首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sulfated mucopolysaccharide composition of the mammalian cell lines: HeLa, H.Ep.2, AV3, WI-38, BHK and a cell culture of rabbit lung tissue is reported. It is shown that chondroitin sulfate AC and heparitin sulfate are the main mucopolysaccharides of the permanent cell lines whereas chondroitin sulfate B and heparitin sulfate are the major ones in the primary cultures, with no significant change in their relative concentrations up to seven generations. It is also shown that besides heparitin sulfate, chondroitin sulfate AC and chondroitin sulfate B are located at the surface of the cells. These results are in agreement with the earlier proposals that heparitin sulfate and chondroitin sulfate B might play a role in cell recognition and adhesiveness and that chondroitin sulfate AC might act as a stimulant of cell division.  相似文献   

2.
The sulfated mucopolysaccharide composition of normal Swiss 3T3 cell line and its tumorigenic mutant ST1 is reported. It is shown that chondroitin sulfate B and heparitin sulfate are the sulfated mucopolysaccharides of the normal 3T3 line whereas chondroitin sulfate A and heparitin sulfate are the major ones of the ST1 variant. Degradation of the chondroitin sulfates derived from both cell lines with chondroitinases B and ABC have shown that they contain only 4-sulfated disaccharides differing from each other by the type of uronic acid residue. It is also shown that the chondroitin sulfate A from the tumorigenic variant is mostly located at the cell surface whereas the chondroitin sulfate B from the normal line is less accessible to trypsinization. A relative increase of chondroitin sulfate A was also observed in 3T3 that had lost contact inhibition after successive subcultures, and in the 3T6 cell line. These combined results are in agreement with the earlier proposal that glucuronic acid-containing chondroitin sulfate plays a role in the stimulation of cell division in neoplastic and embryonic tissues.  相似文献   

3.
The sulfated mucopolysaccharide composition of different neonate, adult and tumoral tissues is reported. It is shown that each tissue has a characteristic composition with respect to the relative amount, type and molecular size of chondroitin sulfate AC, chondroitin sulfate B and heparitin sulfate. Neonate and tumor tissues contain large amounts of chondrotin sulfate AC which is nearly absent in most adult and normal tissues respectively. Based on these and other results a possible role for the sulfated mucopolysaccharides in cell recognition and adhesiveness is proposed.  相似文献   

4.
Distribution of sulfated mucopolysaccharides in invertebrates.   总被引:13,自引:0,他引:13  
The sulfated mucopolysaccharide composition of 22 species of invertebrates belonging to the phyla Arthropoda, Mollusca, Annelida, Tunicata, Echinodermata, Coelenterata, and Porifera was analyzed. It is shown that all the species contain variable amounts of one or more types of sulfated mocopolysaccharides, most of which similar to the ones found in vertebrates. It is shown also that each species has a characteristic composition, differing from each other regarding the relative amount and type of chondroitin sulfates A, B, and C, heparitin sulfate, and heparin. The possible biological role of the sulfated mucopolysaccharides in cell recognition or aggregation or both is discussed in view of the present findings.  相似文献   

5.
A comparative study on the distribution of sulfated mucopolysaccharides in several tissues of five mammalian species is reported. It is shown that each tissue has a characteristic composition differing from each other regarding the relative amount, type and molecular size of chondroitin sulfate A/C, chondroitin sulfate B and heparan sulfate. It is also shown that the same tissue from different mammals has the same types and proportions of sulfated mucopolysaccharides, but with different molecular weights. Exception to this rule was observed for the distribution of heparin which was present only in a few tissues of the five mammals studied. The possible involvement of the sulfated mucopolysaccharides in cell recognition and/or adhesiveness is discussed in view of this characteristic distribution.  相似文献   

6.
A comparative study on the distribution of sulfated mucopolysaccharides in several tissues of five mammalian species is reported. It is shown that each tissue has a characteristic composition differing from each other regarding the relative amount, type and molecular size of chondroitin sulfate A/C, chondroitin sulfate B and heparan sulfate. It is also shown that the same tissue from different mammals has the same types and proportions of sulfated mucopolysaccharides, but with different molecular weights. Exception to this rule was observed for the distribution of heparin which was present only in a few tissues of the five mammals studied.The possible involvement of the sulfated mucopolysaccharides in cell recognition and/or adhesiveness is discussed in view of this characteristic distribution.  相似文献   

7.
The synthesis of sulfated glycosaminoglycans was analysed in mouse fibroblasts during the transition from exponential growth to quiescent monolayers. 'Normal' Swiss 3T3 fibroblasts were compared with SV40 transformed 3T3, C6, ST1 and HeLa cells. p-Nitrophenyl-beta-D-xyloside, an artificial acceptor for glycosaminoglycans synthesis, was used as a probe. Exponentially growing 'normal' 3T3 cells synthesized both dermatan sulfate and chondroitin 4-sulfate, retaining the latter and releasing the former to the medium. Upon reaching quiescence these cells switched to retention of dermatan sulfate and release of chondroitin 4-sulfate. SV3T3 cells synthesized several fold less sulfated glycosaminoglycans than 'normal' 3T3. Even though SV3T3 cells are able to synthesize dermatan sulfate, they only retained chondroitin 4-sulfate, never switching to retention of dermatan sulfate. These results indicated that the transition from rapidly proliferating to resting G0 state in normal cells is accompanied by a switch from chondroitin-sulfate rich to dermatan-sulfate-rich cells. This switching was not observed with transformed cells, which are unable to enter the G0 state. Phenylxyloside caused a several fold increase in glycosaminoglycans released to the medium in both cell types, but it did not interfere with either growth rate or cell morphology. Particularly the phenylxyloside treatment led to an increase of more than 10-fold in production of dermatan and chondroitin sulfate by SV3T3, C6, ST1 and HeLa cells. This demonstrated that transformed cells have a high capacity for glycosaminoglycan synthesis. Analysis of enzymatic degradation products of glycosaminoglycans, synthesized in the presence of phenylxyloside, by normal and transformed cells, led to the finding of 4- and 6-sulfated iduronic and glucuronic acid-containing disaccharides. This result indicated that the xyloside causes the synthesis of a peculiar chondroitin sulfate/dermatan sulfate, in both normal and transformed cells.  相似文献   

8.
The susceptibility of targets to destruction by tumoricidal rat and mouse macrophages was studied with virus-transformed cell lines in which various elements of the transformed phenotype are only expressed at specific temperatures. BHK cells transformed by the ts3 mutant of polyoma virus, rat embryo 3Y1 cells transformed by a temperature-sensitive A cistron mutant of simian virus 40 (SV40) and the ts-H6-15 temperature-sensitive line of SV40-transformed mouse 3T3 cells were killed in vitro by macrophages at both the permissive (33 °C) or nonpermissive (39 °C) temperatures for expression of the transformed phenotype. 3T3, 3Y1 and BHK cells transformed by wild-type SV40 or polyoma virus were also destroyed by tumoricidal macrophages at both 33 and 39 °C, but untransformed 3T3, 3Y1, and BHK cells were not. Thus, transformed cells are killed by macrophages regardless of whether or not they express cell surface LETS protein or Forssman antigen, display surface changes which permit agglutination by low doses of plant lectins, express SV40 T antigen, have a low saturation density, or exhibit density-dependent inhibition of DNA synthesis.  相似文献   

9.
Transformed baby hamster kidney (BHK) cells were tested for surface antigens by an immunocytoadhesion method. The cells were sensitized with rabbit antisera to cell clones transformed by polyoma or by BK virus and then rosetted with erythrocytes coated with antibody to rabbit immunoglobulin. These antisera detected common antigens on BHK cells transformed by either of three papovaviruses, polyoma, BK, or SV40, but apparently not on normal BHK cells.  相似文献   

10.
Sulfation of glycosaminoglycans (GAGs) secreted by baby hamster kidney (BHK) cells and the polyoma virus-transformants (PY-BHK) was investigated. It has been reported that chondroitin sulfate (CS) of cell membranes from PY-BHK cells is undersulfated compared to that from BHK cells (Cancer Res. 43, 2712-2717, 1983). In the first series of experiments of the present study, cells were incubated with [3H]glucosamine and [35S]sulfate, and GAGs isolated from the culture medium were examined. GAG composition was comparable between the BHK and PY-BHK cultures. Disaccharide analysis of the chondroitinase ACII digests of the hyaluronate lyase-resistant materials showed a high proportion (68% for BHK and 47% for PY-BHK) of delta Di-0S, with delta Di-4S (32% for BHK and 53% for PY-BHK) as the major sulfated disaccharide on the basis of 3H-radioactivities. The beta-D-xyloside treatment did not alter the degree of undersulfation of the CS of either culture. In the second series of experiments, disaccharide analysis of the chondroitinase ABC digests of unlabeled GAGs demonstrated similar disaccharide composition for the two cell types. The BHK and PY-BHK preparations showed 28 and 17% (mol percent) of delta Di-0S, 58 and 72% of delta Di-4S, and 14 and 11% of delta Di-6S, respectively. These results indicate a considerable degree of undersulfation of secretory CS from both cells, and a slightly higher degree, if any, of under-sulfation of secretory CS from BHK cells if compared between the two cell types, which is in contrast to the results reported for membrane CS.  相似文献   

11.
MUCOPOLYSACCHARIDES PRODUCED IN TISSUE CULTURE   总被引:20,自引:6,他引:14       下载免费PDF全文
1. A method of mass tissue culture has been devised by which, in a relatively short period of time, samples large enough for chemical isolation of mucopolysaccharides can be obtained. 2. Chemical isolation of acid mucopolysaccharides from mass cultures of human fetal skin, human fetal bone, bovine fetal skin, and rat subcutaneous tissue has been carried out. It has been found that the fibroblasts of each of these tissues produce in tissue culture more than one mucopolysaccharide, namely, hyaluronic acid, and a chondroitin sulfate. 3. The chondroitin sulfate produced by fibroblasts of the above tissues in tissue culture was not fully sulfated. The possible significance of this finding is discussed.  相似文献   

12.
The distribution of sulfated mucopolysaccharides in different tissues during growth and in cancer tissues is reported. It is shown that most of the tissues of 1 day-old rats and rabbits contain chondroitin sulfate A/C, chondroitin sulfate B and heparan sulfate in about the same proportions, whereas in adult animals chondroitin sulfate A/C decreases in concentration or disappears. Changes in the relative proportions of chondroitin sulfate B and heparan sulfate were also observed in most of the tissues. In rats, these changes occur in the first 25 days of extrauterine development. A great increase of chondroitin sulfate A/C was observed in human tumors of different origins when compared with the normal adjacent tissues. Changes in the relative proportions of chondroitin sulfate B and heparan sulfate were also observed in most of the tumors analysed. The possible role of chondroitin sulfate A/C in cell division is discussed in view of the present findings.  相似文献   

13.
The distribution of sulfated mucopolysaccharides in different tissues during growth and in cancer tissues is reported. It is shown that most of the tissues of 1 day-old rats and rabbits contain chondroitin sulfate A/C, chonroitin sulfate B and heparan sulfate in about the same proportions, whereas in adult animals chondroitin sulfate A/C decreases in concentration or disappears. Changes in the relative proportions of chondroitin sulfate B and heparan sulfate were also observed in most of the tissues. In rats, these changes occur in the first 25 days of extrauterine development. A great increase of chondoitin sulfate A/C was observed in human tumors of different origins when compared with the normal adjacent tissues. Changes in the relative proportions of chondroitin sulfate B and heparan sulfate were also observed in most of the tumors analysed. The possible role of chondroitin sulfate A/C in cell division is discussed in view of the present findings.  相似文献   

14.
Phenotypic transformation of the host cell affected the formation of polyoma pseuodovirions. Polyoma virus infection of various transformed derivatives of mouse 3T3 cells resulted in the formation of predominantly pseudovirions, whereas infection of mouse 3T3 cells produced mainly polyoma virus. The effect that transformation of the host cell had on polyoma pseudovirus formation was further demonstrated by using phenotypic revertants isolated from some of the transformed cell lines. The revertants were characterized by their morphology, saturation densities, and colony-forming ability in methylcellulose suspension. By these criteria they were distinct from their transformed parents and similar to 3T3 cells. After infection, the revertants produced predominantly polyoma virus and few pseudovirus. Thus, for the cell lines used in this study, phenotypic transformation enhanced the formationof polyoma pseudovirions.  相似文献   

15.
Effect of Interferon on Some Aspects of Transformation by Polyoma Virus   总被引:1,自引:0,他引:1  
WHEN BHK 21 hamster cells are infected with polyoma virus1, there is no vegetative growth of virus, but stably transformed cells appear. These transformed cells are more easily transplanted than BHK 21 cells; they initiate their growth cycle in otherwise restrictive cultural conditions such as the absence of serum, high density and suspension; they grow with random orientation and have exposed on their surfaces receptor sites for certain glycoprotein agglutinins2–5. The proportion of stably transformed cells is low, even after high doses of virus. But a much higher proportion (sometimes all cells) shows abortive transformation—changes characteristic of transformation, but which last only a few days. In suspension cultures, for example, most of the infected cells grow into small colonies of four to thirty-two cells6. In surface cultures deprived of serum DNA synthesis is initiated and the cells may then divide at least once7: they also temporarily lose the normal parallel orientation and develop the typical random appearance of transformed cells. Moreover, the polyoma nuclear T-antigen and also a surface antigen detected by immunofluorescence, appear temporarily in most polyoma infected BHK 21 cells8, while 3T3 cells exposed to SV40 virus show transient exposure of cell surface sites reacting with conconavalin A (ref. 9).  相似文献   

16.
Phosphatidylcholine mobility in liver microsomal membranes   总被引:5,自引:0,他引:5  
Analysis of the 35SO4-labelled macromolecules synthesized by cultures of normal )NIL8) and transformed (NIL8-HSV) hamster fibroblasts has revealed the following differences between the two cell lines: (1) The proportion of sulfate incorporated into cell-associated macromolecules is three times higher in normal than in transformed cells. In addition, normal fibroblasts incorporate more sulfate into extracellular, middle and low molecular weight species than do transformed cells. Transformed cells, however, incorporate more sulfate into extracellular, very high molecular weight species than do normal cells. (2) Normal fibroblasts, which synthesize much more extracellular dermatan sulfate than do transformed cells, produce a class of extracellular heterogeneous sulfated proteoglycans absent from transformed cultures. This macromolecular species consists largely of dermatan sulfate. The transformed cells instead release a lower molecular weight class of proteoglycans which consist of chondroitin sulfates A and C. (3) The large, external, transformation-sensitive glycoprotein is sulfated in NIL8 cultures. This macromolecular species is present on the surface membrane of normal cells, but absent from transformed cells. Sulfated large, external transformation-sensitive protein is also present in the conditioned medium from normal cultures. A similar species is present in the conditioned medium from transformed cultures, but has a slightly higher apparent molecular weight and differs in other properties from the large, external, transformation-sensitive protein of normal cells.  相似文献   

17.
Balb/c 3T3 cells synthesize 5--10 times more 35SO2/4- -labeled extracellular proteoglycan per cell than do Balb/c 3T3 cells transformed by SV40 (SV3T3). The extracellular 35SO2/4- -labeled proteoglycans of the Balb/c 3T3 and SV3T3 cells differ markedly in their acid mucopolysaccharide composition. Extracellular Balb/c 3T3 proteoglycans contain about 70--80% chondroitin sulfate, most of which is chondroitin 4-sulfate, and small amounts of heparan sulfate and/or heparin. On the other hand, extracellular SV3T3 proteoglycans contain 65-75% heparan sulfate and/or heparin and less than 15% chondroitin sulfate. Analysis of extracellular 35SO2/4- -labeled proteoglycan by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals that Balb/c 3T3 alone synthesizes a class of proteoglycans capable of migrating in a 10% separating gel. This class of proteoglycans, designated as fraction C, accounts for up to 45% of the total extracellular Balb/c 3T3 35 SO2/4- -labeled proteoglycans and contains chondroitin sulfate extracellular SV3T3 proteoglycans. The absence of this and other classes of chondroitin sulfate-containing proteoglycans can account for the 5-10-fold decreased synthesis of 35SO2/4- -labeled proteoglycans by SV3T3 cells when compared to Balb/c 3T3 cells.  相似文献   

18.
A cloned bovine corneal endothelial cell line was transformed in vitro by simian virus 40, and the subendothelial extracellular matrix-associated sulfated glycosaminoglycans synthesized by the cells were isolated and compared with their untransformed counterpart. The transformed endothelial cells grew at faster rates to higher stationary cell densities in the absence of fibroblast growth factor than did the untransformed cells. On a per-cell basis, the transformed cells produced slightly lower amounts of sulfated glycosaminoglycans. The rate of production of sulfated glycosaminoglycans in extracellular matrix increased during seven days of culture. At confluency the extracellular matrix-associated sulfated glycosaminoglycans synthesized by the untransformed endothelial cells consisted of about 80% heparan sulfate and about 20% chondroitin sulfate. Extracellular matrix-associated sulfated glycosaminoglycans of transformed endothelial cells were composed of about 70% heparan sulfate and about 30% chondroitin sulfate plus dermatan sulfate. High-speed gel permeation chromatography profiles on Fractogel TSK HW-55(S) of matrix-associated heparan sulfate from untransformed and transformed endothelial cells were very similar, and gave single peaks (Kav = 0.19). Apparent Mr estimated from the eluting position of the peaks were approximately 47000. Heparan sulfate from both untransformed and transformed endothelial cells was degraded by incubation with a metastatic B16 melanoma cell lysate containing heparanase (heparan-sulfate-specific endo-beta-glucuronidase). The eluting position of the heparan sulfate degradation products on gel permeation column were similar (Kav = 0.43). Size analysis and anion-exchange chromatography of the degradation products after nitrous acid deamination at low pH indicated that the degree of N-sulfation of heparan sulfate was similar in untransformed and transformed endothelial cells. The results indicated that transformation of endothelial cells only slightly changes the molecular nature of subendothelial matrix-associated sulfated glycosaminoglycans.  相似文献   

19.
To characterize the sulfated proteoglycans (PGs) alterations associated with malignant transformation of epithelial cells in vitro, the localization, charge, size, and composition of cell-associated and secreted sulfated PGs have been compared in rabbit renal proximal-tubule cells in primary culture (Ronco et al., 1990) and in a derived SV-40 transformed cell line (RC.SV1) exhibiting a proximal phenotype and high tumor-inducing ability (Vandewalle et al., 1989). Both normal and transformed cells incorporated PGs into a thick basement membrane layer as shown by ruthenium red staining and immunodetection with a monoclonal antibody raised against the core protein of the bovine basement membrane heparan sulfate-PG (HS-PG). In primary cultures of normal cells, cell-associated PGs were almost identical to those extracted from renal tubule fractions in vivo by their size (Kav = 0.27 vs. 0.26 on Sepharose CL-6B) and composition characterized by the exclusive presence of heparan sulfate glycosaminoglycan (HS-GAG) chains. In addition, the cells secreted a HS-PG with similar biochemical characteristics (Kav = 0.29; 100% HS-GAG chains). The SV-40-transformed RC.SV1 cells also synthesized and secreted a unique PG with the same charge and Kav values and apparently the same core protein (35 kDa) as in nontransformed cells, but three major differences were observed: (i) an increased proportion of PG-associated [35S]sulfate radioactivity released into the culture medium (36 vs. 21%), (ii) the emergence of free GAG chains unincorporated into PGs and detected only in the cell-associated fraction, and (iii) a dramatic change in the composition of GAG chains in which chondroitin sulfate replaced heparan-sulfate. The latter finding is in keeping with the known chondroitin sulfate increase and heparan-sulfate decrease in epithelial tumors. The alterations of PGs observed in this study may play a role in the acquisition and/or maintenance of the malignant phenotype.  相似文献   

20.
Cell lines 3T3B (mouse), 3T3B-SV40, BHK21 (hamster) and BHK21 polyoma virus (PyY) were labelled with [35S]methionine under conditions in which 500–600 cpm were incorporated per cell during a 20 h incubation period. Two-dimensional gel electrophoresis analysis of the total [35S]methionine-labelled polypeptides from 200–300 cells followed by fluorography revealed about 500 acidic (isoelectric focusing, IEF) and 150 basic polypeptides (non-equilibrium pH gradient electrophoresis, NEPHGE) whose position could be reproducibly assessed. Counting of 33 abundant acidic polypeptides present in both 3T3B and 3T3B-SV40 revealed significant changes in the relative proportion of ten of them. Seven, including the subunit of the 100 Å filaments ‘fibroblast type’ (55K) (1.1% in 3T3B; 0.6% in 3T3B-SV40), three cytoarchitectural proteins and three soluble proteins, corresponded to a decrease of 40% or more in the radioactivity of the spots in transformed cells, and only in three cases was there a significant increase in radioactivity of polypeptides in 3T3B-SV40 cells. Among the polypeptides that show less than 40% variation we have identified total actin (42K) (13% of total label in 3T3B; 10% in 3T3B-SV40), α- and β-tubulin (55K) (1.6% of total label in 3T3B; 2% in 3T3B-SV40), eleven polypeptides present in Triton skeletons, and nine soluble proteins. We have also observed 25 obvious changes in polypeptide intensities (16 acidic and 9 basic) but these were not quantitated. Only three polypeptides were found in transformed cells that were not detected in normal cells. One of these corresponded to the large T antigen and the other two to Triton-soluble proteins of a molecular weight in the range of 52–54K. Similar quantitative studies on the hamster BHK21/BHK21PyY pair confirmed at least the major observations made in 3T3B and 3T3B-SV40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号