首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The ocular ciliary epithelium is a bilayer of neuroepithelial cells specialized in the secretion of aqueous humor fluid and the regulation of intraocular pressure. In this study, we report on the expression of the regulatory peptide neurotensin (NT) and a set of differentiated neuroendocrine markers including neurotensin receptors (NTrs), the prohormone convertases furin, PC1, and PC2, and the neuroendocrine polypeptide 7B2 in the ciliary epithelium. Using a human cell line, ODM-2, derived from the nonpigmented ciliary epithelium, we demonstrate that (1) NT expression is highly activated by nerve growth factor, glucocorticoid, and activators of adenylate cyclase; (2) NTr expression is up-regulated by selective ligand-activated β2-adrenergic receptor; and (3) PC1 and PC2 expression are up-regulated via distinct signaling transduction pathways. PC1 gene expression is activated by phorbol ester, and PC2 by the same inducers as those of NT expression. A radioimmunoassay for NT detected an NT-like immunoreactivity in human ciliary epithelium and ODM-2 cell extracts, in aqueous humor, and in conditioned culture medium. The results support the view that the entire ciliary epithelium functions as a neuroendocrine tissue, synthesizing, processing, and releasing NT into the aqueous humor where it may exert important physiological functions through autocrine and/or paracrine mechanisms.  相似文献   

2.
Prostate cancer PC3 cells expressed constitutive protein kinase C (PKC) activity that under basal conditions suppressed neurotensin (NT) receptor function. The endogenous PKC activity, assessed using a cell-based PKC substrate phosphorylation assay, was diminished by PKC inhibitors and enhanced by phorbol myristic acid (PMA). Accordingly, PKC inhibitors (staurosporine, Go-6976, Go-6983, Ro-318220, BIS-1, chelerythrine, rottlerin, quercetin) enhanced NT receptor binding and NT-induced inositol phosphate (IP) formation. In contrast, PMA inhibited these functions. The cells expressed conventional PKCs (, βI) and novel PKCs (δ, ε), and the effects of PKC inhibitors on NT binding were blocked by PKC downregulation. The inhibition of NT binding by PMA was enhanced by okadaic acid and blocked by PKC inhibitors. However, when some PKC inhibitors (rottlerin, BIS-1, Ro-318220, Go-69830, quercetin) were used at higher concentrations (> 2 μM), they had a different effect characterized by a dramatic increase in NT binding and an inhibition of NT-induced IP formation. The specificity of the agents implicated novel PKCs in this response and indeed, the inhibition of NT-induced IP formation was reproduced by PKCδ or PKCε knockdown. The inhibition of IP formation appeared to be specific to NT since it was not observed in response to bombesin. Scatchard analyses indicated that the PKC-directed agents modulated NT receptor affinity, not receptor number or receptor internalization. These findings suggest that PKC participates in heterologous regulation of NT receptor function by two mechanisms: a) — conventional PKCs inhibit NT receptor binding and signaling; and b) — novel PKCs maintain the ability of NT to stimulate PLC. Since NT can activate PKC upon binding to its receptor, it is possible that NT receptor is also subject to homologous regulation by PKC.  相似文献   

3.
Neurotensin receptor type-1 (NTSR1) is a member of the G-protein-coupled receptor (GPCR) family. The natural ligand of NTSR1 is neurotensin (NT), a neuromodulator of the central nervous system. Because NT is also involved in many oncogenic actions, the signaling mediator NTSR1 is a significant molecular target in medicinal and therapeutic fields. In the current study, we constructed a fluorescence-based microbial yeast biosensor that can monitor the activation of human NTSR1 signaling responding to its agonist. To increase the sensitivity of the biosensor, a yeast strain with the green fluorescent protein (GFP) reporter gene was genetically engineered to enhance binding with human NTSR1 expressed on the membrane. Following previous reports, the 5 carboxy-terminal amino acid residues of the guanine nucleotide binding protein α-subunit (Gα) in yeast Gpa1p were substituted with the equivalent human Gαq sequences (Gpa1/Gαq transplant). After optimizing the assay conditions, the Gα-engineered yeast demonstrated significantly improved sensing for NTSR1 signaling. Because detection using a GFP fluorescence reporter considerably simplifies the measurement procedure, this microbial fluorescence sensor holds promise for use in the diagnosis of NTSR1-associated diseases and the development of agonists.  相似文献   

4.
Neurotensin (NT) is now reasonably well established as a neurotransmitter or neuromodulator candidate in the CNS. In the present study, we characterized the NT receptors in dispersed cells from the anterior lobe of rat pituitary and investigated the involvement of both cyclic AMP and calcium in the release of prolactin (PRL) induced by NT receptor stimulation. The [3H]NT binding to membranes from anterior pituitary dispersed cells was found saturable and stereospecific. Scatchard analysis of the data gave a straight line indicating a Bmax value of 121 +/- 11 fmol/mg protein and a KD value of 1.4 +/- 0.2 nM. The calculated IC50 values for [3H]NT binding were 5.8 nM for NT, 7.8 nM for L-Phe-NT, and 3,000 nM for the pharmacologically inactive form D-Phe-NT. NT, up to a concentration of 1 microM, did not affect the cyclic AMP generating system in homogenates of anterior pituitary from male or lactating female rats. The same pattern of results was obtained for cyclic AMP formation in intact cells. NT and its analogs stereospecifically enhanced the influx of calcium into dispersed cells from rat anterior pituitary. The effect was time- and dose-dependent. It appeared to be associated with neurotransmitter-operated calcium channels since: preincubation of the cells with tetrodotoxin did not affect the increase in calcium influx induced by NT; concentrations of verapamil that counteract the influx of calcium induced by potassium lacked the capacity to modify the influx of calcium induced by NT; and NT lost its capacity to release PRL in the absence of extracellular calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
R Kerouac  S St-Pierre  F Rioux 《Peptides》1984,5(4):695-699
Histamine releasing effects of neurotensin (NT) and several NT fragments and structural analogues were measured in the rat perfused hindquarter. The results show that the chemical groups responsible for histamine release are located in the C-terminal sequence Arg9-Pro10-Tyr11-Ile12-Leu13-OH. Both the spatial configuration and positive charge of Arg8 and Arg9 appear to contribute to the histamine releasing effect of NT. Optimization of the histamine releasing effect of NT requires both a free C-terminal carboxyl group and the presence in position 11 of NT of an aromatic residue, with the L-configuration, bearing an heteroatom capable of hydrogen bonding with the receptor. The results indicate that the structural requirements of NT to induce histamine release from the rat perfused hindquarter are similar to those involved in other peripheral biological actions of NT.  相似文献   

6.
Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor.Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.  相似文献   

7.
8.
9.
Neurotensin (NT), a tridecapeptide found in the mammalian brain and peripheral tissues, induces a decrease in food intake after central administration. In this investigation, we examine whether the histaminergic system is involved in NT-induced suppression of feeding. Intracerebroventricular injection of NT (0.1–1 nmol/mouse) led to dose-dependent inhibition of food intake in fasted ddY mice. The anorectic effect induced by NT (0.1 nmol/mouse) was ameliorated upon co-administration of pyrilamine (3 nmol/mouse), an antagonist for histomine H1 receptor. The NT-induced anorectic effect was partially ameliorated in H1 knockout mice. The findings suggest that the H1 receptor in part mediates the NT-induced suppression of food intake.  相似文献   

10.
Experiments were performed to relate receptor binding to biologic activity for the contractile effect of neurotensin (NT) in guinea pig ileum. The contractile response was examined on pieces of ileum under 1 g tension in a 5 ml bath of oxygenated Tyrode's at 38°C. NT contracted the longitudinal muscle (ED50, 0.3 nM), the 2–3 g response peaking at 1 min and fading rapidly. In the presence of atropine (1 μM), ≥50% of the response was blocked and the residual effect gave an ED50 of 1.4 nM. In the presence of atropine and CP-96,345, a substance P receptor antagonist (0.2 μM), no contraction was observed at 20 nM NT. Thus, there were two components to the response, one involving acetylcholine (ED50, 0.3 nM) and one substance P (ED50, 1.4 nM). Using membrane preparations and 125I-labeled NT, specific, high affinty receptors for NT were demonstrated in the muscle and myenteric plexus. Scatchard analyses indicated the presence of two binding sites (Kds: 0.1 nM and 2 nM). Sodiu ion and GTP analogs inhibited binding. Binding and biologic activity were similar in regard to dependence on specific groups within NT and sensitivity to metal ions. The high potency of Hg++ was consistent with an involvement of free sulfhydryl group(s) in the binding reaction; this was supported by work with SH-directed agents. The results suggest that two receptor types or configurations may mediate the two components of the contractile effect of NT on guinea pig ileum.  相似文献   

11.
Neuronal apoptosis within the central nervous system (CNS) is a characteristic feature of AIDS dementia, and it represents a common mechanism of neuronal death induced by neurotoxins (e.g., glutamate) released from human immunodeficiency virus (HIV)-infected macrophages (HIV/macrophage-induced neurotoxicity). Neuronal apoptosis may result from activation of the intrinsic (mitochondrial/bcl-2 regulated) or extrinsic (death receptor) pathways, although which pathway predominates in CNS HIV infection is unknown. Apoptosis initiated by the intrinsic pathway is typically blocked by antiapoptosis Bcl-2 family proteins, such as Bcl-2 and Bcl-xL, but whether these can block HIV/macrophage-induced neuronal apoptosis is unknown. To determine the potential role of the Bcl-2 family in HIV/macrophage-induced neuronal apoptosis, we developed a unique in vitro model, utilizing the NT2 neuronal cell line, primary astrocytes and macrophages, and primary CNS HIV type 1 (HIV-1) isolates. We validated our model by demonstrating that NT2.N neurons are protected against HIV-infected macrophages by N-methyl-D-aspartate (NMDA) glutamate receptor antagonists, similar to effects seen in primary neurons. We then established stable NT2.N neuronal lines that overexpress Bcl-2 or Bcl-xL (NT2.N/bcl-2 and NT2.N/bcl-xL, respectively) and determined their sensitivity to macrophages infected with primary R5, X4, and R5/X4 HIV-1 isolates. We found that NT2.N/bcl-2 and NT2.N/bcl-xL neurons were resistant to apoptosis induced by either R5, X4, or R5/X4 isolates and that resistance was abrogated by a Bcl-2 antagonist. Thus, the NMDA receptor/bcl-2-regulated apoptotic pathway contributes significantly to HIV/macrophage-induced neuronal apoptosis, and Bcl-2 family proteins protect neurons against the spectrum of primary HIV-1 isolates. Modulation of bcl-2 gene expression may therefore offer adjunctive neuroprotection against development of AIDS dementia.  相似文献   

12.
The effects of intracerebroventricular (ICV) administration of neurotensin (NT) before a meal on intestinal postprandial motility were examined in conscious rats chronically fitted with intraparietal Nichrome electrodes in the duodeno-jejunum. The effects were compared with those of two analogues, [D-Tyr11]NT and [D-Trp11]NT, resistant to degradation by brain peptidases. NT (10 μg ICV) delayed the occurrence of postprandial disruption of duodenal motility and blocked it on the jejunum. [D-Tyr11]NT and [D-Trp11]NT (1 μg ICV) elicited the same effects but at a ten-fold lower dose. NT administered peripherally just before a meal significantly lengthened the duration of the postprandial motor pattern. The central effect of NT on the fed pattern involved dopaminergic neurons as it was mimicked by dopamine, blocked by haloperidol and partly antagonized by either sulpiride or (+) SCH 23390. It is concluded that: 1) both D1 and D2 receptors are involved in the blocking effect of the postprandial disruption induced by central NT; 2) that [D-Tyr11]NT and [D-Trp11]NT are potent agonists at NT receptors in the brain.  相似文献   

13.
Antisera towards neurotensin (NT) and the structurally related peptide, LANT6, were used to characterize immunoreactive peptides and proteins in extracts of chicken tissues. A 17 kDa protein was identified by Western blotting as a potential precursor to NT and LANT6. However, the posttranslational processing of this common precursor appeared to be tissue specific, giving rise to disproportionate amounts of NT and LANT6, along with varying expression of a large molecular LANT6 (Mr, 15 kDa). The intestinal cells containing immunoreactive NT, LANT6, and large molecular LANT6 behaved similarly during fractionation by size and density. These activities also banded together in particles resembling vesicles during centrifugation of isotonic homogenates of tissue. These results suggest that chicken NT and LANT6 are biosynthesized as parts of the same precursor, the processing of which can give rise to a variety of products stored within secretory vesicles.  相似文献   

14.
One of the primary inactivating cleavages of neurotensin (NT) by rat brain synaptic membranes occurs at the Arg8-Arg9 peptide bond, leading to the formation of NT1-8 and NT9-13. The involvement at this site of a recently purified metalloendopeptidase was demonstrated by the use of its specific inhibitor, N-[1(R,S)-carboxy-2-phenylethyl]-alanylalanylphenylalanine-p-amino -benzoate, which exerts an inhibition on NT1-8 formation with an IC50 (0.6 microM) close to its Ki for the purified metalloendopeptidase (1.94 microM). Furthermore, we established the role of a postproline dipeptidyl-aminopeptidase in the secondary processing of NT9-13 formation.  相似文献   

15.
The mechanism by which neurotensin (NT) promotes the growth of prostate cancer epithelial cells is not yet defined. Here, androgen-independent PC3 cells, which express high levels of the type 1 NT-receptor (NTR1), are used to examine the involvement of epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (ERK, SAPK/JNK and p38), PI3 kinase and PKC in the mitogenic effect of NT. NT dose dependently (0.1–30 nM) enhanced phosphorylation of EGFR, ERK and Akt, reaching maximal levels within 3 min as measured by Western blotting. These effects were associated with an accumulation of EGF-like substance(s) in the medium (assayed by EGFR binding) and a 2-fold increase in DNA synthesis (assayed by [3H]thymidine incorporation). The DNA synthesis enhancement by NT was non-additive with that of EGF. The NT-induced stimulation of EGFR/ERK/Akt phosphorylation and DNA synthesis was inhibited by EGFR-tyrosine kinase inhibitors (AG1478, PD153035), metallo-endopeptidase inhibitor phosphoramidon and by heparin, but not by neutralizing anti-EGF antibody. Thus, transactivation of EGFR by NT involved heparin-binding EGF (HB-EGF or amphiregulin) rather than EGF. The effects of NT on EGFR/ERK/Akt activation and DNA synthesis were attenuated by PLC-inhibitor (U73122), PKC-inhibitors (bisindolylmaleimide, staurosporine, rottlerin), MEK inhibitor (U0126) and PI3 kinase inhibitors (wortmannin, LY 294002). We conclude that NT stimulated mitogenesis in PC3 cells by a PKC-dependent ligand-mediated transactivation of EGFR, which led to stimulation of the Raf–MEK–ERK pathway in a PI3 kinase-dependent manner.  相似文献   

16.
Neurotensin (NT) is an endogenous tridecapeptide found in the central nervous system (CNS) and in peripheral tissues. Neurotensin exerts a wide range of physiological effects and it has been found to play a critical role in a number of human diseases, such as schizophrenia, Parkinson’s disease and drug addiction. The discovery of small-molecule non-peptide neurotensin receptor (NTSR) modulators would represent an important breakthrough as such compounds could be used as pharmacological tools, to further decipher the cellular functions of neurotensin, and potentially as therapeutic agents to treat human disease. Herein, we report the identification of non-peptide low-micromolar neurotensin receptor 1 (NTSR1) full agonists, discovered through structural optimization of the known NTSR1 partial agonist 1. In vitro cellular screenings, based on an intracellular Ca2+ mobilization assay, revealed our best hit molecule 8 (SR-12062) to have an EC50 of 2 μM at NTSR1 with full agonist behaviour (Emax = 100%), showing a higher efficacy and ∼90-fold potency improvement compared to parent compound 1 (EC50 = 178 μM; Emax = 17%).  相似文献   

17.
The presence of neurotensin receptors and endopeptidase 24.11 (E-24.11) in 16 human meningioma specimens, obtained at surgery, was assessed by measuring the binding of 125I-[tyrosyl3]neurotensin(1–13) (125I-NT) and the inhibitor 3H-N((2RS)-3-hydroxyaminocarbonyl-2-benzyl-1-oxopropyl)glycine (3H-HACBO-Gly), for the receptor and enzyme, respectively. E-24.11 activity was also measured. Autoradiography, on the 16 meningiomas, showed that specific 125I-NT labeling (nonspecific labeling was assessed in the presence of excess NT) was exclusively located in the meningothelial regions. In contrast, specific 3H-HACBO-Gly labeling (nonspecific labeling was assessed in the presence of an excess of the E-24.11 inhibitor thiorphan) was exclusively found in fibroblastic regions. No specific labeling of either ligand was found on collagen or blood vessels. In vitro binding assays were performed on membranes of 10 of the 16 meningiomas. In the 4 meningiomas rich in meningothelial cells, 125I-NT specifically bound to one population of sites with Bmax ranging from 57 to 405 fmol/mg protein and Kd around 0.3 nM. These sites share common properties with the brain NT receptor, since the carboxy terminal acetyl NT(8–13) fragment bound to the same sites but with a higher affinity. The carboxy terminal analogue of NT, neuromedin N, also bound to the same sites with a 10-fold lower affinity and the sites were bradykinin and levocabastine insensitive. In the 4 meningiomas rich in fibroblastic cells, 3H-HACBO-Gly specifically bound to one population of sites with Bmax ranging from 251 to 739 fmol/mg protein and Kd around 2.8 nM. In agreement with the binding data, E-24.11 activity, expressed in fmol 3H-[D-Ala2]leucine enkephalin degraded/min/mg protein, ranged from 102 to 281 and was specifically inhibited by the E-24.11 inhibitor retrothiorphan R, indicating the presence of biologically active E-24.11 in the meningiomas. In the 2 meningiomas poor in tumoral cells and rich in collagen bundles, no specific binding was found with either ligand. The presence, in abundance, of NT receptors and E-24.11 on the meningothelial components and on the fibroblastic components of the meningiomas, respectively, is a new indicator of the duality of the arachnoid cell from which these tumors arise. These markers may be useful for the classification of the histologic phenotypes of the meningiomas, and for clinical diagnosis of small meningiomas using SPECT and for the treatment of surgically inaccessible meningiomas.  相似文献   

18.
Vav2 is a member of the Vav family that serves as guanine nucleotide exchange factors (GEFs) for the Rho family of Ras-related GTPases. Unlike Vav1, whose expression is restricted to cells of hematopoietic origin, Vav2 is broadly expressed. Recently, Vav2 has been identified as a substrate for the EGF receptor. Here, we show that in EGF-treated COS7 cells Vav2 is phosphorylated on tyrosine residues and associates with the EGF receptor. In addition, introducing point mutations into the SH2 domain of green fluorescens protein (GFP)-Vav2 fusion protein leads to the loss of Vav2 tyrosine phosphorylation in response to EGF. To investigate further the mechanism of Vav2 phosphorylation, N-terminal (NT) domain of Vav2 was transiently expressed in COS7 cells as GFP fusion protein. Whereas the NT domain of Vav2 is a preferred substrate for the activated EGF receptor in vitro, we could not detect tyrosine phosphorylation of the GFP-NT construct in EGF-treated cells. However, when the SH2 domain of Vav2 was fused to its NT domain, NT domain proved to be a substrate for the EGF receptor in vivo. These data suggest that membrane-targeting of Vav2 through its SH2 domain is an important event in the phosphorylation and activation of Vav2 in response to EGF.  相似文献   

19.
The neurotensin (NT) receptor-3/sortilin (NTR3) belongs to the new receptor family of VPS10P domain containing receptors. The NTR3 is expressed in all cancer cells on which NT activates cell growth and its cellular location is mainly intracellular within the endoplasmic reticulum and the trans-Golgi network. However, the NTR3 is also present at the cell surface of the HT29 cell line from which it is released by a mechanism activated by phorbol 12-myristate 13-acetate (PMA). The shedding of the NTR3 is sensitive to protein kinase C (PKC) and mitogen-activated protein (MAP) kinase inhibitors and to 1,10-phenanthroline and BB3103, suggesting the activation of zinc-metalloproteases and the ADAM10 (a desintegrin and metalloprotease). The shedding of the membrane NTR3 leads to a soluble protein able to bind exogenous NT, suggesting a role of this process in the biological activity of the peptide.  相似文献   

20.
The present study demonstrates that 3,4-dihydroxyphenylethylamine (DA, dopamine) prevents neurotensin (NT) stimulation of both prolactin (PRL) release and calcium influx by interacting with specific receptors that are functionally linked to calcium channels. As shown by the studies with dispersed cells from rat anterior pituitary, the pharmacology of the control of PRL release and calcium influx, both induced by NT, was found to be typical of a DAergic process. This was demonstrated by the order of potency of agonists in inhibiting PRL release and calcium influx (DA greater than epinephrine greater than norepinephrine much greater than isoproterenol); by the high affinity of antagonists such as haloperidol and fluphenazine for this process; and by the high degree of stereoselectivity of sulpiride. Specific D2 receptor agonists, such as bromocriptine and lisuride, and the specific D2 receptor antagonist (-)-sulpiride were found to be highly potent on the DA receptors negatively coupled with calcium channels and PRL release. DA was found to lack the capacity to change the influx of calcium induced by either the sodium channel activator veratridine or high extracellular potassium levels, thus indicating a specific action of this amine on calcium channels sensitive to NT. In a range of concentrations that are effective in inhibiting either the calcium influx or the PRL release, both induced by NT, DA did not alter the cyclic AMP generating system. DA (from 1.0 nM to 50 nM) did not affect adenylate cyclase activity in rat pituitary gland homogenates and did not modify intracellular cyclic AMP levels in pituitary cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号