首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+ sequestration and release from disks of rod outer segments may play a critical role in visual transduction. An ATP-dependent Ca2+ uptake activity has been identified in association with purified disks of bovine rod outer segments. A crude preparation of osmotically active disks was obtained from rod outer segments by hypoosmotic shock and subsequent flotation on a 5% Ficoll 400 solution. These "crude" disks were further purified by separation into two distinct components by centrifugation in a linear Ficoll gradient. Disks comprised the major component; at least 60% of the protein was rhodopsin. This fraction also contained a Ca2+ uptake activity stimulated approximately 4-fold by ATP. The initial rate was approximately 0.21 nmol of Ca2+ (mg of protein)-1 min-1. Most of the ATP-dependent accumulation of 45Ca2+ was released by the calcium ionophore A23187. The uptake activity was sensitive to vanadate (Ki approximately 20 microM) and insensitive to the mitochondrial Ca2+ uptake inhibitor ruthenium red (10 microM). The ATP-dependent Ca2+ uptake exhibited Michaelis-Menten activation kinetics with respect to [Ca2+] (Km approximately 6 microM). The osmotic properties of the sealed disk membranes were exploited to determine whether the association of Ca2+ transport activity with the disks was merely coincidental. The sedimentation properties of these disks, upon centrifugation on a second Ficoll linear density gradient, varied with the osmolarity of the gradient solution. In several separate gradient solutions of differing osmotic and ionic strengths, the Ca2+ uptake activity always comigrated with the disks. These results indicate that the ATP-dependent Ca2+ uptake activity was physically associated with sealed native disk membranes. The characteristics of the Ca2+ uptake activity suggest that it may play a major role in the regulation of cytosolic Ca2+ levels in rod cells in vivo.  相似文献   

2.
Calcium movements across plasma membrane enriched vesicles isolated from canine gastric corpus smooth muscle were investigated. The ATP-dependent Ca2+ uptake increased with time up to 10 min. The uptake for the initial 2-min period was approximately linear with time. The apparent initial velocity of the ATP-dependent Ca2+ uptake increased monotonically with free Ca2+ concentration from 0.1 to 2 microM, and further increases in free Ca2+ concentration did not increase the Ca2+ uptake. The free Ca2+ dependence curve could be described with a Hill coefficient of approximately 1.0 and Km of 0.85 +/- 0.01 microM for free Ca2+ concentration. Passive Ca2+ uptake (reaction time = 1 h) also increased with increasing free Ca2+ concentrations from 0.02 to 4.0 mM. Dilution of loaded vesicles in isotonic media containing EGTA led to initial rapid loss (less than 1 min) followed by a slower release which showed simple exponential decay. The t 1/2 values of the slower Ca2+ loss from these vesicles were 16.1 +/- 0.9 min (actively loaded n = 5) and 18.4 +/- 0.9 min (passively loaded n = 3), respectively. Dilution in isotonic medium containing both EGTA and A23187 released all the sequestered Ca2+ from these loaded vesicles.  相似文献   

3.
Isolated cortices from unfertilized sea urchin eggs sequester calcium in an ATP-dependent manner when incubated in a medium containing free calcium levels characteristic of the resting cell (approximately 0.1 microM). This ATP-dependent calcium uptake activity was measured in the presence of 5 mM Na azide to prevent mitochondrial accumulation, was increased by oxalate, and was blocked by 150 microM quercetin and 50 microM vanadate (known inhibitors of calcium uptake into the sarcoplasmic reticulum). Cortical regions preloaded with 45Ca in the presence of ATP were shown to dramatically increase their rate of calcium efflux upon the addition of (a) the calcium ionophore A23187 (10 microM), (b) trifluoperazine (200 microM), (c) concentrations of free calcium that activated cortical granule exocytosis, and (d) the calcium mobilizing agent inositol trisphosphate. This pool of calcium is most likely sequestered in the portion of the egg's endoplasmic reticulum that remains associated with the cortical region during its isolation. We have developed a method for obtaining a high yield of purified microsomal vesicles from whole eggs. This preparation also demonstrates ATP-dependent calcium sequestering activity which increases in the presence of oxalate and has similar sensitivities to calcium transport inhibitors; however, the isolated microsomal vesicles did not show any detectable release of calcium when exposed to inositol trisphosphate.  相似文献   

4.
A Ca(2+)-pumping ATPase activity is present in bovine retinal rod outer segment purified disks. The ATPase has a high Ca2+ affinity (KM = 25 microM). Low Ca2+ (n-microM) concentrations stimulate an ATP-dependent Ca2+ uptake and the ATP hydrolysis in the absence of exogenous Mg2+. Electrophoretic analysis of disk proteins after treatment with (gamma-32P)ATP shows the existence of the enzyme-phosphate acid-stable, hydroxylamine-sensitive intermediate complex of molecular mass of about 135 kDa. The results would indicate the presence of an inwardly directed Ca(2+)-ATPase pump acting on the disk membrane, that could be involved in the regulation of cytosolic free Ca2+ levels inside ROS.  相似文献   

5.
An ATP-dependent calcium transport component from rat liver plasma membranes was solubilized by cholate and reconstituted into egg lecithin vesicles by a cholate dialysis procedure. The uptake of Ca2+ into the reconstituted vesicles was ATP-dependent and the trapped Ca2+ could be released by A23187. Nucleotides, including ADP, UTP, GTP, CTP, GDP, AMP, and adenyl-5'-yl beta, gamma-imidophosphate, and p-nitrophenylphosphate did not substitute for ATP. The concentration of ATP required for half-maximal stimulation of Ca2+ uptake into the reconstituted vesicles was 6.2 microM. Magnesium was required for calcium uptake. Inhibitors of mitochondrial calcium-sequestering activities, i.e. oligomycin, sodium azide, ruthenium red, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and valinomycin did not affect the uptake of Ca2+ into the vesicles. In addition, strophanthidin and p-chloromercuribenzoate did not affect the transport. Calcium transport, however, was inhibited by vanadate in a concentration-dependent fashion with a K0.5 of 10 microM. A calcium-stimulated, vanadate-inhibitable phosphoprotein was demonstrated in the reconstituted vesicles with an apparent molecular weight of 118,000 +/- 1,300. These properties of Ca2+ transport by vesicles reconstituted from liver plasma membranes suggest that this ATP-dependent Ca2+ transport component is different from the high affinity (Ca2+-Mg2+)-ATPase found in the same membrane preparation (Lotersztajn, S., Hanoune, J. and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215; Lin, S.-H., and Fain, J.N. (1984) J. Biol. Chem. 259, 3016-3020). When the entire reconstituted vesicle population was treated with ATP and 45Ca in a buffer containing oxalate, the vesicles with Ca2+ transport activity could be separated from other vesicles by centrifugation in a density gradient and the ATP-dependent Ca2+ transport component was purified approximately 9-fold. This indicates that transport-specific fractionation may be used to isolate the ATP-dependent Ca2+ transport component from liver plasma membrane.  相似文献   

6.
Recent studies have identified inositol 1,4,5-tris-phosphate(InsP3)-sensitive and -insensitive Ca2+ pools and a GTP-dependent mechanism that transfers Ca2+ between them. Here, the Ca2+ pump-inhibitory sesquiterpene lactone, thapsigargin, is shown to distinguish these two Ca2+ pools and identify a third Ca2+ pumping pool unresponsive to InsP3 or GTP. Using saponin-permeabilized DDT1MF-2 smooth muscle cells, approximately 75% of total intracellular ATP-dependent Ca2+ accumulation is blocked by thapsigargin with an IC50 of 30 nM. In contrast, 1 mM vanadate or 5 microM A23187 block 100% of Ca2+ accumulation. The thapsigargin-responsive Ca2+ pool corresponds exactly to that released by 10 microM InsP3 in the presence of 10 microM GTP. Indeed, addition of InsP3 with GTP has no effect on Ca2+ accumulated in the presence of 3 microM thapsigargin whereas A23187 releases all the remaining Ca2+. Added after maximal Ca2+ uptake, thapsigargin induces only slow Ca2+ release consistent with blockade of pumping activity. Unlike InsP3, the action of thapsigargin is entirely heparin insensitive. The large increment in Ca2+ uptake caused by 12 mM oxalate is completely reversed by thapsigargin, indicating that thapsigargin functions on an oxalate-permeable pool. Moreover, the still larger uptake induced by GTP in the presence of oxalate is also completely reversed by either thapsigargin or InsP3. The results indicate that thasigargin blocks Ca2+ uptake into two discrete pools: the InsP3-sensitive, oxalate-permeable Ca2+ pool and the InsP3-insensitive, oxalate-impermeable Ca2+ pool that can be "recruited" into the InsP3-sensitive pool by GTP-dependent Ca2+ translocation (Ghosh, T. K., Mullaney, J.M., Tarazi, F.I., and Gill, D.L. (1989) Nature 340, 236-239). Additionally, a third Ca2+ pool is defined, unreleasable by InsP3 or GTP, and containing a thapsigargin-insensitive Ca2+ pump.  相似文献   

7.
The effects of phorbol esters and diacylglycerols on Ca2+ transport in isolated human platelet membranes were determined. Phorbol 12-myristate 13-acetate (PMA) stimulated Ca2+-ATPase activity in crude and purified internal platelet membranes approximately 2-fold with half-maximal stimulation occurring at 10 nM. Dilauroylglycerol also stimulated Ca2+-ATPase activity half-maximally at a concentration of 7.5 microM, but dioctanoylglycerol was without effect at up to 30 microM. PMA also inhibited Ca2+ uptake when added before or after commencement of ATP-dependent transport. PMA (25 nM) doubled the rate of Ca2+ efflux from passively loaded membranes in the absence of ATP. No protein kinase C activity was detected in crude or purified membranes by histone phosphorylation or endogenous protein phosphorylation assays. These results suggest that PMA and dilauroylglycerol stimulate Ca2+-ATPase activity and inhibit ATP-dependent Ca2+ transport by increasing the permeability of the membranes to Ca2+.  相似文献   

8.
Analysis of Ca2+ fluxes and Ca2+ pools in pancreatic acini   总被引:2,自引:0,他引:2  
45Ca2+ movements have been analysed in dispersed acini prepared from rat pancreas in a quasi-steady state for 45Ca2+. Carbamyl choline (carbachol; Cch) caused a quick 45Ca2+ release that was followed by a slower 45Ca2+ 'reuptake'. Subsequent addition of atropine resulted in a further transient increase in cellular 45Ca2+. The data suggest the presence of a Cch-sensitive 'trigger' pool, which could be refilled by the antagonist, and one or more intracellular 'storage' pools. Intracellular Ca2+ sequestration was studied in isolated acini pretreated with saponin to disrupt their plasma membranes. In the presence of 45Ca2+ (1 microM), addition of ATP at 5 mM caused a rapid increase in 45Ca2+ uptake exceeding the control by fivefold. Maximal ATP-promoted Ca2+ uptake was obtained at 10 microM Ca2+ (half-maximal at 0.32 microM Ca2+). In the presence of mitochondrial inhibitors it was 0.1 microM (half-maximal at 0.014 microM). 45Ca2+ release could still be induced by Cch but the subsequent reuptake was missing. The latter was restored by ATP and atropine caused further 45Ca2+ uptake. Electron microscopy showed electron-dense precipitates in the rough endoplasmic reticulum of saponin-treated cells in the presence of Ca2+, oxalate and ATP which were absent in intact cells or cells pretreated with A23187. The data suggest the presence of a plasma membrane-bound Cch-sensitive 'trigger' Ca2+ pool and ATP-dependent Ca2+ storage systems in mitochondria and rough endoplasmic reticulum of pancreatic acini. It is assumed that Ca2+ is taken up into these pools after secretagogue-induced Ca2+ release.U  相似文献   

9.
The effectiveness of the nonmetabolizable second messenger analogue DL-myo-inositol 1,4,5-trisphosphorothioate (IPS3) described by Cooke, A. M., R. Gigg, and B. V. L. Potter, (1987b. Jour. Chem. Soc. Chem. Commun. 1525-1526.) was examined in triads purified from rabbit skeletal muscle. A Ca2+ electrode uptake-release assay was used to determine the size and sensitivity of the IPS3-releasable pool of Ca2+ in isolated triads. Uptake was initiated by 1 mM MgATP, pCa 5.8, pH 7.5 Release was initiated when the free Ca2+ had lowered to pCa approximately 7. We found that 5-25 microM myo-inositol 1,4,5-trisphosphate (IP3), and separately IPS3, consistently released 5-20% of the Ca2+ pool actively loaded into triads. Single channel recording was used to determine if ryanodine receptor Ca2+ release channels were affected by IPS3 at the same myoplasmic Ca2+ and IPS3 concentrations. Open probability of ryanodine receptor Ca2+ release channels was monitored in triads fused to bilayers over long periods (200 s) in the absence and following addition of 30 microM IPS3 to the same channel. At myoplasmic pCa approximately 7, IPS3 had no effect in the absence of MgATP (Po = 0.0094 +/- 0.001 in control and Po = 0.01 +/- 0.006 after IPS3) and slightly increased activity in the presence of 1 mM MgATP (Po = 0.024 +/- 0.03 in control and Po = 0.05 +/- 0.03 after IPS3). Equally small effects were observed at higher myoplasmic Ca2+. The onset of channel activation by IPS3 or IP3 was slow, on the time scale 20-60 s. We suggest that in isolated triads of rabbit skeletal muscle, IP3-induced release of stored Ca2+ is probably not mediated by the opening of Ca2+ release channels.  相似文献   

10.
We have characterized ATP-dependent Ca2+ transport into highly purified plasma membrane fraction isolated from guinea pig ileum smooth muscle. The membrane fraction contained inside-out sealed vesicles and was enriched 30-40-fold in 5'-nucleotidase and phosphodiesterase I activity as compared to post nuclear supernatant. Plasma membrane vesicles showed high rate (76 nmol/mg/min) and high capacity for ATP dependent Ca2+ transport which was inhibited by addition of Ca2+ ionophore A23187. The inhibitors of mitochondrial Ca2+ transport, i.e., sodium azide, oligomycin and ruthenium red did not inhibit ATP-dependent Ca2+ uptake into plasma membrane vesicles. The energy dependent Ca2+ uptake into plasma membranes showed very high specificity for ATP as energy source and other nucleotide triphosphates were ineffective in supporting Ca2+ transport. Phosphate was significantly better as Ca2+ trapping anion to potentiate ATP-dependent Ca2+ uptake into plasma membrane fraction as compared to oxalate. Orthovanadate, an inhibitor of cell membrane (Ca2+-Mg2+)-ATPase activity, completely inhibited ATP-dependent Ca2+ transport and the Ki was approximately 0.6 microM. ATP-dependent Ca2+ transport and formation of alkali labile phosphorylated intermediate of (Ca2+-Mg2+)-ATPase increased with increasing concentrations of free Ca2+ in the incubation mixture and the Km value for Ca2+ was approximately 0.6-0.7 microM for both the reactions.  相似文献   

11.
Ca2+ uptake by microsomes prepared from guinea-pig stomach required the presence of both ATP and Mg2+ and was unaffected by NaN3. ATP-dependent Ca2+ uptake increased with increasing free Ca2+ concentration from 0.1 to 5 microM, and further increase in Ca2+ concentration above 5 microM did not enhance the uptake further. Half-saturation occurred at approximately 0.55 microM. The t1/2 values of Ca2+ loss from these vesicles loaded in the presence of oxalate were significantly slower than those in the absence of oxalate. Enzyme activity suggested linkage between Ca2+ uptake and ATPase activity, and most of the azide-sensitive component of ATP hydrolysis was attributable to potent inhibition of ADPase activity.  相似文献   

12.
Thyrotropin-releasing hormone (TRH) stimulation of prolactin secretion from GH3 cells, cloned rat pituitary tumor cells, is associated with 1) hydrolysis of phosphatidylinositol 4,5-bisphosphate to yield inositol trisphosphate (InsP3) and 2) elevation of cytoplasmic free Ca2+ concentration [( Ca2+]i), caused in part by mobilization of cellular calcium. We demonstrate, in intact cells, that TRH mobilizes calcium and, in permeabilized cells, that InsP3 releases calcium from a nonmitochondrial pool(s). In intact cells, TRH caused a loss of 16 +/- 2.7% of cell-associated 45Ca which was not inhibited by depleting the mitochondrial calcium pool with uncoupling agents. Similarly, TRH caused an elevation of [Ca2+]i from 127 +/- 6.3 nM to 375 +/- 54 nM, as monitored with Quin 2, which was not inhibited by depleting mitochondrial calcium. Saponin-permeabilized cells accumulated Ca2+ in an ATP-dependent manner into a nonmitochondrial pool, which exhibited a high affinity for Ca2+ and a small capacity, and into a mitochondrial pool which had a lower affinity for Ca2+ but was not saturated under the conditions tested. Permeabilized cells buffered free Ca2+ to 129 +/- 9.2 nM when incubated in a cytosol-like solution initially containing 200 to 1000 nM free Ca2+. InsP3, but not other inositol sugars, released calcium from the nonmitochondrial pool(s); half-maximal effect occurred at approximately 1 microM InsP3. Ca2+ release was followed by reuptake into a nonmitochondrial pool(s). These data suggest that InsP3 serves as an intracellular mediator (or second messenger) of TRH action to mobilize calcium from a nonmitochondrial pool(s) leading to an elevation of [Ca2+]i and then to prolactin secretion.  相似文献   

13.
P P Schnetkamp 《Biochemistry》1987,26(12):3249-3253
Guanosine cyclic 3',5'-phosphate (cGMP) induced Ca2+ release from bovine rod outer segment (ROS) disks showed two kinetic components that could be distinguished in three ways: (1) The slow component (half-rise time of about 30 s) was blocked by 1-cis diltiazem [cf. Koch, K. W., & Kaupp, U. B. (1985) J. Biol. Chem. 260, 6788-6800], whereas the fast component (half-rise time of less than 1 s) was not affected by 1-cis diltiazem. (2) The slow component required the presence of alkali cations, whereas the fast component did not. (3) Preincubation with Na+ (50 mM) selectively eliminated the fast component, whereas the slow component was not affected. The action of Na+ appeared to be caused by Na-Ca exchange removing Ca2+ from a pool that can also be accessed by cGMP. The slow component of cGMP-induced Ca2+ release was not affected by Na+ and, hence, appears to reside in disks that do not contain a functional Na-Ca exchanger. The local anesthetic tetracaine blocked both the slow and fast component of cGMP-induced Ca2+ release from bovine ROS disks.  相似文献   

14.
Transport of Ca2+ in microsomal membrane vesicles of the Tetrahymena has been investigated using arsenazo III as a Ca2+ indicator. The microsomes previously shown to carry a Mg2+-dependent, Ca2+-stimulated ATPase (Muto, Y. and Nozawa, Y. (1984) Biochim. Biophys. Acta 777, 67-74) accumulated calcium upon addition of ATP and Ca2+ sequestered into microsomal vesicles was rapidly discharged by the Ca2+ ionophore A23187. Kinetic studies indicated that the apparent Km for free Ca2+ and ATP are 0.4 and 59 microM, respectively. The Vmax was about 40 nmol/mg protein per min at 37 degrees C. The calcium accumulated during ATP-dependent uptake was released after depletion of ATP in the incubation medium. Furthermore, addition of trifluoperazine which inhibited both (Ca2+ + Mg2+)-ATPase and ATP-dependent Ca2+ uptake rapidly released the calcium accumulated in the microsomal vesicles. These observations suggest that Tetrahymena microsome contains both abilities to take up and to release calcium and may act as a Ca2+-regulating site in this organism.  相似文献   

15.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

16.
Ca2+ transport was investigated in vesicles of sarcoplasmic reticulum subfractionated from bovine main pulmonary artery and porcine gastric antrum using digitonin binding and zonal density gradient centrifugation. Gradient fractions recovered at 15-33% sucrose were studied as the sarcoplasmic reticulum component using Fluo-3 fluorescence or 45Ca2+ Millipore filtration. Thapsigargin blocked active Ca2+ uptake and induced a slow Ca2+ release from actively loaded vesicles. Unidirectional 45Ca2+ efflux from passively loaded vesicles showed multicompartmental kinetics. The time course of an initial fast component could not be quantitatively measured with the sampling method. The slow release had a half-time of several minutes. Both components were inhibited by 20 microM ruthenium red and 10 mM Mg2+. Caffeine, inositol 1,4,5-trisphosphate, ATP, and diltiazem accelerated the slow component. A Ca2+ release component activated by ryanodine or cyclic adenosine diphosphate ribose was resolved with Fluo-3. Comparison of tissue responses showed that the fast Ca2+ release was significantly smaller and more sensitive to inhibition by Mg2+ and ruthenium red in arterial vesicles. They released more Ca2+ in response to inositol 1,4,5-trisphosphate and were more sensitive to activation by cyclic adenosine diphosphate ribose. Ryanodine and caffeine, in contrast, were more effective in gastric antrum. In each tissue, the fraction of the Ca2+ store released by sequential application of caffeine and inositol 1,4,5-trisphosphate depended on the order applied and was additive. The results indicate that sarcoplasmic reticulum purified from arterial and gastric smooth muscle represents vesicle subpopulations that retain functional Ca2+ channels that reflect tissue-specific pharmacological modulation. The relationship of these differences to physiological responses has not been determined.  相似文献   

17.
Isolated canine cardiac sarcoplasmic reticulum exhibits Ca2+-induced Ca2+ release from both actively and passively loaded vesicles. The rate and extent of Ca2+ release depend on the extravesicular ionized Ca2+ concentration ( [Ca2+]o) at the onset of release. Maximal release following ATP-dependent, phosphate-facilitated Ca2+ loading (up to 360 nmol of Ca2+/mg of protein/min at 37 degrees C) occurs at 1.5-2 microM [Ca2+]o, with reduced release at both lower and higher Ca2+ concentrations (half-maximal Ca2+ release at approximately 0.8 and 5.5 microM [Ca2+]o). Only a portion of the accumulated Ca2+ is released and the release is followed by reuptake of Ca2+. A similar Ca2+ dependence is obtained in the absence of ATP and Pi by measuring unidirectional Ca2+ efflux from passively loaded vesicles (maximal Ca2+ efflux at 1 microM [Ca2+]o; half-maximal Ca2+-dependent efflux at approximately 0.15 and 13 microM [Ca2+]o). Although the Ca2+ release rates observed in this study are several orders of magnitude lower than the rate of Ca2+ release which occurs in muscle cells in vivo, this Ca2+ release phenomenon may be related to the Ca2+-induced Ca2+ release which has been described for skinned cardiac cells ( Fabiato , A. (1983) Am. J. Physiol. 245, C1-C14). Ca2+ release occurs in the presence of an ATP-regenerating system and is not accompanied by a reduction in ATP hydrolysis. Also, since unidirectional Ca2+ efflux (as high as 860 nmol of Ca2+/mg of protein/min at 37 degrees C) exceeds net Ca2+ release under similar conditions, Ca2+ influx proceeds during the period of net Ca2+ release. Therefore, Ca2+ release does not involve reversal or cessation of inward Ca2+ pumping. Other data indicate that Ca2+ release is not mediated through the Ca2+ pump protein, but occurs through a separate Ca2+-dependent efflux pathway, possibly a channel.  相似文献   

18.
Properties of different Ca2+ pools in permeabilized rat thymocytes   总被引:1,自引:0,他引:1  
The regulation of free Ca2+ concentration by intracellular pools and their participation in the mitogen-induced changes of the cytosolic free Ca2+ concentration, [Ca2+]i, was studied in digitonin-permeabilized and intact rat thymocytes using a Ca2+-selective electrode, chlortetracycline fluorescence and the Ca2+ indicator quin-2. It is shown that in permeabilized thymocytes Ca2+ can be accumulated by two intracellular compartments, mitochondrial and non-mitochondrial. Ca2+ uptake by the non-mitochondrial compartment, presumably the endoplasmic reticulum, is observed only in the presence of MgATP, is increased by oxalate and inhibited by vanadate. The mitochondria do not accumulate calcium at a free Ca2+ concentration below 1 microM. The non-mitochondrial compartment has a greater affinity for calcium and is capable of sequestering Ca2+ at a free Ca2+ concentration less than 1 microM. At free Ca2+ concentration close to the cytoplasmic (0.1 microM) the main calcium pool in permeabilized thymocytes is localized in the non-mitochondrial compartment. Ca2+ accumulated in the non-mitochondrial pool can be released by inositol 1,4,5-triphosphate (IP3) which has been inferred to mediate Ca2+ mobilization in a number of cell types. Under experimental conditions in which ATP-dependent Ca2+ influx is blocked, the addition of IP3 results in a large Ca2+ release from the non-mitochondrial pool; thus IP3 acts by activation of a specific efflux pathway rather than by inhibiting Ca2+ influx. SH reagents do not prevent IP3-induced Ca2+ mobilization. Addition of the mitochondrial uncouplers, FCCP or ClCCP, to intact thymocytes results in no increase in [Ca2+]i measured with quin-2 tetraoxymethyl ester whereas the Ca2+ ionophore A23187 induces a Ca2+ release from the non-mitochondrial store(s). Thus, the data obtained on intact cells agree with those obtained in permeabilized thymocytes. The mitogen concanavalin A increases [Ca2+]i in intact thymocytes suspended in both Ca2+-containing an Ca2+-free medium. This indicates a mitogen-induced mobilization of an intracellular Ca2+ pool, probably via the IP3 pathway.  相似文献   

19.
Calcium pools in saponin-permeabilized guinea pig hepatocytes   总被引:17,自引:0,他引:17  
The plasma membranes of isolated guinea pig hepatocytes were made permeable with saponin. The cells were then suspended in a medium resembling cytosol in which the level of ATP was kept constant with an ATP-regenerating system. Intracellular ATP-dependent 45Ca and 40Ca sequestration was then followed at various concentrations of Ca2+ in the medium. It was found that ATP-dependent Ca uptake could be divided into two mechanisms: a low affinity high capacity uptake sensitive to 2,4-dinitrophenol (DNP) and oligomycin, thought to be mitochondrial, and a low capacity high affinity uptake, which was insensitive to DNP and oligomycin, thought to be mainly endoplasmic reticulum (ER). The threshold for ATP-dependent Ca uptake by the latter pool was about 20 nM Ca2+. The process had an EC50 value of 0.3 microM (for 45Ca) and a capacity of 2.7 nmol/45Ca/mg of protein. The "ER" mechanism also had a high affinity for ATP (EC50, about 43 microM). There was no significant accumulation of Ca by the postulated mitochondrial pool until the [Ca2+] of the medium was greater than 1 microM. The concentration of Ca2+ in the cytosol of normal unstimulated hepatocytes was estimated from measurements of phosphorylase a activity to be about 0.18 microM. At this [Ca2+], the ER pool of the saponin-treated hepatocytes accumulated Ca but there was no evidence of any Ca uptake into the "mitochondrial" pool. This suggests that most of the exchangeable Ca in a normal cell may be in DNP and oligomycin-insensitive pools (presumably the ER or possibly the plasma membrane) and suggests that these pools are likely to be involved in the increase in cytosolic [Ca2+] which occurs after stimulation by Ca-mobilizing hormones.  相似文献   

20.
The effects of myo-inositol 1,4,5-trisphosphate (IP3) on Ca2+ uptake and release from isolated adipocyte endoplasmic reticulum and plasma membrane vesicles were investigated. Effects of IP3 were initially characterized using an endoplasmic reticulum preparation with cytosol present (S1-ER). Maximal and half-maximal effects of IP3 on Ca2+ release from S1-ER vesicles occurred at 20 microM- and 7 microM-IP3, respectively, in the presence of vanadate which prevents the re-uptake of released Ca2+ via the endoplasmic reticulum Ca2+ pump. At saturating IP3 concentrations, Ca2+ release in the presence of vanadate was 20% of the exchangeable Ca2+ pool. IP3-induced release of Ca2+ from S1-ER was dependent on extravesicular free Ca2+ concentration with maximal release occurring at 0.13 microM free Ca2+. At 20 microM-IP3 there was no effect on the initial rate of Ca2+ uptake by S1-ER. IP3 promoted Ca2+ release from isolated endoplasmic reticulum vesicles (cytosol not present) to a similar level as compared with S1-ER. Addition of cytosol to isolated endoplasmic reticulum vesicles did not affect IP3-induced Ca2+ release. The endoplasmic reticulum preparation was further fractionated into heavy and light vesicles by differential centrifugation. Interestingly, the heavy fraction, but not the light fraction, released Ca2+ when challenged with IP3. IP3 (20 microM) did not promote Ca2+ release from plasma membrane vesicles and had no effect on the (Ca2+ + Mg2+)-ATPase activity or on the initial rate of ATP-dependent Ca2+ uptake by these vesicles. These results support the concept that IP3 acts exclusively at the endoplasmic reticulum to promote Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号