首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cheng RP  Girinath P  Ahmad R 《Biochemistry》2007,46(37):10528-10537
Ion-pairing interactions are important for protein stabilization. Despite the apparent electrostatic nature of these interactions, natural positively charged amino acids Lys and Arg have multiple methylenes linking the charged functionality to the backbone. Interestingly, the amino acids Lys and Orn have positively charged side chains that differ by only one methylene. However, only Lys is encoded and incorporated into proteins. To investigate the effect of side chain length of Lys on ion-pairing interactions, a series of 12 monomeric alpha-helical peptides containing potential Glu-Xaa (i, i+3), (i, i+4) and (i, i+5) (Xaa = Lys, Orn, Dab, Dap) interactions were studied by circular dichroism (CD) spectroscopy at pH 7 and 2. At pH 7, no Glu-Xaa (i, i+5) interaction was observed, regardless of the Xaa side chain length. Furthermore, only Lys was capable of supporting Glu-Xaa (i, i+3) interactions, whereas any Xaa side chain length supported Glu-Xaa (i, i+4) interactions. Side chain conformational analysis by molecular mechanics calculations showed that the side chain length of Lys enables the Glu-Xaa (i, i+3) interaction with lower energy conformations compared to residues with side chain lengths shorter than that of Lys. Furthermore, these calculated low energy conformers were consistent with conformations of intra-helical Glu-Lys salt bridges in a non-redundant protein structure database. Importantly, the CD spectra for peptides with Glu-Lys interactions did not alter significantly upon changing the pH because of a greater contribution to these interactions by forces other than electrostatics. Incorporating side chains just one methylene shorter (Orn) resulted in significant pH dependence or lack of interaction, suggesting that nature has chosen Lys to form durable interactions with negatively charged functional groups.  相似文献   

2.
Whittington SJ  Creamer TP 《Biochemistry》2003,42(49):14690-14695
Interactions between side chains, and in particular salt bridges, have been shown to be important in the stabilization of secondary structure. Here we investigate the contribution of a salt bridge formed between a lysine and a glutamate to the polyproline II (P(II)) helical content of proline-rich peptides. Since this structure has precisely three residues per turn, charged residues spaced three residues apart are on the same side of the helix and are best situated to interact. By contrast, computer simulations show that charged residues spaced four residues apart are both too far apart to interact strongly and are oriented such that interactions are unlikely. We have measured the P(II) content of peptides containing a lysine and glutamate pair spaced three or four residues apart using circular dichroism spectroscopy. Somewhat surprisingly we find that the P(II) content is insensitive to both the spacing and the pH. These findings indicate that i --> i + 3 salt bridges do not stabilize the P(II) helical conformation. The implications of these observations for both P(II) helix formation and denatured protein conformations are discussed.  相似文献   

3.
Abstract

Whether or not surface salt bridges have a strong stabilizing effect on the native structure in proteins remains uncertain. Previous studies of model peptides have shown that salt bridges spaced at i,i+4 along the chain are more stabilizing than those spaced at i,i+3, with a preference for the order acid-base rather than base-acid from N to C terminus. An analysis of the effect of spacing the ion pairs in short helical peptides is presented, in which acidic and basic side chains spaced two or three residues apart alternate along the chain. The mixed spacing proves to be stabilizing relative to pure spacings. A control peptide in which salt bridges were spaced uniformly three residues apart proved to form a β-sheet structure rather than a-helix. This is due to formation of a silk-like apolar face consisting of alanine side chains; the mesoscopic structure formed by these sheets can be imaged by scanning microscopy.  相似文献   

4.
Among the interactions that stabilize the native state of proteins, the role of electrostatic interactions has been difficult to quantify precisely. Surface salt bridges or ion pairs between acidic and basic side chains have only a modest stabilizing effect on the stability of helical peptides or proteins: estimates are roughly 0.5 kcal/mol or less. On the other hand, theoretical arguments and the occurrence of salt bridge networks in thermophilic proteins suggest that multiple salt bridges may exert a stronger stabilizing effect. We show here that triads of charged side chains, Arg(+)-Glu(-)-Arg(+) spaced at i,i+4 or i,i+3 intervals in a helical peptide stabilize alpha helix by more than the additive contribution of two single salt bridges. The free energy of the triad is more than 1 kcal/mol in excess of the sum of the individual pairs, measured in low salt concentration (10 mM). The effect of spacing the three groups is severe; placing the charges at i,i+4 or i,i+3 sites has a strong effect on stability relative to single bridges; other combinations are weaker. A conservative calculation suggests that interactions of this kind between salt bridges can account for much of the stabilization of certain thermophilic proteins.  相似文献   

5.
The ability of serine phosphate (SerP) or alpha-amino-gamma-phosphonobutyric acid (AbuP) and arginine to form a salt bridge between their side chains appears to be much greater when they are spaced i/i+4 than when they are spaced i/i+3. The side chain-side chain interaction between SerP/Arg and AbuP/Arg, positioned i/i+4, contribute 0.45 and 0.62 kcal mol(-1), respectively, toward stabilizing the alpha-helical conformation of a peptide.  相似文献   

6.
C D Andrew  S Penel  G R Jones  A J Doig 《Proteins》2001,45(4):449-455
A simplistic, yet often used, view of protein stability is that amino acids attract other amino acids with similar polarity, whereas nonpolar and polar side chains repel. Here we show that nonpolar/polar interactions, namely Val or Ile bonding to Lys or Arg in alpha-helices, can in fact be stabilizing. Residues spaced i, i + 4 in alpha-helices are on the same face of the helix, with potential to favorably interact and stabilize the structure. We observe that the nonpolar/polar pairs Ile-Lys, Ile-Arg, and Val-Lys occur in protein helices more often than expected when spaced i, i + 4. Partially helical peptides containing pairs of nonpolar/polar residues were synthesized. Controls with i, i + 5 spacing have the residues on opposite faces of the helix and are less helical than the test peptides with the i, i + 4 interactions. Experimental circular dichroism results were analyzed with helix-coil theory to calculate the free energy for the interactions. All three stabilize the helix with DeltaG between -0.14 and -0.32 kcal x mol(-1). The interactions are hydrophobic with contacts between Val or Ile and the alkyl groups in Arg or Lys. Side chains such as Lys and Arg can thus interact favorably with both polar and nonpolar residues.  相似文献   

7.
A series of 14 residue amphipathic α-helical peptides, in which the sidechains of glutamic acid and lysine have been covalently joined, was synthesized in order to determine the effect of spacing, position and orientation of these lactam bridges. It was found that although an (i, i+3) spacing would position the lactam bridge on the same face of the helix, these lactams with 18-member rings were actually helix-destabilizing regardless of position or location. On the other hand, (i, i+4) lactams with 21-member rings were helix-stabilizing but this was dependent on orientation. Glutamic acid-lysine lactams increased the helical content of the peptide when compared with their linear homologue in benign conditions (50 mM KH2PO4, 100 mM KCl, pH 7). Two Glu-Lys (i, i+4) lactams located at the N- and C-termini gave rise to a peptide with greater than 99% helical content in benign conditions. Peptides with Lys-Glu oriented lactams were random structures in benign conditions but in the presence of 50% TFE could be induced into a helical conformation. The stability of the single-stranded α-helices, as measured by thermal denaturations in 25% TFE indicated that Glu-Lys oriented lactam bridges stabilized the helical conformation relative to the linear unbridged peptide. One Glu-Lys lactam in the middle of the peptide was more effective at stabilizing helical structure than two Glu-Lys lactams positioned one at each end of the molecule. The lactams with the Lys-Glu orientation were destabilizing relative to the unbridged peptide. This study demonstrates that correct orientation and position of a lactam bridge is critical in order to design peptides with high helical content in aqueous media.  相似文献   

8.
The solution structure of a synthetic mutant type I antifreeze protein (AFP I) was determined in aqueous solution at pH 7.0 using nuclear magnetic resonance (NMR) spectroscopy. The mutations comprised the replacement of the four Thr residues by Val and the introduction of two additional Lys-Glu salt bridges. The antifreeze activity of this mutant peptide, VVVV2KE, has been previously shown to be similar to that of the wild type protein, HPLC6 (defined here as TTTT). The solution structure reveals an alphahelix bent in the same direction as the more bent conformer of the published crystal structure of TTTT, while the side chain chi1 rotamers of VVVV2KE are similar to those of the straighter conformer in the crystal of TTTT. The Val side chains of VVVV2KE assume the same orientations as the Thr side chains of TTTT, confirming the conservative nature of this mutation. The combined data suggest that AFP I undergoes an equilibrium between straight and bent helices in solution, combined with independent equilibria between different side chain rotamers for some of the amino acid residues. The present study presents the first complete sequence-specific resonance assignments and the first complete solution structure determination by NMR of any AFP I protein.  相似文献   

9.
Six designed mutants of T4 lysozyme were created in an attempt to create putative salt bridges on the surface of the protein. The first three of the mutants, T115E (Thr 115 to Glu), Q123E, and N144E, were designed to introduce a new charged side chain close to one or more existing charged groups of the opposite sign on the surface of the protein. In each of these cases the putative electrostatic interactions introduced by the mutation include possible salt bridges between residues within consecutive turns of an alpha-helix. Effects of the mutations ranged from no change in stability to a 1.5 degrees C (0.5 kcal/mol) increase in melting temperature. In two cases, secondary (double) mutants were constructed as controls in which the charge partner was removed from the primary mutant structure. These controls proteins indicate that the contributions to stability from each of the engineered salt bridges is very small (about 0.1-0.25 kcal/mol in 0.15 M KCl). The structures of the three primary mutants were determined by X-ray crystallography and shown to be essentially the same as the wild-type structure except at the site of the mutation. Although the introduced charges in the T115E and Q123E structures are within 3-5 A of their intended partner, the introduced side chains and their intended partners were observed to be quite mobile. It has been shown that the salt bridge between His 31 and Asp 70 in T4 lysozyme stabilizes the protein by 3-5 kcal/mol [Anderson, D. E., Becktel, W. J., & Dahlquist, F. W. (1990) Biochemistry 29, 2403-2408]. To test the effectiveness of His...Asp interactions in general, three additional double mutants, K60H/L13D, K83H/A112D, and S90H/Q122D, were created in order to introduce histidine-aspartate charge pairs on the surface of the protein. Each of these mutants destabilizes the protein by 1-3 kcal/mol in 0.15 M KCl at pH values from 2 to 6.5. The X-ray crystallographic structure of the mutant K83H/A112D has been determined and shows that there are backbone conformational changes of 0.3-0.6 A extending over several residues. The introduction of the histidine and aspartate presumably introduces strain into the folded protein that destabilizes this variant. It is concluded that pairs of oppositely charged residues that are on the surface of a protein and have freedom to adopt different conformations do not tend to come together to form structurally localized salt bridges. Rather, such residues tend to remain mobile, interact weakly if at all, and do not contribute significantly to protein stability. It is argued that the entropic cost of localizing a pair of solvent-exposed charged groups on the surface of a protein largely offsets the interaction energy expected from the formation of a defined salt bridge. There are examples of strong salt bridges in proteins, but such interactions require that the folding of the protein provides the requisite driving energy to hold the interacting partners in the correct rigid alignment.  相似文献   

10.
We introduce here i, i + 3 and i, i + 4 side chain interactions into the modified Lifson-Roig helix-coil theory of Doig et al. (1994, Biochemistry 33:3396-3403). The helix/coil equilibrium is a function of initiation, propagation, capping, and side chain interaction parameters. If each of these parameters is known, the helix content of any isolated peptide can be predicted. The model considers every possible conformation of a peptide, is not limited to peptides with only a single helical segment, and has physically meaningful parameters. We apply the theory to measure the i, i + 4 interaction energies between Phe and Met side chains. Peptides with these residues spaced i, i + 4 are significantly more helical than controls where they are spaced i, i + 5. Application of the model yields delta G for the Phe-Met orientation to be -0.75 kcal.mol-1, whereas that for the Met-Phe orientation is -0.54 kcal.mol-1. These orientational preferences can be explained, in part, by rotamer preferences for the interacting side chains. We place Phe-Met i, i + 4 at the N-terminus, the C-terminus, and in the center of the host peptide. The model quantitatively predicts the observed helix contents using a single parameter for the side chain-side chain interaction energy. This result indicates that the model works well even when the interaction is at different locations in the helix.  相似文献   

11.
The electrostatic free energy contribution of an ion pair in a protein depends on two factors, geometrical orientation of the side-chain charged groups with respect to each other and the structural context of the ion pair in the protein. Conformers in NMR ensembles enable studies of the relationship between geometry and electrostatic strengths of ion pairs, because the protein structural contexts are highly similar across different conformers. We have studied this relationship using a dataset of 22 unique ion pairs in 14 NMR conformer ensembles for 11 nonhomologous proteins. In different NMR conformers, the ion pairs are classified as salt bridges, nitrogen-oxygen (N-O) bridges and longer-range ion pairs on the basis of geometrical criteria. In salt bridges, centroids of the side-chain charged groups and at least a pair of side-chain nitrogen and oxygen atoms of the ion-pairing residues are within a 4 A distance. In N-O bridges, at least a pair of the side-chain nitrogen and oxygen atoms of the ion-pairing residues are within 4 A distance, but the distance between the side-chain charged group centroids is greater than 4 A. In the longer-range ion pairs, the side-chain charged group centroids as well as the side-chain nitrogen and oxygen atoms are more than 4 A apart. Continuum electrostatic calculations indicate that most of the ion pairs have stabilizing electrostatic contributions when their side-chain charged group centroids are within 5 A distance. Hence, most (approximately 92%) of the salt bridges and a majority (68%) of the N-O bridges are stabilizing. Most (approximately 89%) of the destabilizing ion pairs are the longer-range ion pairs. In the NMR conformer ensembles, the electrostatic interaction between side-chain charged groups of the ion-pairing residues is the strongest for salt bridges, considerably weaker for N-O bridges, and the weakest for longer-range ion pairs. These results suggest empirical rules for stabilizing electrostatic interactions in proteins.  相似文献   

12.
A mechanism for the evolution of phosphorylation sites   总被引:1,自引:0,他引:1  
Pearlman SM  Serber Z  Ferrell JE 《Cell》2011,147(4):934-946
Protein phosphorylation provides a mechanism for the rapid, reversible control of protein function. Phosphorylation adds negative charge to amino acid side chains, and negatively charged amino acids (Asp/Glu) can sometimes mimic the phosphorylated state of a protein. Using a comparative genomics approach, we show that nature also employs this trick in reverse by evolving serine, threonine, and tyrosine phosphorylation sites from Asp/Glu residues. Structures of three proteins where phosphosites evolved from acidic residues (DNA topoisomerase II, enolase, and C-Raf) show that the relevant acidic residues are present in salt bridges with conserved basic residues, and that phosphorylation has the potential to conditionally restore the salt bridges. The evolution of phosphorylation sites from glutamate and aspartate provides a rationale for why phosphorylation sometimes activates proteins, and helps explain the origins of this important and complex process.  相似文献   

13.
Do salt bridges stabilize proteins? A continuum electrostatic analysis   总被引:30,自引:21,他引:9       下载免费PDF全文
The electrostatic contribution to the free energy of folding was calculated for 21 salt bridges in 9 protein X-ray crystal structures using a continuum electrostatic approach with the DELPHI computer-program package. The majority (17) were found to be electrostatically destabilizing; the average free energy change, which is analogous to mutation of salt bridging side chains to hydrophobic isosteres, was calculated to be 3.5 kcal/mol. This is fundamentally different from stability measurements using pKa shifts, which effectively measure the strength of a salt bridge relative to 1 or more charged hydrogen bonds. The calculated effect was due to a large, unfavorable desolvation contribution that was not fully compensated by favorable interactions within the salt bridge and between salt-bridge partners and other polar and charged groups in the folded protein. Some of the salt bridges were studied in further detail to determine the effect of the choice of values for atomic radii, internal protein dielectric constant, and ionic strength used in the calculations. Increased ionic strength resulted in little or no change in calculated stability for 3 of 4 salt bridges over a range of 0.1-0.9 M. The results suggest that mutation of salt bridges, particularly those that are buried, to "hydrophobic bridges" (that pack at least as well as wild type) can result in proteins with increased stability. Due to the large penalty for burying uncompensated ionizable groups, salt bridges could help to limit the number of low free energy conformations of a molecule or complex and thus play a role in determining specificity (i.e., the uniqueness of a protein fold or protein-ligand binding geometry).  相似文献   

14.
The helix-stabilizing effects of repeating pairs of Asp-Arg and Glu-Arg residues have been characterized using a peptide system of the same design used earlier to study Glu-Lys (Marqusee, S. & Baldwin, R.L., 1987, Proc. Natl. Acad. Sci. USA 84, 8898-8902) and Asp-Lys ion pairs (Marqusee, S. & Baldwin, R.L., 1990, In Protein Folding [Gierasch, L.M. & King, J., Eds.], pp. 85-94, AAAS, Washington, D.C.). The consequences of breaking ion pair and charge-helix dipole interactions by titration to pH 2 have been compared with the results of screening these interactions with NaCl at pH 7.0 and pH 2.5. The four peptides in each set contain three pairs of acidic (A) and basic (B) residues spaced either i, i + 4 or i, i + 3 apart. In one peptide of each kind the pairwise order of residues is AB, with the charges oriented favorably to the helix macrodipole, and in the other peptide the order is BA. The results are as follows: (1) Remarkably, both Asp-Arg and Glu-Arg peptides show the same pattern of helix stabilization at pH 7.0 found earlier for Glu-Lys and Asp-Lys peptides: i + 4 AB > i + 4 BA approximately i + 3 AB > i + 3 BA. (2) The ion pairs and charge-helix dipole interactions cannot be cleanly separated, but the results suggest that both interactions make important contributions to helix stability.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Peptide side chain interactions were studied by molecular dynamics simulation using explicit solvent on a peptide with the sequence AAARAAAAEAAEAAAARA. Three different protonation states of the glutamic acid side chains were simulated for four 20 ns runs each, a total simulation time of 240 ns. Two different salt bridge geometries were observed and the preferred geometry was found to depend on Glu — Arg residue spacing. Stable charge clusters were also observed, particularly in the fully charged peptide. Salt bridges were selectively interrupted upon protonation, with concomitant changes in secondary structure. The fully charged peptide was highly helical between residues 9 and 13, although protonation increased helicity near the N-terminus. The contribution of salt bridges to helix stability therefore depends on both position and relative position of charged residues within a sequence.  相似文献   

16.
Scott KA  Alonso DO  Pan Y  Daggett V 《Biochemistry》2006,45(13):4153-4163
Molecular dynamics simulations can be used to reveal the detailed conformational behaviors of peptides and proteins. By comparing fragment and full-length protein simulations, we can investigate the role of each peptide segment in the folding process. Here, we take advantage of information regarding the helix formation process from our previous simulations of barnase and protein A as well as new simulations of four helical fragments from these proteins at three different temperatures, starting with both helical and extended structures. Segments with high helical propensity began the folding process by tethering the chain through side chain interactions involving either polar interactions, such as salt bridges, or hydrophobic staples. These tethers were frequently nonnative (i.e., not i --> i + 4 spacing) and provided a scaffold for other residues, thereby limiting the conformational search. The helical structure then propagated on both sides of the tether. Segments with low stability and propensity formed later in the folding process and utilized contacts with other portions of the protein when folding. These helices formed via a tertiary contact-assisted mechanism, primarily via hydrophobic contacts between residues distant in sequence. Thus, segments with different helical propensities appear to play different roles during protein folding. Furthermore, the active role of nonlocal side chains in helix formation highlights why we must move beyond simple hierarchical models of protein folding.  相似文献   

17.
Taylor JW 《Biopolymers》2002,66(1):49-75
Side-chain lactam bridges linking amino acid residues that are spaced several residues apart in the linear sequence offer a convenient and flexible method for introducing conformational constraints into a peptide structure. The availability of a variety of selectively cleavable protecting groups for amines and carboxylic acids allows for several approaches to the synthesis of monocyclic, dicyclic, and bicyclic lactam-bridged peptides by solid-phase methods. Multicyclic structures are also accessible, but segment-condensation syntheses with solution-phase cyclizations are most likely to provide the best synthetic approach to these more complex constrained peptides. Lactam bridges linking (i, i + 3)-, (i, i + 4), and (i, i + 7)-spaced residue pairs have all proven useful for stabilization of alpha helices, and (i, i + 3)-linked residues have also been demonstrated to stabilize beta-turns. These structures are finding an increasing number of applications in protein biology, including studies of protein folding, protein aggregation, peptide ligand-receptor recognition, and the development of more potent peptide therapeutics. Defining the functional roles of the amphiphilic alpha-helices in medium-sized peptide hormones, and studying helix propagation from rigid, alpha-helix initiating bicyclic peptides are among the most exciting developments currently underway in this field.  相似文献   

18.
Marti DN  Bosshard HR 《Biochemistry》2004,43(39):12436-12447
The pH-dependent stability of a protein is strongly affected by electrostatic interactions between ionizable residues in the folded as well as unfolded state. Here we characterize the individual contributions of charged Glu and His residues to stability and determine the NMR structure of the designed, heterodimeric leucine zipper AB consisting of an acidic A chain and a basic B chain. Thermodynamic parameters are compared with those of the homologous leucine zipper AB(SS) in which the A and B chains are disulfide-linked. NMR structures of AB based on (1)H NMR data collected at 600 MHz converge, and formation of the same six interchain salt bridges found previously in disulfide-linked AB(SS) [Marti, D. N., and Bosshard, H. R. (2003) J. Mol. Biol. 330, 621-637] is indicated. While the structures of AB and AB(SS) are very similar, their pH-dependent relative stabilities are strikingly different. The stability of AB peaks at pH approximately 4.5 and is higher at pH 8 than at pH 2. In contrast, AB(SS) is most stable at acidic pH where no interhelical salt bridges are formed. The different energetic contributions of charged Glu and His residues to stability of the two coiled coil structures were evaluated from pK(a) shifts induced by folding. The six charged Glu residues involved in salt bridges stabilize leucine zipper AB by 4.5 kJ/mol yet destabilize disulfide-linked AB(SS) by -1.1 kJ/mol. Two non-ion-paired Glu charges destabilize AB by only -1.8 kJ/mol but AB(SS) by -5.6 kJ/mol. The higher relative stability of AB at neutral pH is not caused by more favorable electrostatic interactions in the folded leucine zipper. It is due mainly to unfavorable electrostatic interactions in the unfolded A and B chains and may therefore be called an inverse electrostatic effect. This study illustrates the importance of residual interactions in the unfolded state and how the energetics of the unfolded state affect the stability of the folded protein.  相似文献   

19.
Salmon calcitonin S-sulfonated analog (abbreviated as [S-SO(3)(-)]rsCT) was prepared by introducing two sulfonic groups into the side chains of Cys1 and Cys7 of recombinant salmon calcitonin. The hypocalcemic potency of this open-chain analog is 5500IU/mg, which is about 30% higher than that (4500IU/mg) of the wild type. The solution conformation of [S-SO(3)(-)]rsCT was studied in aqueous trifluoroethanol solution by CD, 2D-NMR spectroscopy, and distance geometry calculations. In the mixture of 60% TFE and 40% water, the peptide assumes an amphipathic alpha-helix in the region of residues 4-22, which is one turn longer than that of the native sCT. The structural feature analysis of the peptide revealed the presence of hydrophobic surface composed of five hydrophobic side chains of residues Leu4, Leu9, Leu12, Leu16, and Leu19, and a network of salt-bridges that consisted of a tetrad of oppositely charged side chains (Cys7-SO(3)(-)-Lys11(+)-Glu15(-)-Lys18(+)). The multiple salt bridges resulted in the stabilization of the longer amphipathic alpha-helix. Meanwhile, the higher hypocalcemic potency of the peptide could be attributed to the array of hydrophobic side chains of five leucine residues of the amphipathic alpha-helix.  相似文献   

20.
Many of the interactions that stabilize proteins are co-operative and cannot be reduced to a sum of pairwise interactions. Such interactions may be analysed by protein engineering methods using multiple thermodynamic cycles comprising wild-type protein and all combinations of mutants in the interacting residues. There is a triad of charged residues on the surface of barnase, comprising residues Asp8, Asp12 and Arg110, that interact by forming two exposed salt bridges. The three residues have been mutated to alanine to give all the single, double and triple mutants. The free energies of unfolding of wild-type and the seven mutant proteins have been determined and the results analysed to give the contributions of the residues in the two salt bridges to protein stability. It is possible to isolate the energies of forming the salt bridges relative to the solvation of the separated ions by water. In the intact triad, the apparent contribution to the stabilization energy of the protein of the salt bridge between Asp12 and Arg110 is -1.25 kcal mol-1, whereas that of the salt bridge between Asp8 with Arg110 is -0.98 kcal mol-1. The strengths of the two salt bridges are coupled: the energy of each is reduced by 0.77 kcal mol-1 when the other is absent. The salt-linked triad, relative to alanine residues at the same positions, does not contribute to the stability of the protein since the favourable interactions of the salt bridges are more than offset by other electrostatic and non-electrostatic energy terms. Salt-linked triads occur in other proteins, for example, haemoglobin, where the energy of only the salt-bridge term is important and so the coupling of salt bridges could be of general importance to the stability and function of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号