorophore in an isotropic nonviscous solvent. The incorporation of TNS into the protein matrix resulted in a broadening of the lifetime distribution due to the microenvironmental heterogeneity generated by structural fluctuations. The larger width of lifetime distribution observed for TNS bound to tuna apomyoglobin was related to a more extended conformational space accessible to the fluorophore in this protein compared to sperm whale myoglobin. A temperature increase from 15 to 40 degrees C produced a further broadening of the lifetime distributions of TNS bound to both proteins. This result can be explained by assuming the existence of conformational substates at high energy content or separated by high energy barriers, which are not populated at low temperature. The overall picture emerging from the reported data is that the lifetime distributions of TNS bound to apomyoglobins are determined largely by the number of conformational substates accessible to the protein matrix and, to a lesser extent, by the interconversion rates among these states.  相似文献   

3.
The solvatochromic fluorescent dye 8-anilino-1-naphthalenesulfonate (ANS) is one of the popular probes of protein folding. Folding kinetics is tracked with ANS fluorescence intensity, usually interpreted as a reflection of protein structure-the hydrophobicity of the binding environments. Such simplistic view overlooks the complicated nature of ANS-protein complexes: the fluorescence characteristics are convoluted results of the ground state populational distribution of the probe-protein complex, the structural changes in the protein and the excited state photophysics of the probe. Understanding of the interplay of these aspects is crucial in accurate interpretation of the protein dynamics. In this work, the fluorescence decay of ANS complexed with apomyoglobin at different conformations denatured by pH is modeled. The fluorescence decay of the ANS-apomyoglobin complex contains information on not only apomyoglobin structure but also molecular populational distributions. The challenge in modeling fluorescence decay profiles originates from the convolution of heterogeneous binding and excited-state relaxation of the fluorescent probe. We analyzed frequency-domain fluorescence lifetime data of ANS-apomyoglobin with both maximum entropy methods (MEM) and nonlinear least squares methods (NLLS). MEM recovers a model of two expanding-and-merging lifetime distributions for ANS-apomyoglobin in the equilibrium transition from the native (N) through an intermediate (I-1) to the acid-unfolded state U(A). At pH 6.5 and above, when apomyoglobin is mostly populated at the N-state, ANS-apomyoglobin emits a predominant long-lifetime fluorescence from a relaxed charge transfer state S(1,CT) of ANS, and a short-lifetime fluorescence that is mainly from a nascent excited-state S(1,np) of ANS stabilized by the strong ANS-apomyoglobin interaction. Lowering the pH diminishes the contribution from the S(1,np) state. Meanwhile, more protein molecules become populated at the U(A) state, which exhibits a short lifetime that is not distinguishable from the S(1,np) state. At pH 3.4, when the population of the U(A) becomes significant, the short-lifetime fluorescence comes predominantly from ANS binding to the U(A). Further lowering the pH leads to more exposure of the bound ANS. The long lifetime shifts toward and finally merges with the short lifetime and becomes one broad distribution that stands for ANS binding to the U(A) below pH 2.4. The above expanding-and-merging model is consistent with F-statistic analysis of NLLS models. The consistency of this model with the knowledge from the literature, as well as the continuity of the decay parameters changing upon experimental conditions are also crucial in drawing the conclusions.  相似文献   

4.
R Ragone  G Colonna  E Bismuto  G Irace 《Biochemistry》1987,26(8):2130-2134
The effects of denaturants on the solvent accessibility to tyrosyl residues of apomyoglobin have been examined by means of second-derivative spectroscopy in the near-ultraviolet. Three apomyoglobins, i.e., sperm whale, horse, and tuna, were selected because of the different distribution of tyrosyl residues in their primary structure. The results are consistent with the occurrence of two independent consecutive events in the guanidine-induced denaturation pattern of apomyoglobin. The first event, which is responsible for the lack of the ability to bind the heme, has been proved to involve conformational changes in both the domains, i.e., segments 1-79 and 80-153, identified in the myoglobin molecule. However, the conformational changes are not of the same type. In fact, the solvent accessibility to tyrosine HC2 is increased probably because of a partial unfolding of the 80-153 domain. Conversely, the solvent accessibility to tyrosine B2 is decreased, thus indicating that a refolding occurs in some region of the N-terminal moiety (1-79 domain) of the molecule.  相似文献   

5.
Proton NMR experiments were carried out on apomyoglobin from sperm whale and horse skeletal muscle. Two small molecules, the paramagnetic relaxation agent 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO) and the fluorescent dye 8-anilino-1-naphthalenesulfonic acid (ANS), were used to alter and simplify the spectrum. Both were shown to bind in the heme pocket by docking onto the hydrophobic residues lining the distal side. Only 1 extensive region of the apoprotein structure, composed of hydrophobic residues, is not affected by HyTEMPO. It includes the 2 tryptophans (located in the A helix), other nonpolar residues of the A helix and side chains from the E, G, and GH helices. The spectral perturbations induced by ANS allowed assignment of the distal histidine (His-64) in horse apomyoglobin. This residue was previously reported to titrate with a pKa below 5 and tentatively labeled as His-82 on the basis of this value (Cocco MJ, Kao YH, Phillips AT, Lecomte JTJ, 1992, Biochemistry 31:6481-6491). The packing of the side chains and the low pKa of His-64 reinforce the idea that the distal side of the binding site is folded in a manner closely related to that in the holoprotein. ANS was found to sharpen the protein signals and the improvement of the spectral resolution facilitated the assignment of backbone amide resonances. Secondary structure, as manifested in characteristic inter-amide proton NOEs, was detected in the A, B, C, E, G, and H helices. The combined information on the hydrophobic cores and the secondary structure composes an improved representation of the native state of apomyoglobin.  相似文献   

6.
The molten globule state was shown to be the third thermodynamic state of protein molecules in addition to their native and unfolded states. On the other hand, it was reported that optical and hydrodynamic properties of pH-denatured apomyoglobin depend on the nature of anions added to the protein solution. This observation was used to conclude that there are many 'partly folded' intermediates between the native and unfolded states rather than one distinct molten globule state. However, little is known on the structures of pH-denatured apomyoglobin in the presence of different anions. Two tyrosine residues in horse apomyoglobin have been successively modified by the reaction with tetranitromethane. This approach was employed to measure the distances between tryptophans and modified tyrosines in different states of apomyoglobin by the method of direct energy transfer. Experimental data show that the distance between the middle of the A-helix and the beginning of the G-helix and/or the end of the H-helix in 'anion-induced' states are very close to those in the native holo- and apomyoglobins. This suggests that the AGH helical complex, being the most structured part of apomyoglobin in the molten globule state, exists also in pH-denatured apomyoglobin in the presence of different anions. Consequently, all non-native forms of apomyoglobin studied so far share the common important feature of its native structure.  相似文献   

7.
Both the sialoglycoprotein of human erythrocyte membranes, glycophorin, and the sialic acid free protein, obtained by treatment of glycophorin with neuraminidase (EC 3.2.1.18), increase the fluorescence of 8-anilino-1-naphthalene sulfonate (ANS). Binding of ANS to glycophorin is weak compared with the binding to bovine serum albumin (BSA). equilibrium dialysis gives an apparent binding constant of about 4 X 10(3) M(-1) at neutral pH, but Ka increases 1.75 times when NaCl or CaCl2 are added and 10-fold when the pH is lowered to 3.0. Sialic acid groups do not significantly affect ANS binding, although they have some effect at low ionic strength and neutral pH. Fluorescence studies indicate only one to two binding sites for ANS, with apparent pK = 3.8 +/- 0.2, and located close to aromatic residues in glycophorin. Polarization and quantum efficiency of the fluorescence of ANS associated with glycophorin fail to indicate changes in the vicinity of the binding site when the pH is lowered.  相似文献   

8.
Myoglobin is an alpha-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The simultaneous substitution of the two residues increases the susceptibility of the polypeptide chain to misfold, causing amyloid aggregation under physiological condition, i.e., neutral pH and room temperature. The role played by tryptophanyl residues in driving the folding process has been investigated by examining three mutated apomyoglobins, i.e., W7F, W14F, and the amyloid-forming mutant W7FW14F, by an integrated approach based on far-ultraviolet (UV) circular dichroism (CD) analysis, fluorescence spectroscopy, and complementary proteolysis. Particular attention has been devoted to examine the conformational and dynamic properties of the equilibrium intermediate formed at pH 4.0, since it represents the early organized structure from which the native fold originates. The results show that the W → F substitutions at position 7 and 14 differently affect the structural organization of the AGH subdomain of apomyoglobin. The combined effect of the two substitutions in the double mutant impairs the formation of native-like contacts and favors interchain interactions, leading to protein aggregation and amyloid formation.  相似文献   

9.
The pressure dependence of the flexibility of the 8-anilino-1-naphthalene sulfonate (ANS)-apomyoglobin complex was investigated in the range between atmospheric pressure and 2.4 kbar by frequency domain fluorometry. We examined two structural states: native and acidic compact. The conformational dynamics of the ANS-apomyoglobin complex were deduced by studying the emission decay of ANS, which can form a noncovalent complex with the apoprotein in both the native and the acidic compact forms. Because the free fluorophore has a very short lifetime (less than 75 ps), its contribution can be separated from the long-lived emission. The latter arises from ANS molecules bound to the protein and provides information on the structural and dynamic characteristics of the macromolecule. The fluorescence emission decay of the ANS-apomyoglobin complex at neutral pH has a broad fluorescence lifetime distribution (width at half-maximum = 4.1 ns). The small changes in the fluorescence distribution parameters that occur with changes in pressure indicate that the ANS-apomyoglobin complex at neutral pH holds its compactness even at 2.4 kbar. A small contraction of molecular volume has been detected at low pressure, followed by a slight swelling with an increase in flexibility at higher pressures. The heterogeneity of ANS fluorescence in the acidic compact state of apomyoglobin is even greater than that in the native form (distribution width = 10 ns); moreover, the acidic compact state appears more expanded and accessible to solvent molecules than the native state, as suggested by the distribution center, which is 11 ns for the former and 19 ns for the latter. The lifetime distribution center remains constant with increasing pressure, which suggests that no other binding site is formed at high pressure.  相似文献   

10.
Fluorescent probe N-phenyl-1-amino-8-sulfonaphthalene (ANS) was used for studying pH-dependent structural N-F-transition in human serum albumin of two kinds: in commercial albumin and in natural blood serum. The kinetics of ANS fluorescence decay in albumin solutions was measured. There were found two types of the sites occupied by ANS in albumin under physiological conditions (pH 7.4). In the first binding site ANS fluorescence decay time was 16.6 +/- 0.3 nsec and it was not significantly changed at N-F transition (pH 4.0). In the second binding site the decay time was dependent on pH in commercial albumin and was not significantly changed in serum. In the second binding site there were individual differences of ANS decay time (4.3 +/- 0.6 nsec). The observed ANS fluorescence intensity enhancing (about 40-50%) in N-F transition may be explained by an increase of albumin binding sites capacity for ANS.  相似文献   

11.
Apomyoglobins from 13 different mammals were examined for resistance to denaturation by guanidinium chloride. Unfolding was followed by circular dichroism and tryptophan fluorescence and analyzed globally using the two-step, three-state mechanism first described by Barrick and Baldwin (Barrick, D., and Baldwin, R. L. (1993) Biochemistry 32, 3790-3796). With one exception, the rise and fall of Trp fluorescence intensity correlates quantitatively with the native to intermediate to unfolded steps seen in the CD curves. Although the O(2) binding properties of the holoproteins are nearly identical, the unfolding transitions of the apomyoglobins show 600-fold differences in resistance to guanidinium chloride denaturation. Apomyoglobins from diving mammals, particularly from sperm whales, are the most stable, whereas the apoproteins from pig, horse, and sheep are the least stable, indicating selective pressure for resistance to denaturation in the whale proteins. Sequence comparisons suggest that the key stabilizing residues in whale globins are Ala(5), His(12), Ile(28), Thr(51), Ala(53), Ala(74), Lys(87), Lys(140), and Ile(142). Combinations of these residues were substituted into pig myoglobin. The resultant multiple mutants showed stabilities approaching that of recombinant sperm whale apomyoglobin. Thus, comparative mutagenesis can be used to increase heme protein stability and improve expression yields in bacteria without compromising function.  相似文献   

12.
In our earlier communications, we had studied the acid induced unfolding of stem bromelain, glucose oxidase and fetuin [Eur. J. Biochem. 269 (2002) 47; Biochem. Biophys. Res. Comm. 303 (2003) 685; Biochim. Biophys. Acta 1649 (2003) 164] and effect of salts and alcohols on the acid unfolded state of alpha-chymotrypsinogen and stem bromelain [Biochim. Biophy. Acta 1481 (2000) 229; Arch. Biochem. Biophys. 413 (2) (2003) 199]. Here, we report the presence of molten globule like equilibrium intermediate state under alkaline, native and acid conditions in the presence of SDS and butanol. A systematic investigation of sodium dodecyl sulphate and butanol induced conformational alterations in alkaline (U(1)) and acidic (U(2)) unfolded states of horse heart ferricytochrome c was examined by circular dichroism (CD), tryptophan fluorescence and 1-anilino-8-napthalene sulfonate (ANS) binding. The cytochrome c (cyt c) at pH 9 and 2 shows the loss of approximately 61% and 65% helical secondary structure. Addition of increasing concentrations of butanol (0-7.2 M) and sodium dodecyl sulphate (0-5 mM) led to an increase in ellipticity value at 208 and 222 nm, which is the characteristic of formation of alpha-helical structure. Cyt c is a heme protein in which the tryptophan fluorescence is quenched in the native state by resonance energy transfer to the heme group attached to cystines at positions 14 and 17. At alkaline and acidic pH protein shows enhancement in tryptophan fluorescence and quenched ANS fluorescence. Addition of increasing concentration of butanol and SDS to alkaline or acid unfolded state leads to decrease in tryptophan and increase in ANS fluorescence with a blue shift in lambda(max), respectively. In the presence of 7.2 M butanol and 5 mM SDS two different intermediate states I(1) and I(2) were obtained at alkaline and acidic pH, respectively. States I(1) and I(2) have native like secondary structure with disordered side chains (loss of tertiary structure) as predicted from tryptophan fluorescence and high ANS binding. These results altogether imply that the butanol and SDS induced intermediate states at alkaline and acid pH lies between the unfolded and native state. At pH 6, in the presence of 7.2 M butanol or 5 mM SDS leads to the loss of CD bands at 208 and 222 nm with the appearance of trough at 228 nm also with increase in tryptophan and ANS fluorescence in contrast to native protein. This partially unfolded intermediate state obtained represents the folding pathway from native to unfolded structure. To summarize; the 7.2 M butanol and 5 mM SDS stabilizes the intermediate state (I(1) and I(2)) obtained at low and alkaline pH. While the same destabilizes the native structure of protein at pH 6, suggesting a difference in the mechanism of conformational stability.  相似文献   

13.
1-Sulfonato-8-(1')anilinonaphthalene (1,8-ANS) was employed as a fluorescent probe of the fatty acid binding site of recombinant rat intestinal fatty acid binding protein (1-FABP). The enhancement of fluorescence upon binding allowed direct determination of binding affinity by fluorescence titration experiments, and measurement of the effects on that affinity of temperature, pH, and ionic strength. Solvent isotope effects were also determined. These data were compared to results from isothermal titration calorimetry. We obtained values for the enthalpy and entropy of this interaction at a variety of temperatures, and hence determined the change in heat capacity of the system consequent upon binding. The ANS-1-FABP is enthalpically driven; above approximately 14 degrees C it is entropically opposed, but below this temperature the entropy makes a positive contribution to the binding. The changes we observe in both enthalpy and entropy of binding with temperature can be derived from the change in heat capacity upon binding by integration, which demonstrates the internal consistency of our results. Bound ANS is displaced by fatty acids and can itself displace fatty acids bound to I-FABP. The binding site for ANS appears to be inside the solvent-containing cavity observed in the x-ray crystal structure, the same cavity occupied by fatty acid. From the fluorescence spectrum and from an inversion of the Debye-Hueckel formula for the activity coefficients as a function of added salt, we inferred that this cavity is fairly polar in character, which is in keeping with inferences drawn from the x-ray structure. The binding affinity of ANS is considered to be a consequence of both electrostatic and conditional hydrophobic effects. We speculate that the observed change in heat capacity is produced mainly by the displacement of strongly hydrogen-bonded waters from the protein cavity.  相似文献   

14.
Molecular docking and ANS-displacement experiments indicated that 8-anilinonaphthalene sulfonate (ANS) binds the hydrophobic site (H-site) in the active site of dimeric class Mu rGST M1-1. The naphthalene moiety provides most of the van der Waals contacts at the ANS-binding interface while the anilino group is able to sample different rotamers. The energetics of ANS binding were studied by isothermal titration calorimetry (ITC) over the temperature range of 5-30 degrees C. Binding is both enthalpically and entropically driven and displays a stoichiometry of one ANS molecule per subunit (or H-site). ANS binding is linked to the uptake of 0.5 protons at pH 6.5. Enthalpy of binding depends linearly upon temperature yielding a DeltaC(p) of -80+/-4 cal K(-1) mol(-1) indicating the burial of solvent-exposed nonpolar surface area upon ANS-protein complex formation. While ion-pair interactions between the sulfonate moiety of ANS and protein cationic groups may be significant for other ANS-binding proteins, the binding of ANS to rGST M1-1 is primarily hydrophobic in origin. The binding properties are compared with those of other GSTs and ANS-binding proteins.  相似文献   

15.
Although freeze-induced perturbations of the protein native fold are common, the underlying mechanism is poorly understood owing to the difficulty of monitoring their structure in ice. In this report we propose that binding of the fluorescence probe 1-anilino-8-naphthalene sulfonate (ANS) to proteins in ice can provide a useful monitor of ice-induced strains on the native fold. Experiments conducted with copper-free azurin from Pseudomonas aeruginosa, as a model protein system, demonstrate that in frozen solutions the fluorescence of ANS is enhanced several fold and becomes blue shifted relative free ANS. From the enhancement factor it is estimated that, at -13 degrees C, on average at least 1.6 ANS molecules become immobilized within hydrophobic sites of apo-azurin, sites that are destroyed when the structure is largely unfolded by guanidinium hydrochloride. The extent of ANS binding is influenced by temperature of ice as well as by conditions that affect the stability of the globular structure. Lowering the temperature from -4 degrees C to -18 degrees C leads to an apparent increase in the number of binding sites, an indication that low temperature and /or a reduced amount of liquid water augment the strain on the protein tertiary structure. It is significant that ANS binding is practically abolished when the native fold is stabilized upon formation of the Cd(2+) complex or on addition of glycerol to the solution but is further enhanced in the presence of NaSCN, a known destabilizing agent. The results of the present study suggest that the ANS binding method may find practical utility in testing the effectiveness of various additives employed in protein formulations as well as to devise safer freeze-drying protocols of pharmaceutical proteins.  相似文献   

16.
The molten globule (MG) state of proteins is widely detected through binding with 1-anilino-8-naphthalene sulphonate (ANS), a fluorescent dye. This strategy is based upon the assumption that when in molten globule state, the exposed hydrophobic clusters of protein are readily bound by the nonpolar anilino-naphthalene moiety of ANS molecules which then produce brilliant fluorescence. In this work, we explored the acid-induced unfolding pathway of chymopapain, a cysteine proteases from Carica papaya, by monitoring the conformational changes over a pH range 1.0–7.4 by circular dichroism, intrinsic fluorescence, ANS binding, acrylamide quenching, isothermal titration calorimetry (ITC) and dynamic light scattering (DLS). The spectroscopic measurements showed that although maximum ANS fluorescence intensity was observed at pH 1.0, however protein exhibited ∼80% loss of secondary structure which does not comply with the characteristics of a typical MG-state. In contrast at pH 1.5, chymopapain retains substantial amount of secondary structure, disrupted side chain interactions, increased hydrodynamic radii and nearly 30-fold increase in ANS fluorescence with respect to the native state, indicating that MG-state exists at pH 1.5 and not at pH 1.0. ITC measurements revealed that ANS molecules bound to chymopapain via hydrophobic interaction were more at pH 1.5 than at pH 1.0. However, a large number of ANS molecules were also involved in electrostatic interaction with protein at pH 1.0 which, together with hydrophobically interacted molecules, may be responsible for maximum ANS fluorescence. We conclude that maximum ANS-fluorescence alone may not be the criteria for determining the MG of chymopapain. Hence a comprehensive structural analysis of the intermediate is essentially required.  相似文献   

17.
In protein deposition disorders, a normally soluble protein is deposited as insoluble aggregates, referred to as amyloid. The intrinsic effects of specific mutations on the rates of protein aggregation and amyloid formation of unfolded polypeptide chains can be correlated with changes in hydrophobicity, propensity to convert alpha-helical to beta sheet conformation and charge. In this paper, we report the aggregation rates of buffalo, horse and bovine apomyoglobins. The experimental values were compared with the theoretical ones evaluated considering the amino acid differences among the sequences. Our results show that the mutations which play critical roles in the rate-determining step of apomyoglobin aggregation are those located within the N-terminal region of the molecule.  相似文献   

18.
E Bismuto  G Irace  E Gratton 《Biochemistry》1989,28(4):1508-1512
The tryptophanyl fluorescence decays of two myoglobins, i.e., sperm whale and tuna myoglobin, have been examined in the frequency domain with an apparatus which utilizes the harmonic content of a mode-locked laser. Data analysis was performed in terms of continuous distribution of lifetime having a Lorentzian shape. Data relative to sperm whale myoglobin, which possesses two tryptophanyl residues, i.e., Trp-A-5 and -A-12, provided a broad lifetime distribution including decay rates from a few picoseconds to about 10 ns. By contrast, the tryptophanyl lifetime distribution of tuna myoglobin, which contains only Trp-A-12, showed two well-separated and narrow Lorentzian components having centers at about 50 ps and 3.37 ns, respectively. In both cases, the chi 2 obtained from distribution analysis was lower than that provided by a fit using the sum of exponential components. The long-lived components present in the fluorescence decay of the two myoglobins do not correspond to any of those observed for the apoproteins at neutral pH. The tryptophanyl lifetime distribution of sperm whale apomyoglobin consists of two separated Lorentzian components centered at 2.25 and 5.4 ns, whereas that of tuna apomyoglobin consists of a single Lorentzian component, whose center is at 2.19 ns. Acidification of apomyoglobin to pH 3.5 produced a shift of the distribution centers toward longer lifetimes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A molecular model of the acidic compact state of apomyoglobin (A-state) from yellowfin tuna was obtained using molecular dynamics simulations (MD) by calculating multiple trajectories. To cause partial unfolding within a reasonable amount of CPU time, both an acidic environment (pH 3 and 0.15M NaCl) and a temperature jump to 500 K were needed. Twenty-five acidic structures of apomyoglobin were generated by MD, 10 of them can be clustered by RMSD in an average structure having a common hydrophobic core as was reported for acidic sperm whale apomyoglobin, with shortened helices A,G,E, and H (the helix A appears to be translated along the sequence). Prolonging the MD runs at 500 K did not cause further substantial unfolding, suggesting that the ensemble of generated structures is indicative of a region of the conformational space accessible to the apoprotein at acidic pH corresponding to a local energy minimum. The comparison of experimentally determined values of specific spectroscopic properties of the apomyoglobin in acidic salt conditions with the expected ones on the basis of the MD generated structures shows a reasonable agreement considering the characteristic uncertainties of both experimental and simulation techniques. We used frequency domain fluorometry, acrylamide fluorescence quenching, and fluorescence correlation spectroscopy together with far UV circular dichroism to estimate the helical content, the Stern-Volmer quenching constant and the radius of gyration of the protein. Tuna apomyoglobin is a single tryptophan protein and thus, interpretation of its intrinsic fluorescence is simpler than for other proteins. The high sensitivity of the applied fluorescence techniques enabled experiments to be performed under very dilute conditions, that is, at concentrations of subnanomolar for the FCS measurements and 6 muM for the other fluorescence measurements. As high concentrations of proteins can strongly affect the association equilibrium among partially unfolded states, fluorescence techniques can provide complementary information with respect to other techniques requiring higher sample concentrations, such as NMR. The analysis of exposed hydrophobic regions in each of the MD-generated acidic structures reveals potential candidates involved in the aggregation processes of apomyoglobin in the acidic compact state. Our investigation represents an effective model system for studying amyloid fibril formation found in important diseases that are believed to proceed via aggregation of protein in the molten globule state.  相似文献   

20.
The reaction kinetics of native and carbodi-imide-modified tuna and horse heart cytochromes c with both a strong (dithionite) and a relatively weak (ascorbate) reducing agent were studied over a wide range of conditions. In their reactions with dithionite both the native and modified cytochromes exhibit single exponential time courses. The effects of dithionite concentration and ionic strength on the rate of the reduction are complex and can best be explained in terms of the model proposed by Lambeth & Palmer [(1973) J. Biol. Chem. 248, 6095-6103]. According to this model, at low ionic strength the native proteins are reduced almost exclusively by S2O4(2-) whereas the modified proteins showed reactivity towards both S2O4(2-) and SO2.-. These findings are interpreted in terms of the different charge characteristics of the carbodi-imide-modified proteins relative to the native proteins. The findings that the modified proteins react with ascorbate in a biphasic manner are explained as arising from ascorbate binding to a reducible form of the protein, before electron transfer, with an equilibrium between the ascorbate-reducible form of the protein and a non-reducible form. Estimates were obtained for both the ascorbate equilibrium binding constant and the rate constant for the internal electron transfer for both the native and modified horse and tuna proteins. The effect of pH on the reactions indicates that the active reductant in all cases is ascorbate2-. The studies of ascorbate reactivity yield important information concerning the proposed correlation between ascorbate reducibility and the presence of a 695 nm-absorption band, and the study of dithionite reactivity illustrates the effect of protein charge and solution ionic strength on the relative contributions made by the species SO2.- and S2O4(2-) to the reduction of ferricytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号