首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liou GG  Tanny JC  Kruger RG  Walz T  Moazed D 《Cell》2005,121(4):515-527
Assembly of silent chromatin domains in budding yeast involves the deacetylation of histone tails by Sir2 and the association of the Sir3 and Sir4 proteins with hypoacetylated histone tails. Sir2 couples deacetylation to NAD hydrolysis and the synthesis of a metabolite, O-acetyl-ADP-ribose (AAR), but the functional significance of NAD hydrolysis or AAR, if any, is unknown. Here we examine the association of the Sir2, Sir3, and Sir4 proteins with each other and histone tails. Our analysis reveals that deacetylation of histone H4-lysine 16 (K16), which is critical for silencing in vivo, is also critical for the binding of Sir3 and Sir4 to histone H4 peptides in vitro. Moreover, AAR itself promotes the association of multiple copies of Sir3 with Sir2/Sir4 and induces a dramatic structural rearrangement in the SIR complex. These results suggest that Sir2 activity modulates the assembly of the SIR complex through both histone deacetylation and AAR synthesis.  相似文献   

2.
Silent chromatin domains in Saccharomyces cerevisiae represent examples of epigenetically heritable chromatin. The formation of these domains involves the recruitment of the SIR complex, composed of Sir2, Sir3, and Sir4, followed by iterative cycles of NAD-dependent histone deacetylation and spreading of SIR complexes over adjacent chromatin domains. We show here that the conserved bromo-adjacent homology (BAH) domain of Sir3 is a nucleosome- and histone-tail-binding domain and that its binding to nucleosomes is regulated by residues in the N terminus of histone H4 and the globular domain of histone H3 on the exposed surface of the nucleosome. Furthermore, using a partially purified system containing nucleosomes, the three Sir proteins, and NAD, we observe the formation of SIR-nucleosome filaments with a diameter of less than 20 nm. Together, these observations suggest that the SIR complex associates with an extended chromatin fiber through interactions with two different regions in the nucleosome.  相似文献   

3.
Dot1 methylates histone H3 lysine 79 (H3K79) on the nucleosome core and is involved in Sir protein-mediated silencing. Previous studies suggested that H3K79 methylation within euchromatin prevents nonspecific binding of the Sir proteins, which in turn facilitates binding of the Sir proteins in unmethylated silent chromatin. However, the mechanism by which the Sir protein binding is influenced by this modification is unclear. We performed genome-wide synthetic genetic array (SGA) analysis and identified interactions of DOT1 with SIR1 and POL32. The synthetic growth defects found by SGA analysis were attributed to the loss of mating type identity caused by a synthetic silencing defect. By using epistasis analysis, DOT1, SIR1, and POL32 could be placed in different pathways of silencing. Dot1 shared its silencing phenotypes with the NatA N-terminal acetyltransferase complex and the conserved N-terminal bromo adjacent homology (BAH) domain of Sir3 (a substrate of NatA). We classified all of these as affecting a common silencing process, and we show that mutations in this process lead to nonspecific binding of Sir3 to chromatin. Our results suggest that the BAH domain of Sir3 binds to histone H3K79 and that acetylation of the BAH domain is required for the binding specificity of Sir3 for nucleosomes unmethylated at H3K79.  相似文献   

4.
Wang CY  Hua CY  Hsu HE  Hsu CL  Tseng HY  Wright DE  Hsu PH  Jen CH  Lin CY  Wu MY  Tsai MD  Kao CF 《PloS one》2011,6(7):e22209
Telomeric heterochromatin assembly in budding yeast propagates through the association of Silent Information Regulator (SIR) proteins with nucleosomes, and the nucleosome array has been assumed to fold into a compacted structure. It is believed that the level of compaction and gene repression within heterochromatic regions can be modulated by histone modifications, such as acetylation of H3 lysine 56 and H4 lysine 16, and monoubiquitylation of H2B lysine 123. However, it remains unclear as to whether or not gene silencing is a direct consequence of the compaction of chromatin. Here, by investigating the role of the carboxy-terminus of histone H2B in heterochromatin formation, we identify that the disorderly compaction of chromatin induced by a mutation at H2B T122 specifically hinders telomeric heterochromatin formation. H2B T122 is positioned within the highly conserved AVTKY motif of the αC helix of H2B. Heterochromatin containing the T122E substitution in H2B remains inaccessible to ectopic dam methylase with dramatically increased mobility in sucrose gradients, indicating a compacted chromatin structure. Genetic studies indicate that this unique phenotype is independent of H2B K123 ubiquitylation and Sir4. In addition, using ChIP analysis, we demonstrate that telomere structure in the mutant is further disrupted by a defect in Sir2/Sir3 binding and the resulting invasion of euchromatic histone marks. Thus, we have revealed that the compaction of chromatin per se is not sufficient for heterochromatin formation. Instead, these results suggest that an appropriately arrayed chromatin mediated by H2B C-terminus is required for SIR binding and the subsequent formation of telomeric chromatin in yeast, thereby identifying an intrinsic property of the nucleosome that is required for the establishment of telomeric heterochromatin. This requirement is also likely to exist in higher eukaryotes, as the AVTKY motif of H2B is evolutionarily conserved.  相似文献   

5.
Budding yeast silent chromatin, or heterochromatin, is composed of histones and the Sir2, Sir3, and Sir4 proteins. Their assembly into silent chromatin is believed to require the deacetylation of histones by the NAD-dependent deacetylase Sir2 and the subsequent interaction of Sir3 and Sir4 with these hypoacetylated regions of chromatin. Here we explore the role of interactions among the Sir proteins in the assembly of the SIR complex and the formation of silent chromatin. We show that significant fractions of Sir2, Sir3, and Sir4 are associated together in a stable complex. When the assembly of Sir3 into this complex is disrupted by a specific mutation on the surface of the C-terminal coiled-coil domain of Sir4, Sir3 is no longer recruited to chromatin and silencing is disrupted. Because in sir4 mutant cells the association of Sir3 with chromatin is greatly reduced despite the partial Sir2-dependent deacetylation of histones near silencers, we conclude that histone deacetylation is not sufficient for the full recruitment of silencing proteins to chromatin and that Sir-Sir interactions are essential for the assembly of heterochromatin.  相似文献   

6.
7.
8.
《Biophysical journal》2022,121(5):841-851
Nucleosomes are the basic units of chromatin and critical for storage and expression of eukaryotic genomes. Chromatin accessibility and gene readout are heavily regulated by epigenetic marks, in which post-translational modifications of histones play a key role. However, the mode of action and the structural implications at the single-molecule level of nucleosomes is still poorly understood. Here we apply a high-throughput atomic force microscopy imaging and analysis pipeline to investigate the conformational landscape of the nucleosome variants three additional methyl groups at lysine 36 of histone H3 (H3K36me3), phosphorylation of H3 histones at serine 10 (H3S10phos), and acetylation of H4 histones at lysines 5, 8, 12, and 16 (H4K5/8/12/16ac). Our data set of more than 25,000 nucleosomes reveals nucleosomal unwrapping steps corresponding to 5-bp DNA. We find that H3K36me3 nucleosomes unwrap significantly more than wild-type nucleosomes and additionally unwrap stochastically from both sides, similar to centromere protein A (CENP-A) nucleosomes and in contrast to the highly anticooperative unwrapping of wild-type nucleosomes. Nucleosomes with H3S10phos or H4K5/8/12/16ac modifications show unwrapping populations similar to wild-type nucleosomes and also retain the same level of anticooperativity. Our findings help to put the mode of action of these modifications into context. Although H3K36me3 likely acts partially by directly affecting nucleosome structure on the single-molecule level, H3S10phos and H4K5/8/12/16ac must predominantly act through higher-order processes. Our analysis pipeline is readily applicable to other nucleosome variants and will facilitate future high-resolution studies of the conformational landscape of nucleoprotein complexes.  相似文献   

9.
10.
11.
Modifications on histones or on DNA recruit proteins that regulate chromatin function. Here, we use nucleosomes methylated on DNA and on histone H3 in an affinity assay, in conjunction with a SILAC-based proteomic analysis, to identify "crosstalk" between these two distinct classes of modification. Our analysis reveals proteins whose binding to nucleosomes is regulated by methylation of CpGs, H3K4, H3K9, and H3K27 or a combination thereof. We identify the origin recognition complex (ORC), including LRWD1 as a subunit, to be a methylation-sensitive nucleosome interactor that is recruited cooperatively by DNA and histone methylation. Other interactors, such as the lysine demethylase Fbxl11/KDM2A, recognize nucleosomes methylated on histones, but their recruitment is disrupted by DNA methylation. These data establish SILAC nucleosome affinity purifications (SNAP) as a tool for studying the dynamics between different chromatin modifications and provide a modification binding "profile" for proteins regulated by DNA and histone methylation.  相似文献   

12.
Silent chromatin in Saccharomyces cerevisiae is established in a stepwise process involving the SIR complex, comprised of the histone deacetylase Sir2 and the structural components Sir3 and Sir4. The Sir3 protein, which is the primary histone-binding component of the SIR complex, forms oligomers in vitro and has been proposed to mediate the spreading of the SIR complex along the chromatin fiber. In order to analyze the role of Sir3 in the spreading of the SIR complex, we performed a targeted genetic screen for alleles of SIR3 that dominantly disrupt silencing. Most mutations mapped to a single surface in the conserved N-terminal BAH domain, while one, L738P, localized to the AAA ATPase-like domain within the C-terminal half of Sir3. The BAH point mutants, but not the L738P mutant, disrupted the interaction between Sir3 and nucleosomes. In contrast, Sir3-L738P bound the N-terminal tail of histone H4 more strongly than wild-type Sir3, indicating that misregulation of the Sir3 C-terminal histone-binding activity also disrupted spreading. Our results underscore the importance of proper interactions between Sir3 and the nucleosome in silent chromatin assembly. We propose a model for the spreading of the SIR complex along the chromatin fiber through the two distinct histone-binding domains in Sir3.  相似文献   

13.
Discrete regions of the eukaryotic genome assume a heritable chromatin structure that is refractory to gene expression, referred to as heterochromatin or “silent” chromatin. Constitutively silent chromatin is found in subtelomeric domains in a number of species, ranging from yeast to man. In addition, chromatin-dependent repression of mating type loci occurs in both budding and fission yeasts, to enable sexual reproduction. The silencing of chromatin in budding yeast is characterized by an assembly of Silent Information Regulatory (SIR) proteins—Sir2, Sir3 and Sir4—with unmodified nucleosomes. Silencing requires the lysine deacetylase activity of Sir2, extensive contacts between Sir3 and the nucleosome, as well as interactions among the SIR proteins, to generate the Sir2–3–4 or SIR complex. Results from recent structural and reconstitution studies suggest an updated model for the ordered assembly and organization of SIR-dependent silent chromatin in yeast. Moreover, studies of subtelomeric gene expression reveal the importance of subtelomeric silent chromatin in the regulation of genes other than the silent mating type loci. This review covers recent advances in this field.  相似文献   

14.
Histone acetylation/deacetylation is an important chromatin modification for epigenetic regulation of gene expression. Silent information regulation2 (Sir2)-related sirtuins are nicotinamide-adenine dinucleotide (NAD+)-dependent histone deacetylases (HDAC). The mammalian sirtuin family comprises 7 members (SIRT1-7) that act in different cellular compartments to regulate metabolism and aging. The rice genome contains only two Sir2-related genes: OsSRT1 (or SRT701) and OsSRT2 (orSRT702). OsSRT1 is closely related to the mammalian SIRT6, while OsSRT2 is homologous to SIRT4. Previous work has shown that OsSRT1 is required for the safeguard against genome instability and cell damage in rice plant. In this work we investigated the role of OsSRT1 on genome-wide acetylation of histone H3 lysine 9 (H3K9ac) and studied the genome-wide binding targets of OsSRT1. The study reveals that OsSRT1 binds to loci with relatively low levels of H3K9ac and directly regulates H3K9ac and expression of many genes that are related to stress and metabolism, indicating that OsSRT1 is an important site-specific histone deacetylase for gene regulation in rice. In addition, OsSRT1 is found to also target to several families of transposable elements, suggesting that OsSRT1 is directly involved in transposable element repression.  相似文献   

15.
16.
Heterochromatin at yeast telomeres and silent mating (HM) loci represses adjacent genes and is formed by the binding and spreading of silencing information regulators (SIR proteins) along histones. This involves the interaction between the C terminus of SIR3 and the N terminus of histone H4. Since H4 is hypoacetylated in heterochromatin we wished to determine whether acetylation is involved in regulating the contacts between SIR3 and H4. Binding of H4 peptide (residues 1-34) acetylated at lysines Lys-5, Lys-8, Lys-12, and Lys-16 to an immobilized SIR3 protein fragment (residues 510-970) was investigated using surface plasmon resonance. We find that acetylation of H4 lysines reduces binding (K(a)) of H4 to SIR3 in a cumulative manner so that the fully acetylated peptide binding is decreased approximately 50-fold relative to unacetylated peptide. Thus, by affecting SIR3-H4 binding, acetylation may regulate the formation of heterochromatin. These data help explain the hypoacetylated state of histone H4 in heterochromatin of eukaryotes.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号