首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between killer yeasts and pathogenic fungi   总被引:4,自引:0,他引:4  
Abstract A total of 17 presumptive killer yeast strains were tested in vitro for growth inhibitory and killing activity against a range of fungal pathogens of agronomic, environmental and clinical significance. Several yeasts were identified which displayed significant activity against important pathogenic fungi. For example, isolates of the opportunistic human pathogen, Candida albicans , were generally very sensitive to Williopsis mrakii killer yeast activity, whilst killer strains of Saccharomyces cerevisiae and Pichia anomala markedly inhibited the growth of certain wood decay basidiomycetes and plant pathogenic fungi. Results indicate that such yeasts, together with their killer toxins, may have potential as novel antimycotic biocontrol agents.  相似文献   

2.
Among soil microorganisms, yeasts have received little attention as biocontrol agents of soil-borne fungal plant pathogens in comparison to bacterial, actinomycetes, and filamentous fungal antagonists. The mechanisms of action of potential antagonism by yeasts in relation to soil-borne fungal plant pathogens are expected to be similar to those involved with pathogens of aerial parts of the plant, including leaves and fruits. Several taxa of yeasts have been recorded as endophytes in plants, with a small proportion recorded to promote plant growth. The ability of certain taxa of yeasts to multiply rapidly, to produce antibiotics and cell wall-degrading enzymes, to induce resistance of host tissues, and to produce plant growth regulators indicates the potential to exploit them as biocontrol agents and plant growth promoters. More than ten genera of yeasts have been used to control postharvest diseases, especially of fruits. Suppression of classes of fungal pathogens of fruits and foliage that are similar to those associated with soil-borne fungal root pathogens, strongly suggests that yeasts also have potential for the biological control of diseases caused by soil-borne fungal plant pathogens, as is evident in reports of certain yeasts in suppressing some soil-borne fungal plant pathogens. This review explores the potential of soil yeasts to suppress a wider range of soil-borne fungal plant pathogens and to promote plant growth.  相似文献   

3.
Jane Barton 《BioControl》2012,57(2):289-305
Before an exotic pathogen can be released as a classical biological control agent the likely positive and negative outcomes of that introduction must be predicted. Host range testing is used to assess potential damage to non-target plants. To-date 28 species of fungi have been released as classical biological control agents against weeds world-wide. These pathogens have been reported infecting only six non-target plant species outdoors and all of these incidents were predicted. Many more non-target plant species developed disease symptoms in glasshouse tests than in the field. Consequently, data from other sources are needed to ensure potential agents are not prematurely rejected. Predictions of pathogen host range to date have been sufficiently accurate to prevent unpleasant surprises. Exotic pathogens are a safe and useful tool for weed control, especially in natural areas rich in valued non-target species.  相似文献   

4.
Antibody-Based Resistance to Plant Pathogens   总被引:2,自引:0,他引:2  
Plant diseases are a major threat to the world food supply, as up to 15% of production is lost to pathogens. In the past, disease control and the generation of resistant plant lines protected against viral, bacterial or fungal pathogens, was achieved using conventional breeding based on crossings, mutant screenings and backcrossing. Many approaches in this field have failed or the resistance obtained has been rapidly broken by the pathogens. Recent advances in molecular biotechnology have made it possible to obtain and to modify genes that are useful for generating disease resistant crops. Several strategies, including expression of pathogen-derived sequences or anti-pathogenic agents, have been developed to engineer improved pathogen resistance in transgenic plants. Antibody-based resistance is a novel strategy for generating transgenic plants resistant to pathogens. Decades ago it was shown that polyclonal and monoclonal antibodies can neutralize viruses, bacteria and selected fungi. This approach has been improved recently by the development of recombinant antibodies (rAbs). Crop resistance can be engineered by the expression of pathogen-specific antibodies, antibody fragments or antibody fusion proteins. The advantages of this approach are that rAbs can be engineered against almost any target molecule, and it has been demonstrated that expression of functional pathogen-specific rAbs in plants confers effective pathogen protection. The efficacy of antibody-based resistance was first shown for plant viruses and its application to other plant pathogens is becoming more established. However, successful use of antibodies to generate plant pathogen resistance relies on appropriate target selection, careful antibody design, efficient antibody expression, stability and targeting to appropriate cellular compartments.  相似文献   

5.
The study of the relationship between plants and phytopathogenic fungi is one of the most rapidly moving fields in the plant sciences, the findings of which have contributed to the development of new strategies and technologies to protect crops. Plants employ sophisticated mechanisms to perceive and appropriately defend themselves against pathogens. A good example of plant and pathogen evolution is the gene-for-gene interaction between the fungal pathogen Leptosphaeria maculans, the causal agent of blackleg disease, and Brassica crops. This interaction has been studied at the genetic and physiological level due to its agro-economic importance. The newly available genome sequence for Brassica spp. and L.?maculans will provide the resources to study the co-evolution of this plant and pathogen. Particularly, an understanding of the co-evolution of genes responsible for virulence and resistance will lead to improved plant protection strategies for Brassica canola and provide a model to understand plant-pathogen interactions in other major crops. This review summarises the research-to-date in the study of the Brassica-L.?maculans gene-for-gene interaction, with a focus on the genetics of resistance in Brassica and the wealth of information to be gained from genome sequencing efforts.  相似文献   

6.
Trichoderma/pathogen/plant interaction in pre-harvest food security   总被引:1,自引:0,他引:1  
Large losses before crop harvesting are caused by plant pathogens, such as viruses, bacteria, oomycetes, fungi, and nematodes. Among these, fungi are the major cause of losses in agriculture worldwide. Plant pathogens are still controlled through application of agrochemicals, causing human disease and impacting environmental and food security. Biological control provides a safe alternative for the control of fungal plant pathogens, because of the ability of biocontrol agents to establish in the ecosystem. Some Trichoderma spp. are considered potential agents in the control of fungal plant diseases. They can interact directly with roots, increasing plant growth, resistance to diseases, and tolerance to abiotic stress. Furthermore, Trichoderma can directly kill fungal plant pathogens by antibiosis, as well as via mycoparasitism strategies. In this review, we will discuss the interactions between Trichoderma/fungal pathogens/plants during the pre-harvest of crops. In addition, we will highlight how these interactions can influence crop production and food security. Finally, we will describe the future of crop production using antimicrobial peptides, plants carrying pathogen-derived resistance, and plantibodies.  相似文献   

7.
The ability to increase crop disease resistance by using transgenic (TG) means has recently been demonstrated for several crops. The current TG procedures alter the temporal expression of transgene pathogenesis-related (PR) proteins, so that the usually inducible PR proteins are expressed constitutively in the foreign host. The constitutive expression of the transgene PR protein chitinase is believed to increase the host's nonspecific basic resistance to pathogens. A potential nontarget effect of constitutively expressing chitinase may be a decrease in the activity of beneficial microbes, especially vesicular-arbuscular mycorrhizal fungi. The decrease in activity of mycorrhizal fungi is related to reduced susceptibility of TG plant roots to colonization by these fungi, which is in turn associated with lysis of fungal cell walls by the constitutively expressed chitinase. An argument is presented that use of TG means to alter the temporal expression of PR proteins ignores a legacy of past evolutionary trade-offs in vascular plants. A major nontarget effect of expressing transgene chitinase is a reduction in the susceptibility of roots to colonization by mycorrhizal fungi. This reduction in mycorrhizal susceptibility occurs without alteration of the mycorrhizal dependence of the host on symbiont-supplied nutrients. Data are presented in support of this contention that demonstrate a strong negative association between host pathogen resistance and mycorrhizal colonization. An ecological consequence of reducing mycorrhizal colonization is a decrease in the soil's mycorrhizal propagule reserve that diminishes the next crop's production, especially under low-input cropping practices. A further consequence that has both ecological and evolutionary outcomes is the escape of the transgene for improved pathogen resistance into wild populations. By increasing a crop's disease resistance by TG means, we may inadvertently be creating a ‘super weed’ when the TG plant or the transgene escapes into wild relatives through hybridization. Hybridization of wild relatives with TG plants would be especially relevant for crops, such as sugar beet, rapeseed, and many modern cereal cultivars that have close relatives in the wild but have a relatively low requirement for symbiont supplied nutrients or are nondependent.  相似文献   

8.
The role of effectors of biotrophic and hemibiotrophic fungi in infection   总被引:1,自引:0,他引:1  
Biotrophic and hemibiotrophic fungi are successful groups of plant pathogens that require living plant tissue to survive and complete their life cycle. Members of these groups include the rust fungi and powdery mildews and species in the Ustilago, Cladosporium and Magnaporthe genera. Collectively, they represent some of the most destructive plant parasites, causing huge economic losses and threatening global food security. During plant infection, pathogens synthesize and secrete effector proteins, some of which are translocated into the plant cytosol where they can alter the host's response to the invading pathogen. In a successful infection, pathogen effectors facilitate suppression of the plant's immune system and orchestrate the reprogramming of the infected tissue so that it becomes a source of nutrients that are required by the pathogen to support its growth and development. This review summarizes our current understanding of the function of fungal effectors in infection.  相似文献   

9.
In vivo monitoring of obligate biotrophic pathogen growth by kinetic PCR   总被引:1,自引:0,他引:1  
The plant kingdom is constantly challenged by a battery of evolving pathogens. New species or races of pathogens are discovered on crops that were initially bred for disease resistance, and globalization is facilitating the movement of exotic pests. Among these pests, obligate biotrophic parasites make up some of the most damaging groups and have been particularly challenging to study. Here we demonstrate the utility of kinetic PCR (kPCR) (real-time PCR, quantitative PCR) to assess the growth of poplar rust, caused by Melampsora species, by quantification of pathogen DNA. kPCR allowed the construction of reliable growth curves from inoculation through the final stages of uredinial maturation, as well as pathogen monitoring before symptoms become visible. Growth parameters, such as latency period, generation time in logarithmic growth, and the increase in DNA mass at saturation, were compared in compatible, incompatible, and nonhost interactions. Pathogen growth was monitored in different applications dealing with plant pathology, such as host and pathogen diversity and transgenic crop improvement. Finally, the capacity of kPCR to differentiate pathogens in the same sample has broad molecular ecology applications for dynamically monitoring the growth of fungi in their environments or in mixed populations or to measure the efficacy of pest control strategies.  相似文献   

10.
As the world population grows, there is a pressing need to improve productivity from water use in irrigated and rain-fed agriculture. Foliar diseases have been reported to decrease crop water-use efficiency (WUE) substantially, yet the effects of plant pathogens are seldom considered when methods to improve WUE are debated. We review the effects of foliar pathogens on plant water relations and the consequences for WUE. The effects reported vary between host and pathogen species and between host genotypes. Some general patterns emerge however. Higher fungi and oomycetes cause physical disruption to the cuticle and stomata, and also cause impairment of stomatal closing in the dark. Higher fungi and viruses are associated with impairment of stomatal opening in the light. A number of toxins produced by bacteria and higher fungi have been identified that impair stomatal function. Deleterious effects are not limited to compatible plant-pathogen interactions. Resistant and non-host interactions have been shown to result in stomatal impairment in light and dark conditions. Mitigation of these effects through selection of favourable resistance responses could be an important breeding target in the future. The challenges for researchers are to understand how the effects reported from work under controlled conditions translate to crops in the field, and to elucidate underlying mechanisms.  相似文献   

11.
The rhizosphere is a hot spot of microbial interactions as exudates released by plant roots are a main food source for microorganisms and a driving force of their population density and activities. The rhizosphere harbors many organisms that have a neutral effect on the plant, but also attracts organisms that exert deleterious or beneficial effects on the plant. Microorganisms that adversely affect plant growth and health are the pathogenic fungi, oomycetes, bacteria and nematodes. Most of the soilborne pathogens are adapted to grow and survive in the bulk soil, but the rhizosphere is the playground and infection court where the pathogen establishes a parasitic relationship with the plant. The rhizosphere is also a battlefield where the complex rhizosphere community, both microflora and microfauna, interact with pathogens and influence the outcome of pathogen infection. A wide range of microorganisms are beneficial to the plant and include nitrogen-fixing bacteria, endo- and ectomycorrhizal fungi, and plant growth-promoting bacteria and fungi. This review focuses on the population dynamics and activity of soilborne pathogens and beneficial microorganisms. Specific attention is given to mechanisms involved in the tripartite interactions between beneficial microorganisms, pathogens and the plant. We also discuss how agricultural practices affect pathogen and antagonist populations and how these practices can be adopted to promote plant growth and health.  相似文献   

12.
Human and plant pathogenic fungi have a major impact on public health and agriculture. Although these fungi infect very diverse hosts and are often highly adapted to specific host niches, they share surprisingly similar mechanisms that mediate immune evasion, modulation of distinct host targets and exploitation of host nutrients, highlighting that successful strategies have evolved independently among diverse fungal pathogens. These attributes are facilitated by an arsenal of fungal factors. However, not a single molecule, but rather the combined effects of several factors enable these pathogens to establish infection. In this review, we discuss the principles of human and plant fungal pathogenicity mechanisms and discuss recent discoveries made in this field.  相似文献   

13.
Soilborne root diseases caused by plant pathogenic Pythium species cause serious losses in a number of agricultural production systems, which has led to a considerable effort devoted to the development of biological agents for disease control. In this article we review information on the ecology and biological control of these pathogens with the premise that a clear understanding of the ecology of the pathogen will assist in the development of efficacious biocontrol agents. The lifecycles of the pathogens and etiology of host infection also are reviewed, as are epidemiological concepts of inoculum-disease relationships and the influence of environmental factors on pathogen aggressiveness and host susceptibility. A number of fungal and bacterial biocontrol agents are discussed and parallels between their ecology and that of the target pathogens highlighted. The mechanisms by which these microbial agents suppress diseases caused by Pythium spp., such as interference with pathogen survival, disruption of the process of plant infection, and induced host resistance, are evaluated. The possibilities for enhancement of efficacy of specific biological control agents by genetic manipulation or deployment tactics are discussed, as are conceptual suggestions for consideration when developing screening programs for antagonists.  相似文献   

14.
The plant kingdom is constantly challenged by a battery of evolving pathogens. New species or races of pathogens are discovered on crops that were initially bred for disease resistance, and globalization is facilitating the movement of exotic pests. Among these pests, obligate biotrophic parasites make up some of the most damaging groups and have been particularly challenging to study. Here we demonstrate the utility of kinetic PCR (kPCR) (real-time PCR, quantitative PCR) to assess the growth of poplar rust, caused by Melampsora species, by quantification of pathogen DNA. kPCR allowed the construction of reliable growth curves from inoculation through the final stages of uredinial maturation, as well as pathogen monitoring before symptoms become visible. Growth parameters, such as latency period, generation time in logarithmic growth, and the increase in DNA mass at saturation, were compared in compatible, incompatible, and nonhost interactions. Pathogen growth was monitored in different applications dealing with plant pathology, such as host and pathogen diversity and transgenic crop improvement. Finally, the capacity of kPCR to differentiate pathogens in the same sample has broad molecular ecology applications for dynamically monitoring the growth of fungi in their environments or in mixed populations or to measure the efficacy of pest control strategies.  相似文献   

15.
Biological control of soil-borne pathogens comprises the decrease of inoculum or of the disease producing activity of a pathogen through one or more mechanisms. Interest in biological control of soil-borne plant pathogens has increased considerably in the last few decades, because it may provide control of diseases that cannot or only partly be managed by other control strategies. Recent advances in microbial and molecular techniques have significantly contributed to new insights in underlying mechanisms by which introduced bacteria function. Colonization of plant roots is an essential step for both soil-borne pathogenic and beneficial rhizobacteria. Colonization patterns showed that rhizobacteria act as biocontrol agents or as growth-promoting bacteria form microcolonies or biofilms at preferred sites of root exudation. Such microcolonies are sites for bacteria to communicate with each other (quorum sensing) and to act in a coordinated manner. Elicitation of induced systemic resistance (ISR) by plant-associated bacteria was initially demonstrated using Pseudomonas spp. and other Gram-negative bacteria. Several strains of the species Bacillus amyloliquefaciens, B. subtilis, B. pasteurii, B. cereus, B. pumilus, B. mycoides, and B. sphaericus elicit significant reductions in the incidence or severity of various diseases on a diversity of hosts. Elicitation of ISR by these strains has been demonstrated in greenhouse or field trials on tomato, bell pepper, muskmelon, watermelon, sugar beet, tobacco, Arabidopsis sp., cucumber, loblolly pine, and two tropical crops (long cayenne pepper and green kuang futsoi). Protection resulting from ISR elicited by Bacillus spp. has been reported against leaf-spotting fungal and bacterial pathogens, systemic viruses, a crown-rotting fungal pathogen, root-knot nematodes, and a stem-blight fungal pathogen as well as damping-off, blue mold, and late blight diseases. This progress will lead to a more efficient use of these strains which is worthwhile approach to explore in context of biocontrol strategies.  相似文献   

16.
 Biological control of plant pathogens is currently accepted as a key practice in sustainable agriculture because it is based on the management of a natural resource, i.e. certain rhizosphere organisms, common components of ecosystems, known to develop antagonistic activities against harmful organisms (bacteria, fungi, nematodes etc.). Arbuscular mycorrhizal (AM) associations have been shown to reduce damage caused by soil-borne plant pathogens. Although few AM isolates have been tested in this regard, some appear to be more effective than others. Furthermore, the degree of protection varies with the pathogen involved and can be modified by soil and other environmental conditions. This prophylactic ability of AM fungi could be exploited in cooperation with other rhizospheric microbial angatonists to improve plant growth and health. Despite past achievements on the application of AM in plant protection, further research is needed for a better understanding of both the ecophysiological parameters contributing to effectiveness and of the mechanisms involved. Although the improvement of plant nutrition, compensation for pathogen damage, and competition for photosynthates or colonization/infection sites have been claimed to play a protective role in the AM symbiosis, information is scarce, fragmentary or even controversial, particularly concerning other mechanisms. Such mechanisms include (a) anatomical or morphological AM-induced changes in the root system, (b) microbial changes in rhizosphere populations of AM plants, and (c) local elicitation of plant defence mechanisms by AM fungi. Although compounds typically involved in plant defence reactions are elicited by AM only in low amounts, they could act locally or transiently by making the root more prone to react against pathogens. Current research based on molecular, immunological and histochemical techniques is providing new insights into these mechanisms. Accepted: 29 October 1996  相似文献   

17.
Arbuscular mycorrhizal (AM) fungi and non-pathogenic strains of soil-borne pathogens have been shown to control plant parasitic nematodes. As AM fungi and non-pathogenic fungi improve plant health by different mechanisms, combination of two such partners with complementary mechanisms might increase overall control efficacy and, therefore, provide an environmentally safe alternative to nematicide application. Experiments were conducted to study possible interactions between the AM fungus Glomus coronatum and the non-pathogenic Fusarium oxysporum strain Fo162 in the control of Meloidogyne incognita on tomato. Pre-inoculation of tomato plants with G. coronatum or Fo162 stimulated plant growth and reduced M. incognita infestation. Combined application of the AM fungus and Fo162 enhanced mycorrhization of tomato roots but did not increase overall nematode control or plant growth. A higher number of nematodes per gall was found for mycorrhizal than non-mycorrhizal plants. In synergisms between biocontrol agents, differences in their antagonistic mechanisms seem to be less important than their effects on different growth stages of the pathogen.  相似文献   

18.
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.  相似文献   

19.
First encounters--deployment of defence-related natural products by plants   总被引:1,自引:0,他引:1  
Plant-derived natural products have important functions in ecological interactions. In some cases these compounds are deployed to sites of pathogen challenge by vesicle-mediated trafficking. Polar vesicle trafficking of natural products, proteins and other, as yet uncharacterized, cargo is emerging as a common theme in investigations of diverse disease resistance mechanisms in plants. Root-derived natural products can have marked effects on interactions between plants and soilborne organisms, for example by serving as signals for initiation of symbioses with rhizobia and mycorrhizal fungi. They may also contribute to competitiveness of invasive plant species by inhibiting the growth of neighbouring plants (allelopathy). Very little is known about the mechanisms of release of natural products from aerial plant parts or from roots, although there are likely to be commonalities in these processes. There is increasing evidence to indicate that pathogens and symbionts can manipulate plant endomembrane systems to suppress host defence responses and facilitate accommodation within plant cells. The relationship between secretory processes and plant interactions forms the focus of this review, which brings together different aspects of the deployment of defence-related natural products by plants.  相似文献   

20.
Pathogens are a significant component of all plant communities. In recent years, the potential for existing and emerging pathogens of agricultural crops to cause increased yield losses as a consequence of changing climatic patterns has raised considerable concern. In contrast, the response of naturally occurring, endemic pathogens to a warming climate has received little attention. Here, we report on the impact of a signature variable of global climate change – increasing temperature – on the long‐term epidemiology of a natural host–pathogen association involving the rust pathogen Triphragmium ulmariae and its host plant Filipendula ulmaria. In a host–pathogen metapopulation involving approximately 230 host populations growing on an archipelago of islands in the Gulf of Bothnia we assessed changes in host population size and pathogen epidemiological measures over a 25‐year period. We show how the incidence of disease and its severity declines over that period and most importantly demonstrate a positive association between a long‐term trend of increasing extinction rates in individual pathogen populations of the metapopulation and increasing temperature. Our results are highly suggestive that changing climatic patterns, particularly mean monthly growing season (April‐November) temperature, are markedly influencing the epidemiology of plant disease in this host–pathogen association. Given the important role plant pathogens have in shaping the structure of communities, changes in the epidemiology of pathogens have potentially far‐reaching impacts on ecological and evolutionary processes. For these reasons, it is essential to increase understanding of pathogen epidemiology, its response to warming, and to invoke these responses in forecasts for the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号