首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The role of the enkephalin-protecting plasma substances in the protection of non-opioid peptides from enzyme hydrolysis has been studied in laboratory animals and in man. 2. The results obtained indicate that all the peptides hydrolyzed by the plasma enzymes are also protected from the hydrolysis by the enkephalin-protecting substances. 3. The protection is fairly uniform in all the species and for all the peptides examined. However, in the human species the protection of leucine enkephalin is considerably higher than the average. These results are discussed in terms of a possible differential inhibition of the different plasma aminopeptidases.  相似文献   

2.
The hydrolysis of leucine enkephalin by the proteolytic enzymes present in human and rabbit plasma has been studied by kinetic and chromatographic techniques. Data obtained indicate the existence of noticeable intraspecific differences in the kinetics of leu-enkephalin degradation, and of formation of its hydrolysis by-products. The separation of the enzymes active on the substrate and of the inhibitors active on these enzymes evidences the existence of a species specific distribution of both groups of substances. Yet, the dissimilar kinetics of the substrate hydrolysis and of formation of its hydrolysis by-products appear to arise more from diversities in the competition between the enzymes present in plasma and in the role of inhibitors than from the differences in the enkephalin-degrading enzymes. It is suggested that differences observed may be related to the existence of species specific populations of the information-carrying plasma peptides.  相似文献   

3.
The protection of the adrenal-released enkephalins from enzyme hydrolysis by endogenous plasma components was studied in laboratory animals and in man. The results indicate that mechanisms active in protecting leu-enkephalin from hydrolysis are present in the plasma of all species examined. The protection seems to be due to two groups of substances, possibly of peptidic nature. The amount of protection given by these substances seems to be sufficient to play a significant role in controlling the physiological levels of leu-enkephalin released into the bloodstream.  相似文献   

4.
Enzymes and inhibitors in leu-enkephalin in metabolism in human plasma   总被引:1,自引:0,他引:1  
The enzymes degrading leucine enkephalin in human plasma and the inhibitors active on these enzymes were studied by kinetic and chromatographic techniques. Data obtained evidence the existence of complex kinetics of leu-enkephalin hydrolysis and of formation of its hydrolysis byproducts. These appear to originate from the combined effect of further hydrolysis of the enkephalin's fragments after their release and of competition between the different enzymes present in plasma. Chromatographic separation of plasma proteolysis inhibitors indicates the existence of several pools of substances acting on all three enzyme groups that degrade leu-enkephalin. The partial specificity of these substances induces competition effects: consequently, the actual protection over leu-enkephalin is considerably lower that the total inhibitory activity. That notwithstanding, plasma inhibitors control enkephalin hydrolysis to a relevant extent, while they modify only slightly the ratio of hydrolysis between the different enzymes. This latter parameter—and specifically the large prevalence of aminopeptidases over dipeptidylaminopeptidases and dipeptidylcarboxypeptidases—appears controlled mainly by kinetic factors.  相似文献   

5.
We investigated the inhibition of trypsin, human tissue (hK1) and human plasma kallikrein (HuPK), papain, and cathepsin L, B, and X by synthetic cyclic, cycloretro-isomer, cycloretro-inverso, and linear peptides derived from the C-terminal sequence of bradykinin. c(FSPFRG) and Ac-FSPFRG-NH2 were taken as the references for cyclic and linear peptides, respectively. Longer and more flexible analogs of them with addition of 2, 3, or 4 Gly and cycloretro-isomer and cycloretro-inverso analogs of c(FSPFRG) and c(GGGFSPFRG) were obtained and assayed. The susceptibility to hydrolysis of the peptides to all proteases was also examined. The highest affinities were found for c(FSPFRG) with hK1, Ac-GGFSPFRG-NH2 with HuPK, and psi (NHCO) c(fspfrG) with cathepsin L. The Ki values for cathepsin B and X with cyclic peptides were lower than those of linear peptides. The serine proteases hydrolyzed all linear and cyclic peptides, except c(FSPFRG) and c(GFSPFRG). The cysteine proteases hydrolyzed only the linear peptides, which were poor substrates. Although the Ki values obtained in the current work were in the microM range, the cyclic and cycloretro-inverso peptides seem to be a promising approach to develop efficient and resistant to hydrolysis inhibitors for the kallikreins and lysosomal cysteine proteases.  相似文献   

6.
Under standard conditions, the peptides and specially the active peptides were obtained from either the denatured hemoglobin that all structures are completely modified or either the native hemoglobin where all structures are intact. In these conditions, antibacterial peptides were isolated from a very complex peptidic hydrolysate which contains more than one hundred peptides having various sizes and characteristics, involving a complex purification process. The new hydrolysis conditions were obtained by using 40% methanol, 30% ethanol, 20% propanol or 10% butanol. These conditions, where only the secondary structure of hemoglobin retains intact, were followed in order to enrich the hydrolyzed hemoglobin by active peptides or obtain new antibacterial peptides. In these controlled peptic hydrolysis of hemoglobin, a selective and restrictive hydrolysate contained only 29 peptides was obtained. 26 peptides have an antibacterial activity against Micrococcus luteus, Listeria innocua, and Escherichia coli with MIC from 187.1 to 1 μM. Among these peptides, 13 new antibacterial peptides are obtained only in these new hydrolysis conditions.  相似文献   

7.
Human plasma kallikrein (HPK) activates plasma prorenin to renin, and the physiological significance of this activation is still unknown. In this paper we investigated the efficiency and the cleavage pattern of the hydrolysis by HPK of the internally quenched fluorescent peptides (qf-peptides) derived from the amino acid sequence of human prorenin cleavage site. The peptide Abz-F-S-Q-P-M-K-R-L-T-L-G-N-T-T-Q-EDDnp (Abz=ortho-aminobenzoic acid, and EDDnp=N-[2,4-dinitrophenyl]-ethylene diamine), that corresponds to the amino acid sequence P(7) to P(7)' of human prorenin cleavage site, is hydrolyzed at the correct processing site (R-L bond) with k(cat)/K(m)=85 mM(-1) s(-1). Alanine was scanned in all positions from P(5) to P(5)' in order to investigate the substrate specificity requirements of HPK.The qf-peptides derived from the equivalent segment of rat prorenin, that has Lys-Lys as basic amino acid pair, and the peptide Abz-NVTSPVQ-EDDnp that contains the proposed cleavage site of rat prorenin have very low susceptibility to hydrolysis by rat plasma kallikrein. These data are according to the previously reported absence of rat plasma prorenin activation by rat plasma kallikrein (RPK), and with the view that prorenin activation in rat requires alternative enzymes and/or mechanism.All the obtained peptides described in this paper were also assayed with bovine trypsin that was taken as a reference protease because it is commonly used to activate prorenin.  相似文献   

8.
A simple two-step model is proposed to describe the kinetics of the two lytic systems examined in the preceding article. The model predicts concentrations of yeast solids, soluble proteins, peptides, and carbohyrates. In the first reaction step, yeast cell mass is solubilized; in the second, the released protein can be hydrolyzed to peptides. Kinetics for both yeast lysis and the subsequent protein breakdown are based on Michaelis-Menten expressions. Terms have been included for competitive inhibition of yeast lysis by substances in the Cytophaga enzyme preparation, and for incomplete hydrolysis of cells by the Oerskovia enzyme system. Parameters have been independently determined for all reactions except Oerskovia proteolysis, where they were fit by a leastsquares method to data from model test runs. The model has been verified for yeast concentrations between 0.7 and 70 g/L yeast (dry basis) and 4-40% crude enzyme solution.  相似文献   

9.
Biologically active peptides evenly labeled with tritium were used for studying the in vitro and in vivo biodegradation of the peptides. Tritium-labeled peptides with a specific radioactivity of 50–150 Ci/mmol were obtained by high temperature solid phase catalytic isotope exchange (HSCIE) with spillover tritium. The distribution of the isotope label among all amino acid residues of these peptides allows the simultaneous determination of practically all possible products of their enzymatic hydrolysis. The developed analytical method includes extraction of tritium-labeled peptides from organism tissues and chromatographic isolation of individual labeled peptides from the mixture of degradation products. The concentrations of a peptide under study and the products of its biodegradation were calculated from the results of liquid scintillation counting. This approach was used for studying the pathways of biodegradation of the heptapeptide TKPRPGP (Selank) and the tripeptide PGP in blood plasma. The pharmacokinetics of Selank, an anxiolytic peptide, was also studied in brain tissues using the intranasal in vivo administration of this peptide. The concentrations of labeled peptides were determined, and the pentapeptide TKPRP, tripeptide TKP, and dipeptides RP and GP were shown to be the major products of Selank biodegradation. The study of the biodegradation of the heptapeptide MEHFPGP (Semax) in the presence of nerve cells showed that the major products of its biodegradation are the pentapeptide HFPGP and tripeptide PGP. The enkephalinase activity of blood plasma was studied with the use of evenly tritium labeled [Leu]enkephalin. A high inhibitory effect of Semax on blood plasma enkephalinases was shown to arise from its action on aminopeptidases. The method, based on the use of evenly tritium-labeled peptides, allows the determination of peptide concentrations and the activity of enzymes involved in their degradation on a μg scale of biological samples both in vitro and in vivo.  相似文献   

10.
Biologically active peptides evenly labeled with tritium were used for studying the in vitro and in vivo biodegradation of the peptides. Tritium-labeled peptides with a specific radioactivity of 50-150 Ci/mmol were obtained by high temperature solid phase catalytic isotope exchange (HSCIE) with spillover tritium. The distribution of the isotope label among all amino acid residues of these peptides allows the simultaneous determination of practically all possible products of their enzymatic hydrolysis. The developed analytical method includes extraction of tritium-labeled peptides from organism tissues and chromatographic isolation of individual labeled peptides from the mixture of degradation products. The concentrations of a peptide under study and the products of its biodegradation were calculated from the results of liquid scintillation counting. This approach was used for studying the pathways of biodegradation of the heptapeptide TKPRPGP (Selank) and the tripeptide PGP in blood plasma. The pharmacokinetics of Selank, an anxiolytic peptide, was also studied in brain tissues using the intranasal in vivo administration of this peptide. The concentrations of labeled peptides were determined, and the pentapeptide TKPRP, tripeptide TKP, and dipeptides RP and GP were shown to be the major products of Selank biodegradation. The study of the biodegradation of the heptapeptide MEHFPGP (Semax) in the presence of nerve cells showed that the major products of its biodegradation are the pentapeptide HFPGP and tripeptide PGP. The enkephalinase activity of blood plasma was studied with the use of evenly tritium-labeled [Leu]enkephalin. A high inhibitory effect of Semax on blood plasma enkephalinases was shown to arise from its action on aminopeptidases. The method, based on the use of evenly tritium-labeled peptides, allows the determination of peptide concentrations and the activity of enzymes involved in their degradation on a tg scale of biological samples both in vitro and in vivo.  相似文献   

11.
The eukaryotic 20 S proteasome contains the following 6 active sites: 2 chymotrypsin-like, 2 trypsin-like, and 2 caspase-like. We previously showed that hydrophobic peptide substrates of the chymotrypsin-like sites allosterically stimulate peptide hydrolysis by the caspase-like sites and their own cleavage. More thorough analysis revealed that these peptides also stimulate peptide hydrolysis by the trypsin-like site. This general activation by hydrophobic peptides occurred even if the chymotrypsin-like sites were occupied by a covalent inhibitor and was highly cooperative, with an average Hill coefficient of 7. Therefore, this stimulation of peptide hydrolysis at all active sites occurs upon binding of hydrophobic peptides to several non-catalytic sites. The stimulation by hydrophobic peptides was not observed in the yeast Delta N alpha 3 mutant 20 S proteasomes, in 20 S-PA26 complexes, or SDS-activated proteasomes and was significantly lower in 26 S proteasomes, all of which appear to have the gated channel in the alpha-rings in an open conformation and hydrolyze peptides at much faster rates than 20 S proteasomes. Also the hydrophobic peptides altered K(m), V(max) of active sites in a similar fashion as PA26 and the Delta N alpha 3 mutation. The activation by hydrophobic peptides was decreased in K(+)-containing buffer, which favors the closed state of the channels. Therefore, hydrophobic peptides stimulate peptide hydrolysis most likely by promoting the opening of the channels in the alpha-rings. During protein breakdown, this peptide-induced channel opening may function to facilitate the release of products from the proteasome.  相似文献   

12.
Banks WA 《Biopolymers》2008,90(5):589-594
Peptides and regulatory proteins hold great promise as therapeutic agents for the central nervous system (CNS). However, the blood-brain barrier (BBB) is a major obstacle to the delivery of these potential therapeutics to their site of action. We concentrate here on the vascular BBB, which is comprised of the capillary bed of the brain specially modified to prevent the production of a plasma ultrafiltrate. For many peptides and proteins, this physical barrier is reinforced by enzymatic activities at the BBB, CNS, and peripheral tissues, short half-lives and large volumes of distribution in the blood, binding proteins in blood, and brain-to-blood efflux systems. Nevertheless, there are pathways through which substances can cross. Small, lipid soluble substances cross by the nonsaturable mechanism of transmembrane diffusion, but even water-soluble peptides can cross to some degree. Many endogenous peptides and regulatory proteins cross the BBB by way of selective, saturable transport systems. For enzymatically resistant substances with long circulating half-lives and small volumes of distribution, such as antibodies, erythropoietin, and enzymes, substances can enter the CNS in therapeutic amounts through the residual leak of the BBB, termed the extracellular pathways. Recent examples show that the BBB transporters for peptides and regulatory substances are modifiable. This provides both a therapeutic opportunity and the potential for disease to arise from BBB dysfunctions. In the last case, the BBB itself is a therapeutic target.  相似文献   

13.
Six tryptic peptides ranging in size from 3 to 126 residues were isolated from maleylated Fragment A of diphtheria toxin after tryptic hydrolysis. These peptides accounted for all 193 residues found by amino acid analysis. After demaleylation, the six peptides were purified by chromatography on Sephadex G-50, coupled with paper chromatography and electrophoresis, and were analyzed by various methods. The compositions and properties of the peptides are reported. Almost 70% of the residues were positioned within these peptides.  相似文献   

14.
Since both aminopeptidases and angiotensin I-converting enzyme are reported to degrade circulating enkephalins, we have examined the degradation of low-molecular-weight opioid peptides by a vascular plasma membrane-enriched fraction previously shown to contain both angiotensin I-converting enzyme (EC 3.4.15.1) and aminopeptidase M (EC 3.4.11.2). Except for an enkephalin analog resistant to amino-terminal hydrolysis, [D-Ala2]enkephalin, the purified vascular plasma membrane preferentially degraded low-molecular-weight opioids by hydrolysis of the N-terminal Tyr-1--Gly-2 bond. Enkephalin degradation was optimal at pH 7.0 and was inhibited by the aminopeptidase inhibitors amastatin (I50 = 0.08 microM), bestatin (9.0 microM) and puromycin (80 microM). Maximal rates of hydrolysis, calculated per mg plasma membrane protein, were highest for the shorter peptides (18.3, 15.6 and 16.6 nmol/min per mg for Met5-enkephalin, Leu5-enkephalin and Leu5-enkephalin-Arg6, respectively) and decreased with increasing peptide length (0.7 nmol/min per mg for dynorphin (1-13)). No significant hydrolysis of beta- and gamma-endorphin was detected. Km values decreased significantly with increasing peptide length (Km = 72.9 +/- 2.7, 43.6 +/- 4.7 and 21.4 +/- 0.9 microM for Met5-enkephalin, Leu5-enkephalin-Arg6 and Met5-enkephalin-Arg6-Phe7, respectively). However, no further decreases were seen with even larger sequences, i.e., dynorphin(1-13). Other peptides hydrolyzed by the plasma membrane aminopeptidase (angiotensin III, kallidin and hepta(5-11)-substance P) inhibited enkephalin degradation in a competitive manner. Thus, localization, specificity and kinetic data are consistent with identification of aminopeptidase M as a vascular enzyme with the capacity to differentially metabolize low-molecular-weight opioid peptides within the microenvironment of vascular cell surface receptors. Such differential metabolism may play a role in modulating the vascular effects of peripheral opioids.  相似文献   

15.
The metabolism of three mu-selective opioid tetrapeptide agonists, Tyr-D-Arg-Phe-Nva-NH(2) (TArPN), Tyr-D-Arg-Phe-Phe-NH(2) (TArPP), and Tyr-D-Ala-Phe-Phe-NH(2) (TAPP), was investigated in different rat tissues. High metabolic activity (<20% peptide remaining after 30 min) was found against the three peptides in the kidney homogenate and against TArPN in spleen homogenate. Low metabolic activity (>80% peptide remaining after 30 min) was found for all peptides in brain homogenate and plasma, and for TArPN and TArPP in blood. The other tissue homogenates, prepared from the small and large intestine, liver and lung, all exhibited intermediate metabolic activity (20-80% peptide remaining after 30 min) against the peptides. In all tissues investigated, the tetrapeptides were metabolized at the C-terminal amide by deamidation.A further in depth metabolic investigation was performed in subcellular fractions isolated from three tissues (small intestine, liver and kidney). In the liver, the deamidation was predominantly localized to the mitochondrial/lysosomal fraction, while hydrolysis at the N-terminal Tyr residue was the major metabolic pathway in the microsomal/brush-border membrane fraction from the kidney and small intestine.  相似文献   

16.
Several factors reduce the efficacy of natural peptides as drug candidates; chief among these is their rapid digestion by human proteases. Over the last few decades, a number of strategies have been employed to increase the enzymatic stability of peptides, including the introduction of non-natural amino acids. This study aims at the investigation of the effect of side chain fluorination on the stability of peptides in human blood plasma. Ten model peptides with different non-natural amino acids were designed, synthesized and subjected to enzymatic degradation in human blood plasma. The stability of the studied peptides was followed by HPLC analysis and compared to the control peptide built with only proteinogenic residues. Four main hydrolysis products were detected and identified by mass spectrometry, three of them being characteristic cleavage products of the serine protease Elastase. A final enzymatic study with isolated Elastase validated then the outcome of the plasma study. This case study contributes to the application of fluorinated amino acids in the design of proteolytically stable peptides and proteins with potential clinical relevance.  相似文献   

17.
Peptide synthesis catalyzed by papain at alkaline pH values   总被引:1,自引:0,他引:1  
The synthesis of peptides in the presence of papain at pH 8-9.5 is described. Starting substances are acylamino acid alkyl esters (the carboxyl component) and amides or tert.-butylesters of amino acids, as well as peptide (the amino component). Under such conditions secondary hydrolysis is not essential, making the synthesis of peptides soluble in aqueous medium. The yield of peptides is 50-94%. The effect of different factors (temperature, solvents, reagent concentrations) on the result of the reaction has been studied. It has been found that an excess of the carboxyl component is expedient to increase the yield of peptides.  相似文献   

18.
α-Casein group of proteins makes up to 65% of the total casein and consists of αS1- casein, αS2- casein and other related proteins. Among all the proteases employed, chymotryptic peptides showed maximum inhibition for angiotensin converting enzyme (ACE). The degree of hydrolysis and release kinetics of the peptides during chymotrypsin hydrolysis was compared with biological activity and the potent peptides fractions were identified. The crude fraction obtained after 110 min of hydrolysis shows multifunctional activities, like ACE inhibition, antioxidant activity, prolyl endopeptidase inhibitory activity and antimicrobial activities. This fraction was further purified by HPLC and sequenced by mass spectra. This fraction constituted peptides with molecular weights of 1,205, 1,718 Da respectively. The sequencing of peptides by MALDI-TOF MS/MS shows sequences QKALNEINQF and TKKTKLTEEEKNRL from α-S2 casein.  相似文献   

19.
Phosphorylation of rabbit skeletal muscle glycogen synthase by cyclic AMP-independent synthase kinase 1 results in the incorporation of 4 mol of PO4/subunit. Incubation of the phosphorylated synthase with rabbit muscle phosphoprotein phosphatase brings about the hydrolysis of phosphates from all four major tryptic peptides and an increase in the synthase activity ratio from 0.01 to 0.85. Incubation of the phosphorylated synthase with calf intestinal alkaline phosphatase brings about the preferential hydrolysis of phosphates from three of the four major tryptic peptides and a slight increase in the four major tryptic peptides and a slight increase in the synthase activity ratio from 0.01 to 0.1. The phosphorylation site which is resistant to hydrolysis by calf intestinal alkaline phosphatase can be dephosphorylated by subsequent incubation with rabbit muscle phosphoprotein phosphatase. This dephosphorylation is accompanied by an increase in the synthase activity ratio to approximately 0.9. Measurements of the changes in the kinetic properties of the synthase samples dephosphorylated by alkaline phosphatase reveal that the phosphorylation sites susceptible to hydrolysis by alkaline phosphatase mainly affect the binding of glucose-6-P to the synthase. Comparison of the kinetic properties of the synthase samples dephosphorylated by alkaline phosphatase and by phosphoprotein phosphatase we find that the phosphorylation site resistant to hydrolysis by alkaline phosphatase affects both the binding of UDP-glucose and glucose-6-P to the synthase.  相似文献   

20.
Enzymatic cleavage of some peptides could be included among the mechanisms of water-electrolyte homeostasis. To test this hypothesis, the angiotensin-converting activity (ACE) of plasma and the L-cystine-di-β-naphthylamidase activity (CAP) of plasma and of soluble and particulate fractions from different areas of the central nervous system (CNS) were investigated in rats submitted to treatments eliciting hydromineral imbalance. CAP in the CNS was unchanged by hydromineral challenges. The correlations observed between plasma osmolality and CAP, and plasma CAP and ACE suggested a contribution of these activities to the restoration of basal water-electrolyte and blood pressure conditions through the hydrolysis of vasopressin, oxytocin, angiotensin I and bradykinin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号