首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A short burst of electric field pulses was used to induce nearly simultaneous fusion among 50% or more of a population composed of unlabeled erythrocytes and erythrocytes labeled with the fluorescent lipid analogue DiI (1,1'-dihexadecyl-3,3,3',3'-tetra-methylindo carbocyanine perchlorate). Fusion products that ended in an hourglass shape were selected for analysis. The net movement of the label from the labeled membrane to the adjacent unlabeled membrane in each of the hourglass-shaped fusion products was recorded by micrography at various known times after the fusion took place, but before equilibrium was achieved. The lateral concentration gradients were measured by densitometry and compared with predictions based on Huang's model (Huang, H.-W., 1973, J. Theor. Biol., 40:11-17) for lateral diffusion on a spherical membrane. The average lateral diffusion coefficients, 3.8 and 8.1 X 10(-9) cm2/s in pH 7.4 isotonic phosphate buffer at 23-25 degrees C and 35-37 degrees C, respectively, compare very favorably with the results of three published photobleaching studies of the lateral diffusion of DiI in erythrocyte membranes. While the fusion approach to measuring lateral diffusion is not new, it has not enjoyed widespread use because of the uncertainty in the degree of fusion synchrony and low fusion yield. This study shows that the use of pulsed electric fields to induce synchronous fusion is a promising approach to overcome both of these drawbacks and yield results comparable to those obtainable by the photobleaching approach.  相似文献   

2.
Disk membranes and plasma membrane vesicles were prepared from bovine retinal rod outer segments (ROS). The plasma membrane vesicles were labeled with the fluorescent probe octadecylrhodamine B chloride (R18) to a level at which the R18 fluorescence was self-quenched. At pH 7.4 and 37 degrees C and in the presence of micromolar calcium, an increase in R18 fluorescence with time was observed when R18-labeled plasma membrane vesicles were introduced to a suspension of disks. This result was interpreted as fusion between the disk membranes and the plasma membranes, the fluorescence dequenching resulting from dilution of the R18 into the unlabeled membranes as a result of lipid mixing during membrane fusion. While the disk membranes exposed exclusively their cytoplasmic surface, plasma membrane vesicles were found with both possible orientations. These vesicles were fractionated into subpopulations with homogeneous orientation. Plasma membrane vesicles that were oriented with the cytoplasmic surface exposed were able to fuse with the disk membranes in a Ca(2+)-dependent manner. Fusion was not detected between disk membranes and plasma membrane vesicles oriented such that the cytoplasmic surface was on the interior of the vesicles. ROS plasma membrane-disk membrane fusion was stimulated by calcium, inhibited by EGTA, and unaffected by magnesium. Rod photoreceptor cells of vertebrate retinas undergo diurnal shedding of disk membranes containing the photopigment rhodopsin. Membrane fusion is required for the shedding process.  相似文献   

3.
A new quantitative approach to study cell membrane electrofusion has been developed. Erythrocyte ghosts were brought into close contact using dielectrophoresis and then treated with one square or even exponentially decaying fusogenic pulse. Individual fusion events were followed by lateral diffusion of the fluorescent lipid analogue 1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) from originally labeled to unlabeled adjacent ghosts. It was found that ghost fusion can be described as a first-order rate process with corresponding rate constants; a true fusion rate constant, k(f), for the square waveform pulse and an effective fusion rate constant, k(ef), for the exponential pulse. Compared with the fusion yield, the fusion rate constants are more fundamental characteristics of the fusion process and have implications for its mechanisms. Values of k(f) for rabbit and human erythrocyte ghosts were obtained at different electric field strength and temperatures. Arrhenius k(f) plots revealed that the activation energy of ghost electrofusion is in the range of 6-10 kT. Measurements were also made with the rabbit erythrocyte ghosts exposed to 42 degrees C for 10 min (to disrupt the spectrin network) or 0.1-1.0 mM uranyl acetate (to stabilize the bilayer lipid matrix of membranes). A correlation between the dependence of the fusion and previously published pore-formation rate constants for all experimental conditions suggests that the cell membrane electrofusion process involve pores formed during reversible electrical breakdown. A statistical analysis of fusion products (a) further supports the idea that electrofusion is a stochastic process and (b) shows that the probability of ghost electrofusion is independent of the presence of Dil as a label as well as the number of fused ghosts.  相似文献   

4.
It was previously reported (Chernomordik and Sowers, 1991) that erythrocyte ghosts which were exposed to a 42 degrees C, 10-min heat treatment would, upon electrofusion, produce over 15-20 s a fusion product with an "open lumen" (i.e., the fusion product became converted to one large sphere), while electrofusion of ghost membranes not so exposed would lead to chains of polyghosts. In phase optics the chains of polyghosts showed a "flat diaphragm" at virtually every ghost-ghost junction (i.e., the ghosts do not appear to be fused even though fluorescent-labeled lipid analogs can laterally diffuse from a labeled ghost to an adjacent unlabeled ghost). In the present study we found that the diameter increase in open lumen- and flat diaphragm-producing fusion processes both had a rapid but short early phase (0-5 s after fusion) which was exponential or nearly so and a slow but long late phase (5-120 s after fusion) which was essentially linear. Heat treatments at 39 or 42 degrees C caused a minor acceleration in only the late phase, while temperatures of 45 or 50 degrees C caused an immediate and dramatic acceleration in the rate of diameter increase (spheres in 1-2 s). Ghost membranes in the presence of glycerol at 20% (v/v) did not form open lumens when exposed to the 42 degrees C (but not the > or = 45 degrees C) heat treatment. This suggested that the heat treatment was denaturing a critical protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The fusion kinetics of cells expressing the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein with CD4 target cells was continuously monitored by image-enhanced Nomarski differential interference contrast optics. The analysis of the videotape recordings showed that (i) cells made contact relatively rapidly (within minutes), in many cases by using microspikes to "touch" and adhere to adjoining cells; (ii) the adhered cells fused after a relatively long waiting period, which varied from 15 min to hours; (iii) the morphological changes after membrane fusion, which led to disappearance of the interface separating the two cells, were rapid (less than 1 min); and (iv) the process of syncytium formation involved subsequent fusion with other cells and not simultaneous fusion of many cells. To measure the kinetics of early stages of cell fusion, we used the recently developed very stable membrane-soluble dye, PKH26, which redistributes between labeled and unlabeled membranes after fusion but does not exchange spontaneously between membranes for prolonged periods. We found that photoactivation of this dye by illumination with green light inhibits fusion of cell membranes as indicated by the lack of dye transfer from the labeled HIV-1 envelope-expressing cells to unlabeled CD4 cells. The inhibitory effect was localized in space and time, which allowed us to develop a new assay for measuring the kinetics of membrane fusion by illuminating the cell mixture at different times after coculture. This assay has also been used to monitor the fusion kinetics of HIV-1 and recombinant vaccinia virus. The photoactivation of nonexchangeable membrane-soluble fluorescent dyes may be useful for development of new assays for measuring the kinetics of membrane fusion and could also be important in designing new antiviral approaches.  相似文献   

6.
Membrane fusion was studied using human neutrophil plasma membrane preparations and phospholipid vesicles approximately 0.15 microns in diameter and composed of phosphatidylserine and phosphatidylethanolamine in a ratio of 1 to 3. Liposomes were labeled with N-(7-nitrobenzo-2-oxa-1,3-diazol-4-yl (NBD) and lissamine rhodamine B derivatives of phospholipids. Apparent fusion was detected as an increase in fluorescence of the resonance energy transfer donor, NBD, after dilution of the probes into unlabeled membranes. 0.5 mM Ca2+ alone was sufficient to cause substantial fusion of liposomes with a plasma membrane preparation but not with other liposomes. Both annexin I and des(1-9)annexin I caused a substantial increase in the rate of fusion under these conditions while annexin V inhibited fusion. Fusion mediated by des(1-9)annexin I was observed at Ca2+ concentrations as low as approximately 5 microM, suggesting that the truncated form of this protein may be active at physiologically low Ca2+ concentrations. Trypsin treated plasma membranes were incapable of fusion with liposomes, suggesting that plasma membrane proteins may mediate fusion. Liposomes did not fuse with whole cells at any Ca2+ concentration, indicating that the cytoplasmic side of the membrane is involved. These results suggest that annexin I and unidentified plasma membrane proteins may play a role in Ca(2+)-dependent degranulation of human neutrophils.  相似文献   

7.
There is controversy as to whether the cell entry mechanism of Sindbis virus (SIN) involves direct fusion of the viral envelope with the plasma membrane at neutral pH or uptake by receptor-mediated endocytosis and subsequent low-pH-induced fusion from within acidic endosomes. Here, we studied the membrane fusion activity of SIN in a liposomal model system. Fusion was followed fluorometrically by monitoring the dilution of pyrene-labeled lipids from biosynthetically labeled virus into unlabeled liposomes or from labeled liposomes into unlabeled virus. Fusion was also assessed on the basis of degradation of the viral core protein by trypsin encapsulated in the liposomes. SIN fused efficiently with receptor-free liposomes, consisting of phospholipids and cholesterol, indicating that receptor interaction is not a mechanistic requirement for fusion of the virus. Fusion was optimal at pH 5.0, with a threshold at pH 6.0, and undetectable at neutral pH, supporting a cell entry mechanism of SIN involving fusion from within acidic endosomes. Under optimal conditions, 60 to 85% of the virus fused, depending on the assay used, corresponding to all of the virus bound to the liposomes as assessed in a direct binding assay. Preincubation of the virus alone at pH 5.0 resulted in a rapid loss of fusion capacity. Fusion of SIN required the presence of both cholesterol and sphingolipid in the target liposomes, cholesterol being primarily involved in low-pH-induced virus-liposome binding and the sphingolipid catalyzing the fusion process itself. Under low-pH conditions, the E2/E1 heterodimeric envelope glycoprotein of the virus dissociated, with formation of a trypsin-resistant E1 homotrimer, which kinetically preceded the fusion reaction, thus suggesting that the E1 trimer represents the fusion-active conformation of the viral spike.  相似文献   

8.
Treatment of erythrocyte ghosts in random positions in a suspension with membrane fusion-inducing direct current electric field pulses causes the membranes to become fusogenic. Significant fusion yields are observed if the membranes are dielectrophoretically aligned into membrane-membrane contact with a weak alternating electric field as much as 5 min after the application of the pulses. This demonstrates that a long-lived membrane structural alteration is involved in this fusion mechanism. Other experiments indicate that the areas on the membrane which become fusogenic after treatment with the pulses may be very highly localized. The locations of these fusogenic areas coincide with where the trans-membrane electric field strength was greatest during the pulse. The fusogenic membrane alteration, or components thereof, in these areas laterally diffuses very slowly or not at all, or, to be fusogenic, must be present at concentrations in the membrane above a certain threshold. The loss of soluble 0.9-3-nm-diameter fluorescent probes from resealed cytoplasmic compartments of randomly positioned erythrocyte ghosts occurs through electric field pulse-induced pores only during a pulse but not between pulses or after a train of pulses if the probe diameter is 1.2 nm or greater. For a given pulse treatment of membranes in random positions in suspensions, an increase in ionic strength of the medium results in (a) a decrease in loss during the pulse, (b) no difference in loss between pulses, and (c) an increase in fusion yield when membrane-membrane contact is established. The latter two results (b and c) are incompatible with a fusion mechanism that proposes a simple relationship between electric field-induced pores and fusion.  相似文献   

9.
We have studied fusion between membranes of vesicular stomatitis virus (VSV) and Vero cells using an assay for lipid mixing based on the relief of self-quenching of octadecylrhodamine (R18) fluorescence. We could identify the two pathways of fusion by the kinetics of R18 dequenching, effects of inhibitors, temperature dependence, and dependence on osmotic pressure. Fusion at the plasma membrane began immediately after lowering the pH below 6 and showed an approximately exponential time course, whereas fusion via the endocytic pathway (pH 7.4) became apparent after a time delay of about 2 min. Fusion via the endocytic pathway was attenuated by treating cells with metabolic inhibitors and agents that raise the pH of the endocytic vesicle. A 10-fold excess of unlabeled virus arrested R18VSV entry via the endocytic pathway, whereas R18 dequenching below pH 6 (fusion at the plasma membrane) was not affected by the presence of unlabeled virus. The temperature dependence for fusion at pH 7.4 (in the endosome) was much steeper than that for fusion at pH 5.9 (with the plasma membrane). Fusion via the endocytic pathway was attenuated at hypo-osmotic pressures, whereas fusion at the plasma membrane was not affected by this treatment. The pH profile of Vero-VSV fusion at the plasma membrane, as measured by the dequenching method, paralleled that observed for VSV-induced cell-cell fusion. Fusion was blocked by adding neutralizing antibody to the Vero-VSV complexes. Activation of the fusion process by lowering the pH was reversible, in that the rate of fusion was arrested by raising the pH back to 7.4. The observation that pH-dependent fusion occurred at similar rates with fragments and with intact cells indicates that pH, voltage, or osmotic gradients are not required for viral fusion.  相似文献   

10.
After the development of the "black lipid membrane" techniques, studies of the permeability of labeled water and nonelectrolytes across these artificial membranes have yielded permeability constants comparable in magnitude to those obtained from tracer studies of living cell membranes. This general agreement has affirmed the belief that the living cell membranes are indeed closely similar to these bilayer phospholipid membranes. In this report, we draw attention to a hidden assumption behind such comparisons made: the assumption that labeled material passing through the cell membrane barriers instantly reaches diffusion equilibrium inside the cell. The permeability constants to labeled water (and nonelectrolytes) across lipid layers were obtained using setups in which the lipid membrane was sandwiched between aqueous compartments both of which were vigorously stirred. In studies of permeability of living cell membranes only the outside solution was stirred, the intracellular water remained stationary. Yet the calculations of permeability constants of the cell membrane were made with the tacit assumption, that once the labeled materials pass through the cell membrane, they were instantly mixed with the entire cell contents as if a stirrer operating at infinite speed had been present inside the cells. Ignoring this unstirred condition of the intracellular water, in fact, lumped all the real-life delay due to diffusion in the cytoplasm and added it to the resistance to diffusion of the membrane barrier. The result is an estimated membrane permeability to labeled water (and nonelectrolytes) many times slower than it actually is. The present report begins with a detailed analysis of a specific case: tritiated water diffusion from giant barnacle muscle fibers and two non-living models, one real, one imagined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
High-efficiency electrofusion between cells of different sizes was achieved by application of fusing electric pulses to cells in centrifuged pellets. Larger target cells (Chinese hamster ovary or L1210 cells) were stacked among smaller human erythrocytes or erythrocyte ghosts by sequential centrifugation at 700 g to form five-tier pellets in a specially designed centrifugation-electrofusion chamber. The membranes of erythrocytes and ghost were labeled with fluorescent membrane dye (1,1' dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine (Dil)), and the contents of ghosts were loaded with water-soluble fluorescent dye (42-kDa fluorescein isothiocyanate dextran (FITC-dextran)), to monitor heterogeneous cell fusion. Fusion efficiency was assayed by the extent of either membrane dye mixing or contents (FITC-dextran) mixing with target cells. Four rectangular electric pulses at 300 V and 80 microseconds each were found to give the optimal fusion results of approximately 80% heterogeneous fusion by the content-mixing assay and approximately 95% by the membrane-dye-mixing assay. Cell viability remained greater than 80% after electrofusion. Because of the electric breakdown of cell membranes at the beginning of the pulse, the pellet resistance and hence the partial voltage across the pellet reduced rapidly during the remaining pulse time. This voltage redistribution favored the survival of fused cells. The limited colloidal-osmotic swelling of cells in pellets enhanced cell-cell contact and increased the pellet resistance after each pulse. As a result, the partial voltage across the pellet was restored when the next pulse was applied. This redistribution of pulse voltage in the pellet system permitted the breakdown of cell membranes at a lower applied voltage threshold than that required for electrofusion of cells in suspension or in dielectrophoretic cell chains. The cell viability and soluble dye retention within cells (FITC-dextran) remained at the same high levels for 3 h when the cells were incubated in respective culture media with serum at 37 degrees C. Viability and dye retention decreased significantly within 30 min when cells were incubated in phosphate-buffered saline without serum. The pellet technique was applied to form hybridomas by fusion of larger SP2/0 murine myelomas with smaller naive mouse lymphocytes. An optimum of 173 +/- 70 hypoxanthine aminopterin thymidine (HAT)-selected clones of the hybridomas was obtained from 40,000 SP2/0 cells and 1.5 x 10(6) lymphocytes used in each trial. This high-efficiency fusion technique may be adapted to mediate drug and gene transfer to target cells ex vivo as well as to form hybrid cells with limited cell sources.  相似文献   

12.
Infection by the coronavirus mouse hepatitis virus strain A59 (MHV-A59) requires the release of the viral genome by fusion with the respective target membrane of the host cell. Fusion is mediated by the viral S protein. Here, the entry pathway of MHV-A59 into murine fibroblast cells was studied by independent approaches. Infection of cells assessed by plaque reduction assay was strongly inhibited by lysosomotropic compounds and substances that interfere with clathrin-dependent endocytosis, suggesting that MHV-A59 is taken up via endocytosis and delivered to acidic endosomal compartments. Infection was only slightly reduced in the presence of substances inhibiting proteases of endosomal compartments, precluding that the endocytic uptake is required to activate the fusion potential of the S protein by its cleavage. Fluorescence confocal microscopy of labeled MHV-A59 confirmed that virus is taken up via endocytosis. Bright labeling of intracellular compartments suggests their fusion with the viral envelope. No fusion with the plasma membrane was observed at neutral pH conditions. However, when virus was bound to cells and the pH was lowered to 5.0, we observed a strong labeling of the plasma membrane. Electron microscopy revealed low pH triggered conformational alterations of the S ectodomain. Very likely, these alterations are irreversible because low-pH treatment of viruses in the absence of target membranes caused an irreversible loss of the fusion activity. The results imply that endocytosis plays a major role in MHV-A59 infection and the acidic pH of the endosomal compartment triggers a conformational change of the S protein mediating fusion.  相似文献   

13.
Johnson JM  Ha T  Chu S  Boxer SG 《Biophysical journal》2002,83(6):3371-3379
We have developed a single vesicle assay to study the mechanisms of supported bilayer formation. Fluorescently labeled, unilamellar vesicles (30-100 nm diameter) were first adsorbed to a quartz surface at low enough surface concentrations to visualize single vesicles. Fusion and rupture events during the bilayer formation, induced by the subsequent addition of unlabeled vesicles, were detected by measuring two-color fluorescence signals simultaneously. Lipid-conjugated dyes monitored the membrane fusion while encapsulated dyes reported on the vesicle rupture. Four dominant pathways were observed, each exhibiting characteristic two-color fluorescence signatures: 1) primary fusion, in which an unlabeled vesicle fuses with a labeled vesicle on the surface, is signified by the dequenching of the lipid-conjugated dyes followed by rupture and final merging into the bilayer; 2) simultaneous fusion and rupture, in which a labeled vesicle on the surface ruptures simultaneously upon fusion with an unlabeled vesicle; 3) no dequenching, in which loss of fluorescence signal from both dyes occur simultaneously with the final merger into the bilayer; and 4) isolated rupture (pre-ruptured vesicles), in which a labeled vesicle on the surface spontaneously undergoes content loss, a process that occurs with high efficiency in the presence of a high concentration of Texas Red-labeled lipids. Vesicles that have undergone content loss appear to be more fusogenic than intact vesicles.  相似文献   

14.
This report describes an immunoferritin labeling study of mouse H-2 histocompatibility antigens on epithelial cells dissociated from stomach, duodenum-jejunum, ileum, trachea, diestrus uterus, gall bladder, and vas deferens. Before cell dissociation, most of the organs were prefixed in periodate-lysine-paraformaldehyde to preserve the shape of the cells and to immobilize H-2 antigens in their native positions. Five kinds of epithelial cells expressed H-2 antigens on lateral and basal membranes but not on apical membranes. These were the lining cells of the upper intestine, ileum, gall gladder, uterus, and the tracheal brush cell. The antigens were continuously distributed on the lateral and basal membranes of these cells and appeared to be absent from the apical membranes, rather than masked by the fuzzy coat. On four other epithelial cell types H-2 antigens could not be detected. These were the lining cells of the vas deferens, parietal and chief cells from the stomach, and ciliated tracheal cells. It does not seem to be uncommon for normal nucleated cells to lack H-2 antigens. On fixed and labeled epithelial cells from the upper intestine the zonula occludens membranes were unlabeled, while the zonula adherens and desmosome membranes were labeled as densely as the remainder of the lateral membranes. The zonula occludens membrane thus constituted the boundary betewen the unlabeled apical membrane and the labeled lateral membrane of these cells. Intestinal epithelial cells dissociated without prefixation showed a patchy distribution of H-2 antigens on their lateral membranes after indirect labeling, indicating antigen mobility in this membrane. On the same unfixed dissociated cells the antigens were able to migrate from lateral to apical membranes, a movement which appears to be prevented in the intact epithelial layer by the occluding junction. The absence of H-2 antigens from apical membranes and their inability to migrate through an intact zonula occludens suggest that these molecules must reach the lateral membranes of epithelial cells by a pathway which is distinct from that followed by apical membrane components.  相似文献   

15.
Three-dimensional images of the undercoat structure on the cytoplasmic surface of the upper cell membrane of normal rat kidney fibroblast (NRK) cells and fetal rat skin keratinocytes were reconstructed by electron tomography, with 0.85-nm-thick consecutive sections made approximately 100 nm from the cytoplasmic surface using rapidly frozen, deeply etched, platinum-replicated plasma membranes. The membrane skeleton (MSK) primarily consists of actin filaments and associated proteins. The MSK covers the entire cytoplasmic surface and is closely linked to clathrin-coated pits and caveolae. The actin filaments that are closely apposed to the cytoplasmic surface of the plasma membrane (within 10.2 nm) are likely to form the boundaries of the membrane compartments responsible for the temporary confinement of membrane molecules, thus partitioning the plasma membrane with regard to their lateral diffusion. The distribution of the MSK mesh size as determined by electron tomography and that of the compartment size as determined from high speed single-particle tracking of phospholipid diffusion agree well in both cell types, supporting the MSK fence and MSK-anchored protein picket models.  相似文献   

16.
Cell electrofusion is a safe, non-viral and non-chemical method that can be used for preparing hybrid cells for human therapy. Electrofusion involves application of short high-voltage electric pulses to cells that are in close contact. Application of short, high-voltage electric pulses causes destabilization of cell plasma membranes. Destabilized membranes are more permeable for different molecules and also prone to fusion with any neighboring destabilized membranes. Electrofusion is thus a convenient method to achieve a non-specific fusion of very different cells in vitro. In order to obtain fusion, cell membranes, destabilized by electric field, must be in a close contact to allow merging of their lipid bilayers and consequently their cytoplasm. In this video, we demonstrate efficient electrofusion of cells in vitro by means of modified adherence method. In this method, cells are allowed to attach only slightly to the surface of the well, so that medium can be exchanged and cells still preserve their spherical shape. Fusion visualization is assessed by pre-labeling of the cytoplasm of cells with different fluorescent cell tracker dyes; half of the cells are labeled with orange CMRA and the other half with green CMFDA. Fusion yield is determined as the number of dually fluorescent cells divided with the number of all cells multiplied by two.  相似文献   

17.
Z Katzir  O Gutman  Y I Henis 《Biochemistry》1989,28(15):6400-6405
Fusion of human erythrocytes by Sendai virions is accompanied by lateral mobilization of the viral envelope proteins (F, the fusion protein, and HN, the hemagglutinin/neuraminidase protein) in the target cell membrane; the dynamic parameters characterizing the lateral diffusion of F and HN in the fused cell membrane are identical [Henis, Y. I., & Gutman, O. (1987) Biochemistry 26, 812-819; Aroeti, B., & Henis, Y. I. (1988) Biochemistry 27, 5654-5661]. This identity raised the possibility that F and HN diffuse together in the cell membrane in mutual heterocomplexes. In order to investigate the possible formation of F-HN complexes in the target cell membrane, which could be important for the fusion process mediated by the viral envelope proteins, we combined fluorescence photobleaching recovery (FPR) measurements of the lateral mobility of the viral glycoproteins with antibody-mediated cross-linking of F or HN. After fusion, one viral glycoprotein type was immobilized by cross-linking with highly specific bivalent polyclonal IgG. The other glycoprotein type was labeled with fluorescence monovalent Fab' fragments that do not induce cross-linking, and its mobility was measured by FPR. Neither the mobile fraction nor the lateral diffusion coefficient of the Fab'-labeled viral glycoproteins was affected by immobilization of the second viral envelope protein, demonstrating that F and HN diffuse independently in the target cell membrane and are not associated in mutual complexes.  相似文献   

18.
The fate of the medial edge epithelial (MEE) cells during palatal fusion has been proposed to be either programmed cell death or epithelial-mesenchymal transformation. Vital cell labeling techniques were used to mark the MEE and observe their fate during palatal fusion in vitro. Fetal mouse palatal shelves were labeled with Dil and allowed to proceed through fusion while maintained in an organ culture system. The tissues were examined at several stages of palatal fusion for the distribution of Dil, presence of specific antigens and ultrastructural appearance of the cells. The MEE labeled with Dil occupied a midline position at all stages of palatal fusion. Initially the cells had keratin intermediate filaments and were separated from the underlying mesenchyme by an intact basement membrane. During the process of fusion the basement membrane was degraded and the Dil-labeled MEE were in contact with the mesenchymal-derived extracellular matrix. In the late stages of fusion the Dil-labeled MEE altered their cellular morphology, had vimentin intermediate filaments, and were not associated with an identifiable basement membrane. Dil-labeled cells, without an epithelial phenotype, remained present in the midline of the completely fused palate. The data indicate that the MEE did not die but underwent a phenotypic transformation to viable mesenchymal cell types, which were retained in the palatal mesenchyme.  相似文献   

19.
The fusion of sealed biological membranes joins their enclosed aqueous compartments while mixing their membrane bilayers. Reconstituted fusion reactions are commonly assayed by lipid mixing, which can result from either true fusion or from lysis and its attendant reannealing of membranes. Fusion is also frequently assayed by the mixing of lumenal aqueous compartments, using probes of low molecular weight. With several probes (biotin, methylumbelliferyl-N-acetyl-α-D-neuraminic acid, and dithionite), we find that yeast vacuolar SNAREs (SNAP [Soluble NSF attachment protein] Receptors) increase the permeability of membranes to small molecules and that this permeabilization is enhanced by homotypic fusion and vacuole protein sorting complex (HOPS) and Sec17p/Sec18p, the vacuolar tethering and SNARE chaperone proteins. We now report the development of a novel assay that allows the parallel assessment of lipid mixing, the mixing of intact lumenal compartments, any lysis that occurs, and the membrane permeation of small molecules. Applying this assay to an all-purified reconstituted system consisting of vacuolar lipids, the four vacuolar SNAREs, the SNARE disassembly chaperones Sec17p and Sec18p, the Rab Ypt7p, and the Rab effector/SM protein complex HOPS, we show that true fusion is accompanied by strongly enhanced membrane permeability to small molecules and a measurable rate of lysis.  相似文献   

20.
The fusion of Sendai virus at pH 4-7 with artificial lipid vesicles composed of phosphatidylserine or phosphatidylcholine was quantified by measuring fluorescence energy transfer from N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-phosphatidylethanolamine to N-(lissamine-rhodamine-B-sulfonyl)-phosphatidylethanolamine in the target membranes. About 60% of the phosphatidylserine vesicles and virus appeared to fuse at pH 4 and about 100% at pH 5. Fusion was much less under all other conditions. The apparent fusion at pH 4, however, was due to a decrease in absorption of the acceptor probe, instead of dilution of acceptor as a result of fusion of labeled vesicles with unlabeled virus. After correction for this fusion-independent effect of Sendai virus, the extent of fusion was only 4-20% at pH 4 but still 80-100% at pH 5. These findings paralleled the loss of hemagglutinating and hemolytic activities of the virus induced by incubation at pH 4 but not at pH 5. Vesicle-virus hybrids were observed with the electron microscope after incubation at pH 5 but not at pH 7. The assay of membrane fusion by fluorescence energy transfer can be misleading unless correction is made for changes in energy transfer due to fusion-independent effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号