首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
R E Papka  D L McNeill 《Peptides》1992,13(4):761-767
Coexistence of immunoreactivity for calcitonin gene-related peptide (CGRP) and galanin (GAL) was examined in varicose nerve endings in female rat pelvic paracervical ganglia (PG) and in perikarya of lumbosacral dorsal root ganglia (DRG). Varicose peptide-containing nerves were closely adjacent to somata of neurons in the PG, certain somata being virtually surrounded by immunoreactive varicosities. Some nerve endings were immunoreactive for either CGRP or GAL; in others, immunoreactivity for CGRP and GAL coexisted. Likewise, many perikarya in DRG were CGRP immunoreactive, fewer were GAL immunoreactive, and in some immunoreactivity for CGRP and GAL coexisted. The results suggest there are subpopulations of neuropeptide-containing sensory nerve endings in the PG; some contain CGRP, some contain GAL, and in some CGRP and GAL coexist. These substances contained in sensory nerve endings could have important roles in pelvic ganglionic functions.  相似文献   

2.
The relationship between nitric oxide synthase (NOS)- and galanin-immunoreactive nerve terminals and the origin of NOS-immunoreactive nerve terminals on the motor endplates in the striated muscles of the rat esophagus was investigated. Double immunohistochemical staining revealed a dual innervation of motor endplates by calcitonin gene-related peptide (CGRP)-immunoreactive axons and by axons that were immunoreactive for both NOS and galanin. On average, 91% of NOS terminals were galanin immunoreactive. NOS-immunoreactive fibers were revealed at 67% of endplates, identified by the presence of CGRP terminals. The left vagus and superior laryngeal nerve were cut and 15 days allowed for terminals to degenerate. This caused a significant loss of CGRP fibers, but did not affect the density of innervation of the striated muscle by NOS-immunoreactive fibers. Thus the NOS/galanin fibers are deduced to originate from ganglia in the esophageal wall. This is supported by our observation of numerous NOS-immunoreactive nerve cell bodies in the myenteric ganglia of the esophagus, 74% of which were galanin immunoreactive. There were no CGRP-immunoreactive nerve cell bodies in the wall of the esophagus.  相似文献   

3.
Calcitonin gene-related peptide-like immunoreactivity was demonstrated in in sensory nerve fibers in the epidermis and dermis as free nerve endings and around blood vessels and hair follicles of the human finger pad and arm skin. The vast majority of the calcitonin gene-related immunoreactive fibers was shown to display also substance P-like immunoreactivity and a few fibers in the dermis were somatostatin positive. No fibers displaying both substance P and somatostatin-like immunoreactivity were found but a few substance P immunoreactive fibers in the dermis-epidermis region were found to contain also vasointestinal polypeptide-like immunoreactivity. In the sweat glands, abundant calcitonin gene-related peptide positive, but substance P negative, fibers were observed with a similar distribution pattern as the vasoactive intestinal polypeptide immunoreactive fibers and these fibers were suggested to be of sympathetic origin.  相似文献   

4.
Summary Calcitonin gene-related peptide-like immunoreactivity was demonstrated in in sensory nerve fibers in the epidermis and dermis as free nerve endings and around blood vessels and hair follicles of the human finger pad and arm skin. The vast majority of the calcitonin generelated immunoreactive fibers was shown to display also substance P-like immunoreactivity and a few fibers in the dermis were somatostatin positive. No fibers displaying both substance P and somatostatin-like immunoreactivity were found but a few substance P immunoreactive fibers in the dermis-epidermis region were found to contain also vasointestinal polypeptide-like immunoreactivity. In the sweat glands, abundant calcitonin gene-related peptide positive, but substance P negative, fibers were observed with a similar distribution pattern as the vasoactive intestinal polypeptide immunoreactive fibers and these fibers were suggested to be of sympathetic origin.  相似文献   

5.
Previous anatomical studies demonstrated vagal innervation to the ovary and distal colon and suggested the vagus nerve has uterine inputs. Recent behavioral and physiological evidence indicated that the vagus nerves conduct sensory information from the uterus to the brainstem. The present study was undertaken to identify vagal sensory connections to the uterus. Retrograde tracers, Fluorogold and pseudorabies virus were injected into the uterus and cervix. DiI, an anterograde tracer, was injected into the nodose ganglia. Neurectomies involving the pelvic, hypogastric, ovarian and abdominal vagus nerves were performed, and then uterine whole-mounts examined for sensory nerves containing calcitonin gene-related peptide. Nodose ganglia and caudal brainstem sections were examined for the presence of estrogen receptor-containing neurons in ”vagal locales." Labeling of uterine-related neurons in the nodose ganglia (Fluorogold and pseudorabies virus) and in the brainstem nuclei (pseudorabies virus) was obtained. DiI-labeled nerve fibers occurred near uterine horn and uterine cervical blood vessels, in the myometrium, and in paracervical ganglia. Rats with vagal, pelvic, hypogastric and ovarian neurectomies exhibited a marked decrease in calcitonin gene-related peptide-immunoreactive nerves in the uterus relative to rats with pelvic, hypogastric, and ovarian neurectomies with intact vagus nerves. Neurons in the nodose ganglia and nucleus tractus solitarius were immunoreactive for estrogen receptors. These results demonstrated: (1) the vagus nerves serve as connections between the uterus and CNS, (2) the nodose ganglia contain uterine-related vagal afferent neuron cell bodies, and (3) neurons in vagal locales contain estrogen receptors.  相似文献   

6.
Summary The presence and distribution of galanin-immunoreactivity was examined in the uterine cervix and paracervical autonomic ganglia of the female rat. Some animals were treated with capsaicin to determine if galanin-immunoreactivity was present in small-diameter primary afferent nerves. Other animals were treated with the noradrenergic neurotoxin 6-hydroxydopamine to ascertain if galanin-immunoreactivity was present in sympathetic noradrenergic nerves. Galanin-immunoreactive nerve fibers were sparse in the cervical myometrium and vasculature, but numerous in the paracervical ganglion where they appeared to innervate principal neurons. Immunoreactivity was also present in dorsal root ganglia, dorsal horn of spinal cord, and inferior mesenteric ganglia. Capsaicin treatment resulted in a marked reduction of galanin-immunoreactivity in the spinal cord dorsal horn, but not in the dorsal root ganglia, paracervical ganglia, or cervix (although there was a substantial reduction of substance P-, neurokinin A-, and calcitonin gene-related peptide-immunoreactivity in the dorsal horn, dorsal root ganglia, and uterine cervix). 6-Hydroxydopamine treatment did not cause any appreciable change in the galanin-immunoreactivity in any tissues. We conclude that galanin-like immunoreactivity is expressed in nerve fibers innervating the paracervical ganglia and uterine cervix of the female rat. This immunoreactivity is probably present in afferent nerves and could play a role in neuroendocrine reflexes and in reproductive function.  相似文献   

7.
Summary This study was designed to investigate the effects of multiple denervation procedures on calcitonin gene-related peptide- and substance P-immunoreactive neurons in sympathetic and sensory cranial ganglia and in selected targets. Sympathectomy by long-term guanethidine treatment induced a pronounced increase in calcitonin gene-related peptide-immunoreactive and substance P-immunoreactive nerve fibres in all the tissues investigated, in contrast to a significant reduction of immunoreactive cell bodies. Neonatal capasaicin treatment abolished substance P immunoreactivity in many targets and caused a dramatic reduction of substance P-immunoreactive sensory nerve cell bodies; calcitonin gene-related peptide-immunoreactive nerve density was decreased, but the number of immunoreactive nerve cell bodies was unchanged. Guanethidine treatment of capsaicin-injected rats reversed the loss of calcitonin gene-related peptide-immunoreactive nerves, but not that of substance P-immunoreactive neurons. In the iris, capsaicin treatment had little effect on calcitonin gene-related peptide- and substance P-immunoreactive nerves, suggesting that in rats the majority of these fibres originate from capsaicin-insensitive neurons. The results suggest that the denervation procedures used in this study alter the synthesis and transport of neuropeptides in sensory neurons in conjunction with changes in the number of nerve fibres.  相似文献   

8.
9.
To clarify the role of neurotrophin receptors in the development of Ruffini endings, periodontal ligaments and trigeminal ganglia of trkA, trkB, and trkC knockout mice were immunostained for protein gene product 9.5 (PGP 9.5), calcitonin gene-related peptide (CGRP), parvalbumin (PV), and calretinin (CR). Innervation patterns of PGP 9.5- and CGRP-immunoreactive fibers were examined in the periodontal ligament of the knockout mice. PGP 9.5-positive fibers in the incisal periodontal ligaments of trkA and trkC knockout mice form Ruffini endings distinguished by dendritic ramifications and branches. However, Ruffini endings were not present in the periodontal ligament of trkB knockout mice. Only free nerve endings were observed in tissue of trkB knockout mice. Compared with trkA and trkC knockouts, the proportion of CR-positive neurons in mandibular and maxillary regions of the trigeminal ganglion of trkB knockout mice is decreased. These findings indicate that the development of periodontal Ruffini endings is regulated by trkB-dependent and CR-coexpressing neurons.  相似文献   

10.
Summary Paraffin sections of cervical and upper thoracic paravertebral ganglia of the cat were investigated by immunohistochemistry using antisera directed against calcitonin gene-related peptide (CGRP). The relationships of CGRP-immunoreactive structures to those exhibiting immunoreactivity to antisera against other regulatory peptides and dopamine--hydroxylase (DBH), respectively, were studied in consecutive sections. Singly scattered CGRP-immunoreactive neuronal perikarya were observed in the superior and middle cervical ganglia as well as in the stellate ganglion. These neurons also displayed immunoreactivity to vasoactive intestinal polypeptide (VIP), and some additionally exhibited faint substance-P immunoreactivity. DBH- and neuropeptide Y-immunoreactive ganglion cells were not identical with CGRP-immunoreactive neuronal cell bodies.According to the immunoreactive properties of varicosities, which abut on CGRP/VIP-immunoreactive perikarya, three types of CGRP/VIP-immunoreactive ganglion cells could be distinguished: (1) CGRP/VIP-immunoreactive neurons being surrounded by somatostatin-immunoreactive nerve fibers, (2) neurons being approached by both DBH- and met-enkephalin-immunoreactive varicosities, and (3) neurons receiving both DBH- and neurotensin-immunoreactive fibers. The stellate and upper thoracic ganglia harbored clusters of intensely VIP-immunoreactive somata, which lacked CGRP-immunoreactivity. Fine somatostatin-immunoreactive and coarse CGRP-immunoreactive fibers were distributed within these clusters, whereas patches of neurotensin-immunoreactive fibers were complementarily arranged. At all segmental levels investigated, a few postganglionic neurons were approached by both CGRP-immunoreactive and substance P-immunoreactive varicosities, but lacked a VIP-immunoreactive innervation. Therefore, CGRP/substance P-immunoreactive fiber baskets appeared rather to be of extraganglionic origin than to emerge from intraganglionic CGRP/VIP/SP neurons. CGRP-immunoreactive cell bodies or fibers were absent in clusters of small paraganglionic cells, but some of the solitary paraganglionic cells displayed CGRP-immunoreactivity. Our findings establish the presence of CGRP-immunoreactivity in a population of sympathetic neurons in the cat. A highly differentiated, segment-dependent organizational pattern of neuropeptides in cervico-thoracic paravertebral ganglia was demonstrated.Supported by Deutsche Forschungsgemeinschaft grant He 919/6-2  相似文献   

11.
Summary The cholinergic innervation of the mouse superior cervical ganglion was investigated by means of immunocytochemistry using a well-characterized monoclonal antibody against choline acetyltransferase (ChAT). Immunopositive nerve fibers entered the superior cervical ganglion from the cervical sympathetic trunk. Light-microscopically, these fibers appeared to be heterogeneously distributed among the principal ganglion cells. The rostral part of the ganglion contained more ChAT-positive fibers then the middle or the caudal one. The axons branched several times before forming numerous varicosities. Most of the ChAT-stained fibers and varicosities aggregated in glomerula-like neuropil structures that were surrounded by principal ganglion cell bodies, whereas others were isolated or formed little bundles among principal neurons. None of the neurons or other cell types in the ganglion exhibited ChAT-positivity. ChAT-immunoreactive fibers disappeared from the ganglion 5 or 13 days after transection of the cervical sympathetic trunk. At the ultrastructural level, most axon terminals and synapses showed ChAT-immunoreactivity. An ultrastructural analysis indicated that immunostained synapses occurred directly on the surface of neuronal soma (1.8%) and dendritic shafts (17.6%). Synapses were often seen on soma spines (18.4%) and on dendritic spines (62.2%). All immunoreactive synapses were of the asymmetric type. The results provide immunocytochemical evidence for a heterogeneous cholinergic innervation of the ganglion and the principal neurons.  相似文献   

12.
Summary The distribution of calcitonin gene-related peptide-immunoreactive nerve fibers in the renal pelvis and ureter was examined by immunohistochemistry using whole-mount preparations and cryostat sections. The patterns of innervation were contrasted between the pelvis and ureter; the immunoreactive nerve fibers in the pelvis ran parallel to the long axis of each of the circular and longitudinal muscle layers, causing a lattice-like appearance of the nerve fibers. In the ureter, the immunoreactive fibers were accumulated in the subepithelial region and the longitudinal muscle. In both the pelvis and ureter, a portion of the nerve fibers of smaller caliber showed a swollen or beaded structure; they were located in the musculature and beneath the epithelium extending for considerable distances. Ligation of the ureter caused a marked decrease in the immunoreactive nerves in the pelvis and the proximal portion of the ureter, suggesting that the axonal flow in the calcitonin gene-related peptide-containing neurons of the ureter runs towards the pelvis.  相似文献   

13.
Summary The iris and choroid membrane of the adult rat contain nerve fibers expressing immunoreactivity to the neuropeptide galanin. The density and distribution of galanin-positive nerve fibers varied from iris to iris and, particularly, among animals. Smooth, non-terminal axons were seen running in nerve bundles consisting of otherwise negative fibers. From the choroid membrane these bundles reached the iris via the ciliary body. Axons were frequently seen to branch giving rise to a sparse system of varicose, single fibers in the dilator plate and sphincter area. Galanin-positive fibers were sometimes also seen outlining blood vessels.Capsaicin, in a dose that causes permanent depletion of substance P- and cholecystokinin-immunoreactive fibers in the iris, caused no change in amount of galanin-positive fibers. Removal of the superior cervical ganglion caused a rapid and pronounced increase in the number of galanin-immunoreactive nerve fibers. Similarly, removal of the ciliary ganglion appeared to increase galanin immunoreactivity, while removal of the pterygopalatine ganglion was less effective. Lesioning of the trigeminal ganglion caused a disappearance of galanin immunoreactivity. The sympathetectomy-induced increase was counteracted by capsaicin.Galanin-positive nerve cell bodies were present in both the superior cervical and the trigeminal ganglia. In the superior cervical ganglion, immunoreactive galanin did not seem to coexist with neuropeptide Y-positive cells; in the trigeminal ganglion, some galanin-positive cells also contained calcitonin gene-related peptide (CGRP) immunoreactivity, while most cells did not. In the iris, double-staining suggested that CGRP and galanin immunoreactivities were contained in different fiber populations.We conclude that the rat iris and choroid membrane contain a sparse plexus of nerve fibers expressing galanin-like immunoreactivity. It is suggested that these fibers are derived from the trigeminal ganglion. The iris is able to respond with a pronounced increase in number of galanin-immunoreactive nerve fibers to certain denervation procedures.  相似文献   

14.
Grandry corpuscles in the oral mucosa of the upper bill of the duck were immunohistochemically studied using antisera against calcitonin gene-related peptide (CGRP), galanin, methionine-enkephalin, neuropeptide Y (NPY), somatostatin, substance P (SP) and vasoactive intestinal peptide (VIP). Grandry corpuscles in the lamina propria selectively showed only SP-like immunoreactivity. Herbst corpuscles distributed near Grandry corpuscles were negative to all antisera applied. Although immunoreactive products in the Grandry corpuscles were found as granules in the peripheral cytoplasm of the Grandry cell, the axon terminals and satellite cells exhibited no reactivity. In pre-embedding electron-microscopic sections, SP-like immunoreactive products visualized with 3,3-diaminobezidine were localized in the granules of Grandry cells, but no labeling was observed in the cytoplasmic matrix or cell organelles. Electron-immunocytochemical labeling with colloidal gold by the post-embedding method clearly demonstrated that the SP antigen was localized only in the granules. It is presumed that Grandry cells have a secretory function. However, the function and the method of release of the SP contained in the observed granules remains obscure. Some CGRP-, NPY-, SP- and VIP-like-immunoreactive nerve fibers with varicosities associated with blood vessels and nerve fiber bundles of various sizes were observed in the lamina propria, but no such fibers penetrated into the intraepitherial layer. Nerve fibers positive for SP and VIP were also found in the interlobular connective tissue of the palatine glands. Some SP-positive neurons were detected in the vicinity of the palatine glands.  相似文献   

15.
Immunoreactivity of galanin (GAL) was detected in the nerve fibers distributed within the intervascular stroma of the bullfrog carotid labyrinth. GAL-immunoreactive fibers are numerous, and some are close to the sinusoidal plexus. Most GAL fibers appear as thin processes with some varicosities. A combination of indirect double immunofluorescence labelling and image processing clearly demonstrated that the distribution patern of GAL fibers is different from that of SP fibers. This indicates that GAL and SP do not coexist in the same nerve fibers. The role of GAL fibers may be different from that of previously reported neuropeptides (substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, neuropeptide Y, and others) as a neuromodulator in controlling vascular tone of the labyrinth.  相似文献   

16.
The chicken carotid body receives numerous branches from the vagus nerve, especially distal (nodose) ganglion, and the recurrent laryngeal nerve. Dense networks of peptidergic nerve fibers immunoreactive for substance P, calcitonin gene-related peptide (CGRP), galanin, vasoactive intestinal peptide (VIP) and neuropeptide Y are distributed in and around the carotid body. Substance-P- and CGRP-immunoreactive fibers projecting to the chicken carotid body mainly come from the vagal ganglia. In the present study, various types of denervation experiments were performed in order to clarify the origins of VIP-, galanin- and neuropeptide-Y-immunoreactive fibers in the chicken carotid bodies. After nodose ganglionectomy, midcervical vagotomy or excision of the recurrent laryngeal nerve, VIP-, galanin- and neuropeptide-Y-immunoreactive fibers were unchanged in the carotid body region. Furthermore, these peptidergic fibers remained unaffected even by removal of the nodose ganglion in conjunction with severance of the recurrent laryngeal nerve that induced a marked decrease in TuJ1-immunoreactive fibers in the carotid body region. VIP-, galanin- and neuropeptide-Y-immunoreactive fibers are densely distributed around the arteries supplying the carotid body in normal chickens. The peptidergic fibers around the arteries were also unaffected after the denervation experiments. However, after removal of the 14th cervical ganglion of the sympathetic trunk, which lies close to the vertebral artery on the root of the brachial plexus and issues prominent branches to the artery, VIP-, galanin- and neuropeptide-Y-immunoreactive fibers almost disappeared in the carotid body region. The ganglion contained many VIP-, galanin- and neuropeptide-Y-immunoreactive neurons. Thus it is clear that VIP-, galanin- and neuropeptide-Y-immunoreactive fibers in the chicken carotid body region are mainly derived from the 14th cervical sympathetic ganglion via the vertebral artery.  相似文献   

17.
We investigated the origin of galanin-positive nerve fibers on motor endplates in rat esophagus using anterograde 1,1′-dioleyl-3,3,3′,3′-tetramethylindocarbocyanine methane sulfonate (DiI) tracing from the nucleus ambiguus combined with galanin immunocytochemistry and calcitonin gene-related peptide immunocytochemistry. To demonstrate spatial relationships of galanin-positive nerve fibers to vagal and enteric nerve fibers on motor endplates, we combined galanin immunocytochemistry with calcitonin gene-related peptide immunostaining for labeling of vagal terminals, and vasoactive intestinal peptide immunoreactivity and NADPH-diaphorase histochemistry for demonstration of enteric nerve fibers. Within fine varicose nerve fibers, galanin was colocalized with vasoactive intestinal peptide and NADPH-diaphorase to a high degree and turned out to be completely separated from calcitonin gene-related peptide-positive or anterogradely DiI-labeled vagal motor terminals. These results indicate that the enteric nervous system is the most important and possibly the only source of galanin-positive nerve terminals on motor endplates in rat esophagus. Galanin may be, in addition to nitric oxide and vasoactive intestinal peptide, a mediator of the enteric coinnervation of striated muscle in this organ.  相似文献   

18.
Summary The presence of bioactive peptides in the gut and their possible electrophysiological effects on the intestinal epithelium were studied in two teleost species, the tilapia (Oreochromis mossambicus) and the goldfish (Carassius auratus). Vasoactive intestinal polypeptide-like immunoreactive nerve fibres were found beneath the intestinal epithelium of both species. Galanin-, metenkephalin-and calcitonin gene-related peptide-like immunoreactive nerve fibres were found exclusively in the mucosa of the tilapia. Both species had vasoactive intestinal polypeptide-, enkephalin- or neuropeptide Y-like immunoreactive endocrine cells; calcitonin gene-related peptide-like immunoreactive endocrine cells were additionally found in the tilapia. Somatostatin- and dopamine--hydroxylase-like immunoreactivities were not observed. Nerve cell bodies in the myenteric plexus of both species showed immunoreactivity for calcitonin gene-related peptide-, vasoactive intestinal polypeptide-, and galanin-like peptide. Enkephalin-like immunoreactive nerve cell bodies were present in the tilapia only. None of the peptides had a pronounced electrogenic effect. However, calcitonin gene-related peptide added to stripped intestinal epithelium of the tilapia, reduced the ion selectivity, and addition of galanin increased the ion selectivity. In goldfish intestine, both galanin and calcitonin gene-related peptide were without effect. Enkephalin counteracted the serotonin-induced reduction of the ion selectivity of the goldfish intestinal epithelium, but had no effect on the tilapia epithelium. In both species, vasoactive intestinal polypeptide reduced the ion selectivity of the intestinal epithelium, and neuropeptide Y induced an increase of the ion selectivity. Somatostatin showed no effect on the epithelial ion selectivity of either species. Tetrodotoxin did not inhibit the effects of the peptides studied. The changes in ion selectivity suggest that the enterocytes may be under the regulatory control of these peptides.  相似文献   

19.
The distribution of perivascular nerve fibers displaying calcitonin gene-related peptide (CGRP) immunoreactivity and the effect of CGRP on vascular smooth muscle were studied in the guinea-pig. Perivascular CGRP fibers were seen in all vascular beds. Generally, they were more numerous around arteries than veins. Small arteries in the respiratory tract, gastrointestinal tract and genitourinary tract had numerous CGRP fibers. The gastroepiploic artery in particular received a rich supply of such fibers. Coronary blood vessels had a moderate supply of CGRP fibers. In the heart, a moderate number of CGRP fibers was seen running close to myocardial fibers. The atria had a richer supply than the ventricles. Numerous CGRP immunoreactive nerve cell bodies and nerve fibers were seen in sensory (trigeminal, jugular and spinal dorsal root) ganglia. Sequential or double immunostaining with antibodies against substance P and CGRP suggested co-existence of the two peptides in nerve cell bodies in the ganglia and in perivascular fibers. In agreement with previous findings CGRP turned out to be a strong vasodilator in vitro as tested on several blood vessels (e.g. basilar, gastroepiploic and mesenteric arteries). Conceivably, perivascular CGRP/SP fibers have a dual role as regulator of local blood flow and as carrier of sensory information.  相似文献   

20.
Antibodies against choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) were used to determine whether neurons that have previously been identified as intrinsic primary afferent neurons in the guinea-pig small intestine have a cholinergic phenotype. Cell bodies of primary afferent neurons in the myenteric plexus were identified by their calbindin immunoreactivity and those in the submucous plexus by immunoreactivity for substance P. High proportions of both were immunoreactive for ChAT, viz. 98% of myenteric calbindin neurons and 99% of submucosal substance P neurons. ChAT immunoreactivity also occurred in all nerve cell bodies immunoreactive for calretinin and substance P in the myenteric plexus, but in only 16% of nerve cells immunoreactive for nitric oxide synthase. VAChT immunoreactivity was in the majority of calbindin-immunoreactive varicosities in the myenteric ganglia, submucous ganglia and mucosa and also in the majority of the varicosities of neurons that were immunoreactive for calretinin and somatostatin and that had been previously established as being cholinergic. We conclude that the intrinsic primary afferent neurons are cholinergic and that they may release transmitter from their sensory endings in the mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号