首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies, we have shown that the bile-salt-dependent-lipase (BSDL), secreted by pancreatic acinar cells and secreted into the duodenal lumen, can be transcytosed through intestinal cells up to the lamina propria. In this study, we used an in vitro system to provide insights into the apical to basolateral transport of BSDL, across the intestinal barrier. The Int407 human epithelial cell line, grown under conditions that optimize polarity, was used as a tight epithelium model. We attempted to delineate uptake mechanisms and the transcytotic pathway followed by this pancreatic enzyme within the intestinal Int407 cells, which do not produce BSDL. When added to the apical reservoir of Transwell-grown Int407 cells, BSDL was shown to first interact with the apical membrane. Further, BSDL forms clusters that are internalized via clathrin-coated pits. Following endocytosis, BSDL is directed to a nocodazole- and colchicin-sensitive multivesicular compartment. Interestingly, this protein transits through the Golgi apparatus, where it was found to colocalize with the KDEL retrieval-receptor. Finally, enzymatically active intact BSDL was released at the basolateral membrane level. This is the first demonstration for an apical-to-basolateral transcytotic pathway of a secreted pancreatic digestive enzyme through polarized intestinal cells.  相似文献   

2.
Previous studies have postulated the presence of a heparin-binding site on the bile salt-dependent lipase (BSDL), whereas two bile salt-binding sites regulate the enzyme activity. One of these sites may overlap with the tentative heparin-binding site at the level of an N-terminal basic cluster consisting of positive residues Lys(32), Lys(56), Lys(61), Lys(62), and Arg(63). The present study uses specific site-directed mutagenesis to determine the functional significance of this basic cluster. Mutations in this sequence resulted in recombinant enzymes that were able to bind to immobilized and to cell-associated heparin before moving throughout intestinal cells. Recombinant BSDL was fully active on soluble substrate, but mutants were less active on micellar cholesteryl oleate in comparison with the wild-type enzyme. Activation studies by primary (sodium taurocholate) and by secondary (sodium taurodeoxycholate) bile salts revealed that the activation of BSDL by sodium taurocholate at concentrations below the critical micellar concentration, and not that evoked by micellar bile salts, was affected by substitutions, suggesting that this N-terminal basic cluster likely represents the specific bile salt-binding site of BSDL. Substitutions also affected the activation of the enzyme promoted by anionic phospholipids, extending the function of this site to that of a cationic regulatory site susceptible to accommodate anionic ligands.  相似文献   

3.
We have shown that the pro-inflammatory mediator LTD4, via its G-protein-coupled receptor CysLT1, signals through both pertussis-toxin-sensitive and -insensitive G-proteins to induce various cellular responses. To further characterise the initial step of the different signalling pathways emanating from the CysLT1 receptor, we transfected intestinal epithelial cells, Int 407, with different mini vectors that each express a specific inhibitory peptide directed against a unique alpha subunit of a specific heterotrimeric G-protein. Our results revealed that LTD4-induced stress fibre formation is inhibited approximately 80% by a vector expressing an inhibitory peptide against the pertussis-toxin-insensitive Galpha12-protein in intestinal epithelial Int 407 cells. Control experiments revealed that the LPA-induced stress fibre formation, mediated via the Galpha12-protein in other cell types, was blocked by the same peptide in intestinal Int 407 cells. Furthermore, the CysLT1-receptor-mediated calcium signal and activation of the proliferative ERK1/2 kinase are blocked in cells transfected with a vector expressing an inhibitory peptide against the Galphai3-protein, whereas in cells transfected with an empty ECFP-vector or vectors expressing inhibitory peptides against the Galphai1-2-, Galpha12-, GalphaR-proteins these signals are not significantly affected. Consequently, the CysLT1 receptor has the capacity to activate at least two distinctly different heterotrimeric G-proteins that transduce activation of unique downstream cellular events.  相似文献   

4.
The polymeric immunoglobulin receptor (pIgR) ensures the transport of dimeric immunoglobulin A (dIgA) and pentameric immunoglobulin M (pIgM) across epithelia to the mucosal layer of for example the intestines and the lungs via transcytosis. Per day the human pIgR mediates the excretion of 2 to 5 grams of dIgA into the mucosa of luminal organs. This system could prove useful for therapies aiming at excretion of compounds into the mucosa. Here we investigated the use of the variable domain of camelid derived heavy chain only antibodies, also known as VHHs or Nanobodies®, targeting the human pIgR, as a transport system across epithelial cells. We show that VHHs directed against the human pIgR are able to bind the receptor with high affinity (∼1 nM) and that they compete with the natural ligand, dIgA. In a transcytosis assay both native and phage-bound VHH were only able to get across polarized MDCK cells that express the human pIgR gene in a basolateral to apical fashion. Indicating that the VHHs are able to translocate across epithelia and to take along large particles of cargo. Furthermore, by making multivalent VHHs we were able to enhance the transport of the compounds both in a MDCK-hpIgR and Caco-2 cell system, probably by inducing receptor clustering. These results show that VHHs can be used as a carrier system to exploit the human pIgR transcytotic system and that multivalent compounds are able to significantly enhance the transport across epithelial monolayers.  相似文献   

5.
Although Epstein-Barr virus (EBV) is an orally transmitted virus, viral transmission through the oropharyngeal mucosal epithelium is not well understood. In this study, we investigated how EBV traverses polarized human oral epithelial cells without causing productive infection. We found that EBV may be transcytosed through oral epithelial cells bidirectionally, from both the apical to the basolateral membranes and the basolateral to the apical membranes. Apical to basolateral EBV transcytosis was substantially reduced by amiloride, an inhibitor of macropinocytosis. Electron microscopy showed that virions were surrounded by apical surface protrusions and that virus was present in subapical vesicles. Inactivation of signaling molecules critical for macropinocytosis, including phosphatidylinositol 3-kinases, myosin light-chain kinase, Ras-related C3 botulinum toxin substrate 1, p21-activated kinase 1, ADP-ribosylation factor 6, and cell division control protein 42 homolog, led to significant reduction in EBV apical to basolateral transcytosis. In contrast, basolateral to apical EBV transcytosis was substantially reduced by nystatin, an inhibitor of caveolin-mediated virus entry. Caveolae were detected in the basolateral membranes of polarized human oral epithelial cells, and virions were detected in caveosome-like endosomes. Methyl β-cyclodextrin, an inhibitor of caveola formation, reduced EBV basolateral entry. EBV virions transcytosed in either direction were able to infect B lymphocytes. Together, these data show that EBV transmigrates across oral epithelial cells by (i) apical to basolateral transcytosis, potentially contributing to initial EBV penetration that leads to systemic infection, and (ii) basolateral to apical transcytosis, which may enable EBV secretion into saliva in EBV-infected individuals.  相似文献   

6.
Protein delivery across polarized epithelia is controlled by receptor‐mediated transcytosis. Many studies have examined basolateral‐to‐apical trafficking of polymeric IgA (pIgA) by the polymeric immunoglobulin receptor (pIgR). Less is known about apical‐to‐basolateral transcytosis, the direction the neonatal Fc receptor (FcRn) transports maternal IgGs across intestinal epithelia. To compare apical‐to‐basolateral and basolateral‐to‐apical transcytosis, we co‐expressed FcRn and pIgR in Madin‐Darby canine kidney (MDCK) cells and used pulse‐chase experiments with confocal microscopy to examine transport of apically applied IgG Fcγ and basolaterally applied pIgA. Fcγ and pIgA trafficking routes were initially separate but intermixed at later chase times. Fcγ was first localized near the apical surface, but became more equally distributed across the cell, consistent with concomitant transcytosis and recycling. By contrast, pIgA transport was strongly unidirectional: pIgA shifted from near the basolateral surface to an apical location with increasing time. Some Fcγ and pIgA fluorescence colocalized in early (EEA1‐positive), recycling (Rab11a‐positive), and transferrin (Tf)‐positive common/basolateral recycling endosomes. Fcγ became more enriched in Tf‐positive endosomes with time, whereas pIgA was sorted from these compartments. Live‐cell imaging revealed that vesicles containing Fcγ or pIgA shared similar mobility characteristics and were equivalently affected by depolymerizing microtubules, indicating that both trafficking routes depended to roughly the same extent on intact microtubules.  相似文献   

7.
Caco-2 cells grown in bicameral chambers are a model system to study intestinal iron absorption. Caco-2 cells exhibit constitutive transport of iron from the apical (luminal) chamber to the basal (serosal) chamber that is enhanced by apo-transferrin in the basal chamber, with the apo-transferrin undergoing endocytosis to the apical portion of the cell. With the addition of iron to the apical surface, divalent metal transporter 1 (DMT1) on the brush-border membrane (BBM) undergoes endocytosis. These findings suggest that in Caco-2 cells DMT1 and apo-transferrin may cooperate in iron transport through transcytosis. To prove this hypothesis, we determined by confocal microscopy that, after addition of iron to the apical chamber, DMT1 from the BBM and Texas red apo-transferrin from the basal chamber colocalized in a perinuclear compartment. Colocalization was also observed by isolating endosomes from Caco-2 cells after ingestion of ultra-small paramagnetic particles from either the basal or apical chamber. The isolated endosomes contained both transferrin and DMT1 independent of the chamber from which the paramagnetic particles were endocytosed. These findings suggest that iron transport across intestinal epithelia may be mediated by transcytosis.  相似文献   

8.
Vitellogenin receptor (VgR) is a low-density lipoprotein receptor responsible for the mediated endocytosis of vitellogenin (Vg) during egg formation in insects. The maturing oocyte is enveloped by a follicular epithelium, which has large intercellular spaces during Vg accumulation (patency). However, Vg has been reported in the cytoplasm of follicular cells, indicating that there may be a transcellular route for its transport. This study verified the presence of VgR in the follicular cells of the ovaries of the honeybee Apis mellifera and the wasp Polistes simillimus in order to evaluate if Vg is transported via transcytosis in these insects. Antibodies specific for vitellogenin receptor (anti-VgR), vitellogenin (anti-Vg), and clathrin (anti-Clt) were used for immunolocalization. The results showed the presence of VgR on the apical and basal plasma membranes of follicular cells of the vitellogenic follicles in both species, indicating that VgR may have been transported from the basal to the apical cell domain, followed by its release into the perivitelline space, evidenced by the presence of apical plasma membrane projections containing VgR. Co-localization proved that Vg bind to VgR and that the transport of this protein is mediated by clathrin. These data suggest that, in these social insects, Vg is transported via clathrin-mediated VgR transcytosis in follicular cells.  相似文献   

9.
As one of the initial mucosal transmission pathways of HIV (HIV-1), epithelial cells translocate HIV-1 from apical to basolateral surface by nondegradative transcytosis. Transcytosis is initiated when HIV-1 envelope glycoproteins bind to the epithelial cell membrane. Here we show that the transmembrane gp41 subunit of the viral envelope binds to the epithelial glycosphingolipid galactosyl ceramide (Gal Cer), an alternative receptor for HIV-1, at a site involving the conserved ELDKWA epitope. Disrupting the raft organization of the Gal Cer-containing microdomains at the apical surface inhibited HIV-1 transcytosis. Immunological studies confirmed the critical role of the conserved ELDKWA hexapeptide in HIV-1 transcytosis. Mucosal IgA, but not IgG, from seropositive subjects targeted the conserved peptide, neutralized gp41 binding to Gal Cer, and blocked HIV-1 transcytosis. These results underscore the important role of secretory IgA in designing strategies for mucosal protection against HIV-1 infection.  相似文献   

10.
Structure similarity searches using a combinatorial extension approach revealed that a protein fold structurally related to the sphingolipid binding domain (SBD) of HIV-1 gp120 (V3 loop) is present on pancreatic bile salt-dependent lipase (BSDL). A synthetic peptide derived from the predicted V3-like domain of BSDL interacted with reconstituted monolayers of sphingolipids such as GalCer and GlcCer. Using Chinese hamster ovary cells stably transfected with the cDNA encoding the rat BSDL (CHO-3B clone) or pancreatic SOJ-6 cells expressing the human BSDL as models, we showed that the enzyme cofractionates with caveolin-1. The secretion of BSDL by CHO-3B cells was inhibited by permeable drugs affecting rafts structure (D609, PDMP, and filipin). Data suggest that the functional interaction between the BSDL SBD and lipid rafts is physiologically relevant and could be essential for sensing the BSDL folding prior to secretion. A tentative model accounting for the phosphorylation-induced dissociation of BSDL from rafts is presented.  相似文献   

11.
M cells represent the primary route by which mucosal Ags are transported across the intestinal epithelium and delivered to underlying gut-associated lymphoid tissues. In rodents and rabbits, Peyer's patch M cells selectively bind and endocytose secretory IgA (SIgA) Abs. Neither the nature of the M cell IgR nor the domains of SIgA involved in this interaction are known. Using a mouse ligated ileal loop assay, we found that monoclonal IgA Abs with or without secretory component, but not IgG or IgM Abs, bound to the apical surfaces of Peyer's patch M cells, indicating that the receptor is specific for the IgA isotype. Human serum IgA and colostral SIgA also bound to mouse M cells. The asialoglycoprotein receptor or other lectin-like receptors were not detected on the apical surfaces of M cells. We used recombinant human IgA1 and human IgA2 Abs and domain swapped IgA/IgG chimeras to determine that both domains Calpha1 and Calpha2 are required for IgA adherence to mouse Peyer's patch M cells. This distinguishes the M cell IgA receptor from CD89 (FcalphaI), which binds domains Calpha2-Calpha3. Finally, we observed by immunofluorescence microscopy that some M cells in the human ileum are coated with IgA. Together these data suggest that mouse, and possibly human, M cells express an IgA-specific receptor on their apical surfaces that mediates the transepithelial transport of SIgA from the intestinal lumen to underlying gut-associated organized lymphoid tissues.  相似文献   

12.
The neonatal Fc receptor, FcRn, transports immunoglobulin G across intestinal cells in suckling rats. FcRn enters these cells by endocytosis and is present on the apical and basolateral surfaces. We investigated the roles of aromatic amino acids and a dileucine motif in the cytoplasmic domain of rat FcRn. We expressed mutant FcRn in which alanine replaced Trp-311, Leu-322, and Leu-323, or Phe-340 in the inner medullary collecting duct cell line IMCD. Individual replacement of the aromatic amino acids or the dileucine motif only partially blocked endocytosis of (125)I-Fc, whereas uptake by FcRn containing alanine residues in place of both Trp-311 and the dileucine motif was reduced to the level obtained with the tailless receptor. Leu-314 was required for the function of the tryptophan-based endocytosis signal, and Asp-317 and Asp-318 were required for the dileucine-based signal. Nonvectorial delivery of newly synthesized FcRn to the two cell surfaces was unaffected by loss of the endocytosis signals. However, the steady-state distribution of endocytosis mutants was predominantly apical, unlike wild-type FcRn, which was predominantly basolateral. This shift appeared to arise because the loss of endocytosis signals inhibited apical to basolateral transcytosis of FcRn more than basolateral to apical transcytosis.  相似文献   

13.
Increased levels of low-density lipoproteins are well-established risk factors of endothelial dysfunction and the metabolic syndrome. In this study, we evaluated the effect of native low-density lipoprotein (nLDL) and oxidized LDL (oxLDL) on the expression of genes of the renin-angiotensin system (angiotensin-converting enzyme, ACE; angiotensin II type 1 receptor, AT(1)) and their receptors (low-density lipoprotein receptor: LDLR; lectin-like oxLDL receptor: LOX-1; toll-like receptor 4: TLR4) in primary cultures of human umbilical vein endothelial cells. ACE and AT(1) expressions were significantly increased after stimulation with nLDL and oxLDL. OxLDL receptor LOX-1 showed a maximum induction after 7 hours. Increased LOX-1 protein expression in response to oxLDL could be blocked by a LOX-1-specific antibody. TLR4 expression was increased by nLDL and oxLDL as well. We conclude that LDL and oxLDL can activate the renin-angiotensin system and their receptors LDLR, LOX-1, and TLR4 in human endothelial cells. These data suggest a novel link between hypercholesterolemia and hypertension in patients with the metabolic syndrome.  相似文献   

14.
We have examined the role of rab3b in epithelial cells. In MDCK cells, rab3b localizes to vesicular structures containing the polymeric immunoglobulin receptor (pIgR) and located subjacent to the apical surface. We found that GTP-bound rab3b directly interacts with the cytoplasmic domain of pIgR. Binding of dIgA to pIgR causes a dissociation of the interaction with rab3b, a process that requires dIgA-mediated signaling, Arg657 in the cytoplasmic domain of pIgR, and possibly GTP hydrolysis by rab3b. Binding of dIgA to pIgR at the basolateral surface stimulates subsequent transcytosis to the apical surface. Overexpression of GTP-locked rab3b inhibits dIgA-stimulated transcytosis. Together, our data demonstrate that a rab protein can bind directly to a specific cargo protein and thereby control its trafficking.  相似文献   

15.
Adherence of Bilophila wadsworthia to the cultured human embryonic intestinal cell line, Intestine 407 (Int 407), varied among the strains tested from strongly adherent (76-100% cells positive for one or more adherent bacteria) to non- or weakly adherent (0-25% positive cells). Although negative staining revealed that infrequent cells of an adherent strain, WAL 9077, the adherent type-strain, WAL 7959, and a non-adherent strain, WAL 8448, expressed loosely associated fimbrial structures, a role for these structures in adhesion could not be confirmed with either scanning or thin-section electron micrography. Ruthenium red staining of thin-section preparations and subsequent electron microscopy failed to reveal an extensive extracellular polysaccharide layer. SDS-PAGE analysis of crude outer membrane fractions of WAL 9077 and WAL 8448 demonstrated clear differences in their major and minor outer membrane protein components. Thus, we postulate that the adherence of B. wadsworthia to Int 407 cells is mediated by an outer membrane or cell wall component.  相似文献   

16.
The murine neonatal Fc receptor, FcRn, carries out two functions: materno-fetal IgG delivery and maintenance of serum IgG homeostasis. During human pregnancy maternal IgG is transferred across placental syncytiotrophoblasts presumably by the human homolog of FcRn, hFcRn. Trophoblast-derived BeWo cells express hFcRn endogenously and can be considered as a model system to investigate IgG transport in syncytiotrophoblasts. Using a pulse-chase protocol, we here demonstrate that polarized BeWo cells exhibit not only apical to basolateral transcytosis but also apical IgG recycling. Thus, for the first time we demonstrate that epithelial cells can be involved in both materno-fetal IgG transmission and regulation of serum IgG levels. Lowering the temperature from 37 to 16 degrees C reduced, but did not block, IgG recycling and transcytosis. Microtubule-disruption by nocodazole did not influence transcytosis or apical recycling. Disassembly of filamentous actin by cytochalasin D stimulated apical endocytosis and recycling, while transcytosis remained unaffected. In summary, in BeWo cells apically internalized IgG enters both a transcytotic and recycling pathway. While the transcytotic route is temperature-sensitive but independent from microtubules and actin filaments, the apical recycling pathway is temperature-influenced and stimulated by actin disassembly, suggestive for the involvement of distinct endosome subcompartments in transcytosis and recycling.  相似文献   

17.
In epithelial cells the plasma membrane is divided into domains that are biochemically and functionally different. In intestinal cells for example the apical domain is facing the intestinal lumen and is involved in the uptake of nutriments while the basolateral domain is mediating cell-cell adhesion and signalisation. We are interested in deciphering the mechanisms underlying the creation and maintenance of such specialized domains. As an epithelial model we have used the intestinal cell line Caco-2 and we have studied the transport and sorting of the human neurotrophin receptor (p75 NTR) in these cells. Newly synthesized p75 NTR is first transported to the basolateral membrane and then is accumulated on the apical membrane after transcytosis. This final apical localization is controlled by the presence of a membrane anchor and a cluster of O-glycosylation sites located in the part of the ectodomain close to the membrane. Among the mechanisms likely to be involved in the sorting of apical components we have looked for a role of lipid-protein microdomain formation in the Golgi apparatus. These membrane microdomains are highly enriched in glycosylphosphatidyl inositol (GPI) anchored proteins, glycosphingolipids and apical proteins such as sucrase isomaltase (SI). Such a composition is also found for endocytic structures called caveolae which are made of caveolin 1. We have expressed caveolin 1 in Caco-2 cells which do not express it and also caveolin 2, a related protein of unknown function. Expression of caveolin 1 led to formation of caveolae indicating that this protein is necessary for caveolae formation while caveolin 2 is restricted to the Golgi apparatus and has no effect on caveolae formation. However Caveolin 2 increased the amount of SI incorporated in microdomains suggesting a role in recruitment into the apical pathway. The choice for a site of fusion for transport vesicles is the last step of control during exocytosis. To identify proteins involved in that step we have cloned and characterized two members of the t-SNARE family, namely syntaxin 3 and SNAP23. Syntaxin 3 is present on the apical membrane and forms a complex with SNAP23 which is also localized on the basolateral membrane where it forms a complex with syntaxin 4. Overexpression of syntaxin 3 in Caco-2 led to a decrease of SI exocytosis towards the apical membrane confirming that syntaxin 3 is involved in targeting the fusion of apical transport vesicles to the apical pole of the cells.  相似文献   

18.
Oxidized low-density lipoprotein (ox-LDL) leads to atherosclerosis via lectin-like oxidized lipoprotein receptor-1 (LOX-1), one of the major receptor for ox-LDL. Inhibition of the binding of ox-LDL to LOX-1 decreases the proinflammatory and atherosclerotic events. The aim of the present study was to investigate whether protamine, a polybasic nuclear protein, interferes the binding of ox-LDL to LOX-1. Using sandwich ELISA with newly generated antibody, we measured the blocking effect of protamine on the binding of ox-LDL to LOX-1. Protamine dose-dependently inhibited the binding of ox-LDL to LOX-1. DiI-labeled ox-LDL uptake assay in two types of cultured human endothelial cells was performed with fluorescence microplate reader. Activation of extracellular-signal-regulated kinase (ERK)1/2 by ox-LDL was analyzed by immunoblotting. We found that protamine suppressed uptake of ox-LDL in endothelial cells and inhibited ERK1/2 activation by ox-LDL. These results suggest that protamine may possess anti-atherogenic potential by inhibiting ox-LDL binding to LOX-1 through electrostatic interactions.  相似文献   

19.
Differential microtubule requirements for transcytosis in MDCK cells.   总被引:31,自引:2,他引:29  
W Hunziker  P Mle    I Mellman 《The EMBO journal》1990,9(11):3515-3525
Given the role of microtubules in directing the transport of many intracellular organelles, we investigated whether intact microtubules were also required for transcytosis across epithelia. Using polarized MDCK cells expressing receptors for the Fc domain of IgG (FcRII-B2) or polymeric immunoglobulin (pIg-R), we examined the involvement of microtubules in apical to basolateral and basolateral to apical transcytosis, respectively. While depolymerization of microtubules with nocodozole had no effect on apical to basolateral transcytosis via FcR, basolateral to apical transcytosis of dimeric IgA via pIg-R was almost completely blocked. Inhibition due to nocodozole was selective for basolateral to apical transcytosis, since neither endocytosis nor receptor recycling was significantly affected at either plasma membrane domain. As shown by confocal microscopy, the block in transcytosis was due to the inability of MDCK cells to translocate IgA-containing vesicles from the basolateral to the apical cytoplasm in the absence of an intact microtubule network. The nocodazole sensitive step could be partially by-passed, however, by allowing cells to internalize IgA at 17 degrees C prior to nocodazole treatment. Although incubation at 17 degrees C blocked release of IgA into the apical medium, it did not prevent translocation of IgA-containing vesicles to the apical cytoplasm. Thus, receptor-mediated transcytosis in opposite directions exhibits distinct requirements for microtubules, a feature which reflects the spatial organization of MDCK cells.  相似文献   

20.
Polarized epithelial cells contain apical and basolateral surfaces with distinct protein compositions. To establish and maintain this asymmetry, newly made plasma membrane proteins are sorted in the trans Golgi network for delivery to apical or basolateral surfaces. Signals for basolateral sorting are generally located in the cytoplasmic domain of the protein, whereas signals for apical sorting can be in any part of the protein and can depend on N-linked glycosylation of the protein. Signals for constitutive transcytosis to the apical surface have not been reported. In this study, we used the polymeric immunoglobulin receptor (pIgR), which is biosynthetically delivered to the basolateral surface. There the pIgR can bind a ligand and, with or without bound ligand, the pIgR can then be transcytosed to the apical surface. We found that the glycosylation of the pIgR did not affect the biosynthetic transport of the pIgR. However, glycosylation had an effect on pIgR apical transcytosis. Importantly, analysis of the cytoplasmic tail of the pIgR suggested that a short peptide segment was sufficient to transcytose the pIgR or a neutral reporter from the basolateral to the apical surface. This apical transcytosis sorting signal was not involved in polarized biosynthetic traffic of the pIgR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号