首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We evaluated the capacity of the plant growth regulator thidiazuron (TDZ), a substituted phenylurea with high cytokinin-like activity, to promote organogenesis in petals and leaves of several carnation cultivars (Dianthus spp.), combined with 1-naphthaleneacetic acid (NAA). The involvement of the endogenous auxin indole-3-acetic acid (IAA) and purine-type cytokinins was also studied. Shoot differentiation was found to depend on the explant, cultivar and balance of growth regulators. TDZ alone (0.5 and 5.0 micromol/L) as well as synergistically with NAA (0.5 and 5.0 micromol/L) promoted shoot organogenesis in petals, and was more active than N6-benzyladenine. In petals of the White Sim cultivar, TDZ induced cell proliferation in a concentration-dependent manner and, on day 7 of culture, the proportion of meristematic regions in those petals allowed the prediction of shoot regeneration capacity after 30 days of culture. Immunolocalization of CK ribosides, N6-(delta2-isopentenyl)adenosine, zeatin riboside (ZR) and dihydrozeatin riboside (DHZR), in organogenic petals showed them to be highly concentrated in the tips of bud primordia and in the regions with proliferation capacity. All of them may play a role in cell proliferation, and possibly in differentiation, during the organogenic process. After seven days of culture of White Sim petals, NAA may account for the changes found in the levels of IAA and DHZR, whereas TDZ may be responsible for the remarkable increases in N6-(delta2-isopentenyl)adenine (iP) and ZR. ZR is induced by low TDZ concentrations (0.0-0.005 micromol/L), whereas iP, that correlates with massive cell proliferation and the onset of shoot differentiation, is associated with high TDZ levels (0.5 micromol/L). In addition to the changes observed in quantification and in situ localization of endogenous phytohormones during TDZ-induced shoot organogenesis, we propose that TDZ also promotes growth directly, through its own biological activity. To our knowledge, this study is the first to evaluate the effect of TDZ on endogenous phytohormones in an organogenic process.  相似文献   

2.
Citrus ( Citrus sinensis L. Osbeck) leaf explants completely abscise within 48 h when exposed to saturating amounts of ethylene at 25°C. When 2,5-norbornadiene was added, 2000 μl 1−1 reduced abscission of explants also exposed to 2 μl 1−1 of ethylene to the level of the control, and 8000 μl 1−1 reduced abscission in explants exposed to 10 μl 1−1 of ethylene to the level of the control, but abscission was complete when 1 000 μl 1−1 of ethylene was used in the presence of 8 000 μl 1−1 of 2,5-norbornadiene. When explants were exposed to 2 μl 1−1 of ethylene, 2000 μl 1−1 of 2,5-norbornadiene prevented abscission if applied up to 10 h after exposure to ethylene. After 18 h, applied 2,5-norbornadiene had little effect on abscission at 48 h. A Lineweaver-Burk plot gave a 1/2 maximum value of 0.12 μl 1−1 for ethylene on abscission, 2,5-Norbornadiene gave competitive kinetics with respect to ethylene with a K1 value of approximately 120 μl 1−1 of 2,5-norbornadiene. The presence of 2,5norbornadiene stimulated ethylene production, which progressively increased as the 2,5-norbornadiene concentration was increased from 250 to 8 000 μl 1−1 2,5-Norbornadiene also suppressed the induction of cellulase and polygalacturonase by ethylene. Together, 2,5-norbornadiene and 2,4-dichlorophenoxyacetic acid were more effective than either alone in reducing abscission. 2,5-Norbornadiene also was effective in preventing the reduction of indole-3-acetic acid transport induced by ethylene.  相似文献   

3.
Lemna gibba plants were incubated aseptically on medium containing labelled 10-7 M indole-3-acetic acid (IAA-1-14C). Most of the radioactivity disappeared from the culture medium during a 24 h light period. A high percentage of the loss was due to photolysis and only a low percentage of the radioactivity was recovered in the plants. Uptake of 14C by the plants was strongly stimulated by light. The radioactivity taken up by the plants was the sum of photosynthetically taken up 14CO2 and 14C taken up in IAA. Analyses with the indolo-α-pyrone fluorescence method revealed that the free IAA content was almost the same in plants grown in control and in IAA media for 5 h, whereas the amount of IAA which could be liberated by alkaline hydrolysis was doubled by the presence of IAA in the medium.  相似文献   

4.
In pea cuttings ( Pisum sativum L. cv. Alaska) we measured shoot and root growth and ethylene production in response to 4-chloroindole-3-acetic acid (4-CI-IAA) or 4,6-dichloroindole-3-acetic acid (4,6-Cl2-IAA). Leafy cuttings treated basally with either of the chlorinated auxins in high concentrations showed permanent epinasty, loss of apical growth and dominance resulting in the outgrowth of laterals from the lower-most axillary bud. The naturally occurring 4-CI-IAA was a better root promoter than the synthetic 4,6-Cl2-IAA which inhibited rooting. Both chloroindole auxins induced very high ethylene evolution, which lasted much longer than the ethylene evolution after IAA treatment.  相似文献   

5.
Levels of endogenous indole-3-acetic acid (IAA) and indole-3-acetylaspartic acid (IAAsp) were monitored in various parts of leafy cuttings of pea ( Pisum sativum L. cv. Marma) during the course of adventitious root formation. IAA and IAAsp were identified by combined gas chromatography—mass spectrometry, and the quantitations were performed by means of high performance liquid chromatography with spectrofluorometric detection. IAA levels in the root forming tissue of the stem base, the upper part of the stem base (where no roots were formed), and the shoot apex remained constant during the period studied and were similar to levels occurring in the intact seedling. A reduction of the IAA level in the root regenerating zone, achieved by removing the shoot apex, resulted in almost complete inhibition of root formation. The IAAsp level in the shoot apex also remained constant, whereas in the stem base it increased 6-fold during the first 3 days. These results show that root initiation may occur without increased IAA levels in the root regenerating zone. It is concluded that the steady-state concentration is maintained by basipetal IAA transport from the shoot apex and by conjugation of excessive IAA with aspartic acid, thereby preventing accumulation of IAA in the tissue.  相似文献   

6.
Studies were conducted to test the effects of various auxins, cytokinins, carbohydrates and amino acids on somatic embryogenesis from shoot apices of pea (Pisum sativum L.) cultured on a sole medium. Picloram (4.5 M) and 4-chlorophenoxyacetic acid (45 M) were the most effective auxins. Addition of cytokinins (benzyladenine, zeatin, kinetin) to auxin-containing medium reduced embryo production. Amino acids (glutamine, alanine, proline) did not improve somatic embryogenesis. Carbohydrate seemed to be a critical factor. Embryogenic efficiency and embryo development were promoted by high carbohydrate concentration. The best results were obtained with fructose (252–504 mM); the number of somatic embryos per cultured explant was 3- to 4-fold higher compared to the control (84 mM sucrose). From these results, an optimized induction medium is proposed.Abbreviations BA benzyladenine - 4-CPA 4-chlorophenoxyacetic acid - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - MS Murashige & Skoog - EE embryogenic explants - G globular somatic embryos  相似文献   

7.
In vitro culture of Chenopodium murale L. (ecotype 197) green and herbicide SAN 9789 - treated "white" plants was established and the effects of benzylaminopurine (BAP), indole-3-acetic acid (IAA) and gibberellic acid (GA3) on growth and flowering were tested. Green plants did not flower on glucose free media, while 17 % of plants flowered on 5 % glucose-containing medium. SAN 9789 (10–5 M) inhibited growth and flowering. BAP and IAA (0.1 – 5 mg dm–3) also inhibited growth and flowering of green and "white" plants. GA3 (10 mg dm–3) stimulated leaf development in green plants, but had no significant effect on "white" plants, and stimulated flowering of green (41 %) and "white" (33 %) plants.  相似文献   

8.
A study has been made of the effects of solvent, temperature, and the antioxidant, sodium diethyldithiocarbamate, on the breakdown of indole-3-pyruvic acid to indole-3-acetic acid (IAA). In addition, the degradation of tryptophan, tryptamine, indole-3-pyruvic acid, indole-3-acetaldehyde and indole-3-ethanol to IAA during the purification and analysis of extracts from Pinus sylvestris L. needles, in the presence and absence of sodium diethyldithiocarbamate, has been investigated. The data obtained indicate that if the antioxidant is supplied throughout the analytical sequence there is a marked reduction in the spontaneous formation of IAA from other indolic compounds and, by inference, the stability of indoles in general is enhanced.  相似文献   

9.
Glasshouse experiments were conducted to evaluate the influence of L-TRP in comparison with indole-3-acetamide (IAM), tryptophol (TOL) and indole-3-acetic acid (IAA) on the growth of Zea mays L. var. Early Sunglow. L-TRP (25 to 2.5×10–5 mg kg–1 soil), IAM (22 to 2.2×10–5 mg kg–1 soil), TOL (20 to 2.0×10–5 mg kg–1 soil), and IAA (22 to 2.2×10–5 mg kg–1 soil) were applied as a soil drench to established uniform seedlings. All treatments were applied in a completely randomized design with 10 replicates. IAM had no significant effect on the plant growth parameters. Shoot height, uppermost leaf collar base distance, internodal distance, and shoot dry and fresh weights were significantly improved upon the addition of TOL (2.0×10–2 mg kg–1 soil), however, the highest concentration (20 mg kg–1 soil) caused a 14.6% reduction in leaf width. L-TRP (2.5×10–3 mg kg-1 soil) also had a significant influence on shoot height, uppermost leaf collar base distance, internodal distance and fresh weight of shoot compared with the control. The highest concentration of L-TRP (25=mg kg–1 soil) had a negative effect on leaf width and dry weight of the shoot. The most pronounced response on the corn growth parameters was observed with the application of IAA at lower concentrations (2.2×10–5 to 2.2×10–2 mg kg–1 soil) specifically improving root growth. The highest concentration (22 mg kg–1 soil) of IAA had a significant negative effect on plant height, leaf width, stem diameter, shoot fresh and dry weight. These findings indicate that L-TRP applied at the appropriate concentrations can have positive effects on corn growth comparable to pure auxins (TOL and IAA).  相似文献   

10.
打顶后施用生长素(IAA)和钾肥对烤烟碳氮代谢的影响   总被引:4,自引:0,他引:4  
研究了不打顶(T1)、打顶(T2)、打顶 追施K_2SO_4(T_3)、打顶 涂抹生长素1次(T4)、打顶 追施K2SO4 涂抹生长素1次(T5)、打顶 追施K2SO4 涂抹生长素2次(T6)等6种调控措施对烤烟碳氮代谢的影响。结果表明:由打顶当天到打顶后30d,烤烟淀粉酶活性总体上表现为下降后又略有上升的趋势,转化酶(INV)活性则逐渐降低;2种酶活性均以T6最高,T1最低,且差异达到极显著水平;除T1外,各处理在打顶后的淀粉含量逐渐升高,总糖含量则呈现上升后又逐步下降的变化,至打顶后30d,淀粉和总糖含量均以T6最高,T1最低;随生育时期延长,硝酸还原酶(NR)活性和蛋白质含量均表现为逐渐下降的趋势。打顶后30d,T6的NR活性和蛋白质含量均为最高;在打顶后30d,以T5的NR/INV比值最大。打顶当天在顶端涂抹生长素,同时追施K2SO4肥,可促进烤烟生长和碳氮代谢。  相似文献   

11.
Pine seedlings ( Pinus sylvestris L.) were grown in a growth chamber under simulated summer conditions to an age of eight weeks after the beginning of seed germination. Single seedlings were analyzed for fresh weight, shoot and root lengths, and content of indole-3-acetic acid (IAA). The first three variables were normally distributed with standard deviations of 29%, 17% and 18%, respectively. The IAA content had a standard deviation of 39%, and this variable was not normally distributed. If this finding is of general significance, population variation must be considered when experiments involving IAA analyses are planned, and statistical methods based on a normally distributed population cannot be used to evaluate the result of such analyses unless samples of at least 20–30 individuals are analyzed. There were no correlations between the content of IAA and any of the three other variables. The content of IAA showed pronounced diurnal changes, rising from 15 ng g−1 (fresh weight) in the morning to 42 ng g−1 in the late evening. The initial rate of change was about 10% h−1. Obviously, short-term fluctuations must be checked if long-term changes in IAA content are to be studied. IAA could also be released from the acidic buffer fraction by means of alkaline hydrolysis. This "bound alkali-hydrolysable" IAA did not show short-term fluctuations.  相似文献   

12.
Giant-celled Characeae (Chara australis Brown), grown for 4 months on 12/12 hr day/night cycle and summer/autumn temperatures, exhibited distinct concentration maxima in auxin (indole-3-acetic acid; IAA), melatonin and serotonin about 4 hr after subjective daybreak. These concentration peaks persisted after 3 day pretreatment in continuous darkness: confirming a circadian rhythm, rather than a response to “light on.” The plants pretreated for 3 d in continuous light exhibited several large IAA concentration maxima throughout the 24 hr. The melatonin and serotonin concentrations decreased and were less synchronized with IAA. Chara plants grown on 9/15 hr day/night cycle for 4 months and winter/spring temperatures contained much smaller concentrations of IAA, melatonin and serotonin. The IAA concentration maxima were observed in subjective dark phase. Serotonin concentration peaks were weakly correlated with those of IAA. Melatonin concentration was low and mostly independent of circadian cycle. The “dark” IAA concentration peaks persisted in plants treated for 3 d in the dark. The plants pretreated for 3 d in the light again developed more IAA concentration peaks. In this case the concentration maxima in melatonin and serotonin became more synchronous with those in IAA. The abscisic acid (ABA) and jasmonic acid (JA) concentrations were also measured in plants on winter regime. The ABA concentration did not exhibit circadian pattern, while JA concentration peaks were out of phase with those of IAA. The data are discussed in terms of crosstalk between metabolic pathways.  相似文献   

13.
Both axillary buds belonging to the cotyledons (cotyledonary buds) start to grow on decapitated pea seedlings, but one of them (the dominant shoot) prevails in growth over the other (the inhibited shoot). If the dominant' cotyledonary shoot is removed, the inhibited shoot is released from inhibition and starts to grow. This release from inhibition of the inhibited cotyledonary shoot is accompanied within two hours from the removal of the dominant cotyledonary shoot by a marked increase in the level of endogenous cytokinin-like substances and by a decrease in the level of endogenous IAA. By contrast, a significant increase in IAA level and a decreasing trend in the level of cytokinin-like substances occur in the originally inhibited cotyledonary shoot between hour 4 and hour 48 after the release from inhibition of the inhibited cotyledonary shoot. The level of gibberellin-like substances in the cotyledonary shoot released from inhibition steadily increases from the beginning of the release.  相似文献   

14.
Somatic embryos of cassava (Manihot esculenta Crantz) cultivar ‘Nanzhi 188’ were isolated and cut into fragments to be cultured on media with various cytokinins and auxins. Cytokinin induced of cassava shoot organogenesis, while auxin stimulated somatic embryogenesis. The effectiveness on organogenesis was different based on different cytokinins and in combination with auxins. Benzyladenine and thidiazuron stimulated more shoot organogenesis than kinetin and N-isopentenyladenine. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
When indole-3-acetic acid (IAA) is applied through the basal cut surface of greenwood cuttings from Populus tremula L. with the aim to induce adventitious roots, it is observed that a positive correlation between the number of new roots and the duration of the application exists only for the first 5 to 6 hours. This is most likely due to the induction, during this time, of a metabolic system that transforms IAA to compounds unable to provoke new roots. The most important of these compounds was identified as 2-indolone-3-acetylaspartic acid (OxlAasp). The metabolic pathway from IAA to OxIAasp via indole-3-acetylaspartic acid was demonstrated by thin layer chromatography.  相似文献   

16.
We report a new method for histochemical localization of cytokinins (CKs) in plant tissues based on bromophenol blue/silver nitrate staining. The method was validated by immunohistochemistry using anti-trans-zeatin riboside antibody. Indole-3-acetic acid (auxin, IAA) was localized by anti-IAA antibody in plant tissues as a proof for IAA histolocalization. We used root sections, because they are major sites of CKs synthesis, and insect galls of Piptadenia gonoacantha that accumulate IAA. Immunostaining confirmed the presence of zeatin and sites of accumulation of IAA indicated by histochemistry. The colors developed by histochemical reactions in free-hand sections of plant tissues were similar to those obtained by thin layer chromatography (TLC), which reinforced the reactive sites of zeatin. The histochemical method for detecting CKs is useful for galls and roots, whereas IAA detection is more efficient for gall tissues. Therefore, galls constitute a useful model for validating histochemical techniques due to their rapid cell cycles and relatively high accumulation of plant hormones.  相似文献   

17.
In excised Zea maus L. coleoptiles incubated in aerated media at high fresh weight per volume ratios, indole-3-acetic acid induces transient drops of extracellular pH. Based on the quantitative dependency of the response on the initial auxin concentration we developed a novel auxin bioassay, which allows reliable estimation of IAA concentrations between 10−85 and 10−5M. Using the bioassay and complementary concentration measurements by IAA fluorescence we found the transient IAA-induced pH response paralleled by a decrease of auxin activity and concentration in the medium. This decline is rapid and starts immediately upon auxin addition, and insofar differs from the well known IAA degradation by epiphytic bacteria in long-term auxin tests. We conclude that the transient character of the auxin pH response is due to rapid IAA metabolism. The effect occurs under those experimental conditions that are necessary for reliable estimations of auxin-induced shifts of cell wall pH, which considerably complicates the interpretation of the results.  相似文献   

18.
Banana (Musa acuminata AAA cv. Nanicão) slices were infiltrated with mannitol (control) and mannitol plus indole-3-acetic acid (IAA); then, some important ripening parameters like starch degradation, synthesis of ethylene and respiration were monitored. The contents of free-IAA and conjugated forms of IAA (ester and amide) were analyzed, by GC-MS-SIM, throughout the ripening in both banana slices and whole bananas. The starch degradation of IAA-treated slices was delayed for several days, but there was no difference between control and IAA-treated slices in the ethylene and respiration profiles. On day zero after infiltration, free-IAA levels were 500-fold higher in IAA-treated slices than in the control slices, but within 72 hours they declined to values 15-fold higher than those in the control group, with concomitant increase in IAA-ester. Similar to the banana slices, the onset of starch degradation occurred in whole bananas only when the free-IAA concentration was about 4 ng/g FW. The results herein suggest that IAA levels play a role during banana ripening in events like starch degradation with the consequence of banana sweetening.  相似文献   

19.
Jasmonic acid was identified from Mimosa pudica L. plants by mass spectrometry, high performance liquid chromatography and thin layer chromatography. Effects of authentic jasmonic acid on pulvinule movement and transpiration of the pinnae were compared with those of abscisic acid. Jasmonic acid and abscisic acid each at 10−5 M inhibited both auxin- and light-induced opening of the pulvinules. A closure-inducing activity of jasmonic acid at 10−4 M was greater than that of abscisic acid at 10−4 M. Pinnae transpiration was reduced by 10−5 M abscisic acid but not by 10−4 M jasmonic acid.  相似文献   

20.
A hydroponic experiment was conducted to investigate the effects of indole-3-acetic acid (IAA) on arsenic (As) uptake and antioxidative enzymes in fronds of Pteris cretica var. nervosa (As hyperaccumulator) and Pteris ensiformis (non-hyperaccumulator). Plants were exposed to 2 mg L?1 As(III), As(V) or dimethylarsinic acid (DMA) and IAA concentrations for 14 d. The biomass and total As in the plants significantly increased at 30 mg L?1 IAA. Superoxide dismutase (SOD) activities significantly increased with IAA addition. Catalase (CAT) activities showed a significant increase in P. ensiformis exposed to three As species at 30 or 50 mg L?1 IAA but varied in P. cretica var. nervosa. Peroxidase (POD) activities were unchanged in P. ensiformis except for a significant decrease at 50 mg L?1 IAA under As(III) treatment. However, a significant increase was observed in P. cretica var. nervosa at 10 mg L?1 IAA under As(III) or DMA treatment and at 50 mg L?1 IAA under As(V) treatment. Under DMA stress, malondialdehyde contents in fronds of P. cretica var. nervosa showed a significant decrease at 10 mg L?1 IAA but remained unchanged in P. ensiformis. Therefore, IAA enhanced As uptake and frond POD activity in P. cretica var. nervosa under As stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号