首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many developmental and physiological changes, including alterations of enzyme activities, occur in plants under low temperature stress. In this study the total ribonuclease activity was determined in crude extracts from root tips of soybean seedlings germinated at 25 °C, subjected to chilling conditions (10°C) and recovered at optimal temperature (25°C). Measurements of RNase activity were performed every 24 hours starting from the third to the 10-th day of growth. We found that chilling caused a considerable increase in ribonuclease activity (in comparison with the control), with an activity peak on the fourth day of the cold treatment. The enzyme activity in root extracts of the plants recovered after cold stress decreased along with the time of recovery. No differences were found in approximate molecular weight (35 kDa) and pH optimum (6.0) for ribonucleases extracted from control and chilled soybean roots.  相似文献   

2.
A ribonuclease (RNase) with a molecular mass of 29 kDa and cospecific for poly A and poly U was isolated from fruiting bodies of the mushroom Boletus griseus. Its N-terminal sequence exhibited some similarity to those of RNases from the mushrooms Irpex lacteus and Lentinus edodes. The RNase was adsorbed on diethylaminoethyl-cellulose, Q-Sepharose, and Affi-gel blue gel and was unadsorbed on CM-cellulose. The enzyme exhibited a temperature optimum between 60 and 70°C and a pH optimum at 3.5.  相似文献   

3.
A ribonuclease isolated from barley malt roots exhibited characteristics that conformed to those of RNase I (EC 3.1.27.1). It differed from RNase I from barley leaves and barley seeds in its action on polynucleotides and on 3′,5′-dinucleoside monophosphates, and from barley seed RNase I in its optimum pH. Gel electrophoresis indicated that the enzyme was present in the embryo, roots, shoot and endosperm of germinating barley. The enzyme showed pH optimum at 5.0, isoclectric pH at 4.5, a thermal optimum of 50°, and an apparent molocular weight of 19 000.  相似文献   

4.
A new specific ribonuclease from normal human plasma has been purified to homogeneity, following a five-step purification protocol that included DEAE-Sepharose, CM-Sepharose, and Heparin-Sepharose chromatographies. The purified enzyme was found to be glycosylated and appeared as a single 25-kDa band on a SDS polyacrylamide gel. This RNase is poly(C) preferential, degrading poly(U) at a lower rate. Activity of this RNase toward cleavage of native substrates such as ribosomal RNA was also detected. The human plasma ribonuclease is a thermolabile molecule, exhibiting maximum activity at pH 6.5. Comparison between other known plasma RNases and the human plasma ribonuclease described here indicated a variety of differences in their biochemical and catalytic properties.  相似文献   

5.
Peptide:N-glycanase has been thought to be responsible for proteasome-dependent degradationof misfolded glycoproteins translocated from the endoplasmic reticulum (ER) to the cytosol.Therefore,theenzyme was supposed to be able to distinguish between native and non-native glycoproteins.In the presentstudy,a recombinant,yeast peptide:N-glycanase,Png lp, was expressed in Escherichia coli as inclusionbodies and was purified,refolded and characterized.The results showed that the recombinant enzymehas a broad pH range adaptation,from pH 4.0 to pH 10.0,and has an optimum temperature of 30 ℃.This enzyme is a zinc metalloenzyme.Its activity was abolished with the addition of EDTA and notrestored by adding metal ions.Furthermore,the deglycosylation efficiency of recombinant Pnglpfrom E.coli was investigated with respect to the substrate conformation in vitro.When ribonuclease B(RNase B) was denatured at 60-65 ℃ or by 40-60 mM dithiothreitol, indicated by its obvious structuralchange and sharpest activity change,its deglycosylation by Pnglp was most prominent.The deglycosylationefficiency of RNase B by Pnglp was found to be related to its structural conformation and enzymaticactivity.  相似文献   

6.
Abstract

Extracellular lipase from an indigenous Bacillus aryabhattai SE3-PB was immobilized in alginate beads by entrapment method. After optimization of immobilization conditions, maximum immobilization efficiencies of 77%?±?1.53% and 75.99%?±?3.49% were recorded at optimum concentrations of 2% (w/v) sodium alginate and 0.2?M calcium chloride, respectively, for the entrapped enzyme. Biochemical properties of both free and immobilized lipase revealed no change in the optimum temperature and pH of both enzyme preparations, with maximum activity attained at 60?°C and 9.5, respectively. In comparison to free lipase, the immobilized enzyme exhibited improved stability over the studied pH range (8.5–9.5) and temperature (55–65?°C) when incubated for 3?h. Furthermore, the immobilized lipase showed enhanced enzyme-substrate affinity and higher catalytic efficiency when compared to soluble enzyme. The entrapped enzyme was also found to be more stable, retaining 61.51% and 49.44% of its original activity after being stored for 30 days at 4?°C and 25?°C, respectively. In addition, the insolubilized enzyme exhibited good reusability with 18.46% relative activity after being repeatedly used for six times. These findings suggest the efficient and sustainable use of the developed immobilized lipase for various biotechnological applications.  相似文献   

7.
A Psychrotolerant alkaline protease producing bacterium IIIM-ST045 was isolated from a soil sample collected from the Thajiwas glacier of Kashmir, India and identified as Stenotrophomonas sp. on the basis of its biochemical properties and 16S ribosomal gene sequencing. The strain could grow well within a temperature range of 4–37°C however, showed optimum growth at 15°C. The strain was found to over-produce proteases when it was grown in media containing lactose as carbon source (157.50 U mg−1). The maximum specific enzyme activity (398 U mg−1) was obtained using soya oil as nitrogen source, however, the inorganic nitrogen sources urea, ammonium chloride and ammonium sulphate showed the lowest production of 38.9, 62.2 and 57.9 U mg−1. The enzyme was purified to 18.45 folds and the molecular weight of the partially purified protease was estimated to be ~55 kDa by SDS-PAGE analysis. The protease activity increased as the increase in enzyme concentration while as the optimum enzyme activity was found when casein (1% w/v) was used as substrate. The enzyme was highly active over a wide range of pH from 6.5 to 12.0 showing optimum activity at pH 10.0. The optimum temperature for the enzyme was 15°C. Proteolytic activity reduced gradually with higher temperatures with a decrease of 56% at 40°C. The purified enzyme was checked for the removal of protein containing tea stains using a silk cloth within a temperature range of 10–60°C. The best washing efficiency results obtained at low temperatures indicate that the enzyme may be used for cold washing purposes of delicate fabrics that otherwise are vulnerable to high temperatures.  相似文献   

8.
Tannin acyl hydrolase (Tannase) from Asp. oryzae No. 7 was purified. The purified enzyme was homogenous on column chromatography (DEAE-Sephadex A50, Sephadex G100), ultra centrifugation and electrophoresis.

The molecular weight of the enzyme estimated by gel filtration method was about 200,000.

The enzyme was stable in the range of pH 3 to 7.5 for 12 hr at 5°C, and for 25 hr at the same temperature in the range of pH 4.5 to 6. The optimum pH for the reaction was 5.5. It was stable under 30°C (over one day, in 0.05 M-citrate buffer of pH 5.5), and the optimum temperature was 30~40°C (reaction for 20min). The activity was lost completely at 55°C in 20 min at pH 5.5, or at 85°C in 10 min at the same pH.

Any metal salt tested did not activate the enzyme, Zink chloride and cupric chloride inhibited the activity or denatured the enzyme. The activity was lost completely by dialysis against EDTA-solution at pH 7.25, although it was not affected by dialysis against deionized water.  相似文献   

9.
Cell homogenates of light-grown Ochromonas danica contained distinct non-specific non-phosphate-repressible acid and alkaline phosphohydrolase activities. Acid phosphohydrolase activity had a broad pH range of 2.0–5.0 and the optimum for alkaline phosphohydrolase activity was pH 8.6 Acid phosphohydrolase (pH 3.6) activity had an optimum temperature of 55°C; the alkaline enzyme activity had an optimum temperature of 37–40°C.  相似文献   

10.
The present study investigates the efficiency of Aspergillus niger to produce invertase, an industrially important enzyme by using powdered stem of Cympopogan caecius (Lemon grass) as sole substrate and sole carbon source for the microorganism. The molecular weight of invertase was estimated to be 66–70 kDa by sodium do decyl sulphate poly acrylamide gel electrophoresis (SDS PAGE). The production of the enzyme was studied at different pH scales ranging from pH 4.0 to 7.0 at a constant temperature of 30°C and 2% substrate concentration. The maximum production of invertase (specific activity −0.0516 μk/mg protein) was obtained at pH 5.5 at 30°C temperature, and incubation for 48 h. The activity was found to be stable at pH 5.5 for 30 min. The enzyme was found to be stable in the temperature range of 20–55°C. The effect of divalent metal ions Cu2+, Fe2+, Co2+ on the activity of the enzyme invertase showed that these ions affected the activity by a certain factor. The study can be further industrially exploited in a country-like India where lemon grass is found in plenty and can be used as substrate for enzyme production. Moreover, the preparation of the substrate is also a simple process.  相似文献   

11.
An endosymbiont Halobacterium salinarum MMD047, which could produce high yields of amylase, was isolated from marine sponge Fasciospongia cavernosa, collected from the peninsular coast of India. Maximum production of enzyme was obtained in minimal medium supplemented with 1% sucrose. The enzyme was found to be produced constitutively even in the absence of starch. The optimum temperature and pH for the enzyme production was 40°C and 8.0, respectively. The enzyme exhibited maximum activity in pH range of 6∼10 with an optimum pH of 9.0. The enzyme was stable at 40°C and the enzyme activity decreased dramatically above 50°C. Based on the present findings, the enzyme was characterized as relatively heat sensitive and alkalophilic amylase which can be developed for extensive industrial applications.  相似文献   

12.
A pectin-releasing enzyme produced by Kluyveromyces wickerhamii IFO 1675 (PPase-W) was purified to homogeneity from a culture filtrate by cation-exchange and size-exclusion chromatographies. This enzyme had a molecular weight of 35,000 determined by both size exclusion chromatography and ultracentrifugal analysis, and of 40,000 by SDS-PAGE. It contained 2.4% sugar, and its isoelectric point was at pH 5.2. PPase-W catalyzed the release of highly polymerized pectin from various protopectins, and also showed endopolygalacturonase (endo-PGase) activity. The purified enzyme had optimum PGase activity at about pH 5.2 and 50°C and was stable in the range of pH from 4.0 to 7.0 and up to 50°C. The properties of PPase-W were compared with those of PPase-F from Kluyveromyces fragilis IFO 0288, and some differences were found. Also, some preliminary data dealing with the relationship between enzyme activities (PPase and endo-PGase) and protein structure are discussed.  相似文献   

13.
从若尔盖高寒湿地距表层80cm处土壤中筛选出一株纤维素酶高产菌株XW-1。根据形态学、生理生化特征以及16SrDNA核酸序列分析结果表明,该菌属于缺陷短波单胞菌(Brevundimonas sp.)。对该菌产酶条件研究表明,XW-1在含0.5%CMC-Na条件下,20°C培养3d后出现最高酶活,达到15.6U/mL。对其酶学性质初步研究表明,该菌株所产纤维素酶的最适pH为6.0,最适反应温度为20°C,15°C时相对酶活达到80%,并且在5°C时,相对酶活仍能保持56%。  相似文献   

14.
Total of 171 alkaliphilic actinomycetes were evaluated for extracellular RNase production and Streptomyces sp. M49-1 was selected for further experiments. Fermentation optimization for RNase production was implemented in two steps using response surface methodology with central composite design. In the first step, the effect of independent fermentation variables including temperature, initial pH and process time were investigated. After identification of carbon and nitrogen sources affecting the production by one variable at a time method, concentrations of glucose and yeast extract and also inoculum size were chosen for the second central composite design. A maximum RNase activity was obtained under optimal conditions of 4.14 % glucose concentration, 4.63 % yeast extract concentration, 6.7 × 106 spores as inoculum size for 50 ml medium, 42.9 °C, 91.2 h process time and medium initial pH 9.0. Optimum activity of the enzyme is achieved at pH 11 and temperature 60 °C. The enzyme is highly stable at pH range 9.0–12.0 and at 90 °C after 2 h. Statistical optimization experiments provide 2.25 fold increases in the activity of alkalotolerant and thermostable RNase and shortened the fermentation time compared to that of unoptimized condition. The members of Streptomyces can be promising qualified RNase producer for pharmaceutical industries.  相似文献   

15.
Streptomyces avermitilis CECT 3339 produces extracellular ferulic acid esterase (FAE) activity during growth on a range of lignocellulose substrates. Maximal levels of FAE activity were detected in culture filtrates from S. avermitilis CECT 3339 grown in media containing wheat bran and yeast extract as carbon and nitrogen sources respectively. Biochemical characterization of this enzyme activity revealed that it was 100-fold higher when wheat bran was pretreated with Celluclast (a mix of hydrolytic enzymes). FAE was found to be end-product-inhibited. Characterization of the properties of the enzyme showed that FAE exhibited an activity optimum pH at 6 with pH stability between pH 6 and 8. The optimum temperature was 50 °C while the temperature stability was between 30 °C and 40 °C, with rapid inactivation at 60 °C and above. The characteristics and stability of FAE from S. avermitilis CECT 3339 suggest a potential role for this enzyme in combination with endoxylanases for the upgrading of plant-residue silage and for biopulping. Received: 17 November 1997 / Received revision: 13 March 1998 / Accepted: 13 April 1998  相似文献   

16.
Ribonuclease (RNase), which often represents molecular biological contamination, is a thermostable enzyme. When RNase is heated at 121°C by autoclave sterilization for 20 min, it does not lose its activity. However, the nature of the molecular events by which the irreversible denaturation occurs remains unknown. The purpose of this study was to elucidate the molecular mechanisms of irreversible thermal denaturation of RNase A and to develop an advanced sterilization method using soft‐hydrothermal processing, which has the advantages of improved safety and cost‐efficiency. The enzymatic activity of RNase was measured using polyacrylamide gel electrophoresis with torula yeast RNA. We evaluated the temperature and time course of irreversible thermoinactivation of RNase by normal autoclaving, hot‐air sterilization, and soft‐hydrothermal processing that had been controlled to the desired steam saturation ratio. The results indicated that RNase A was deactivated by autoclave sterilization (121°C, 20 min) immediately after treatment, but was reactivated over time. Hot‐air sterilization (180°C, atmospheric pressure, 60 min) produced results similar to that of autoclave sterilization. In contrast, RNase A was irreversibly thermoinactivated by soft‐hydrothermal processing (110°C, 20 min) at 100% steam saturation ratio. We also determined that the mechanism of irreversible thermoinactivation of RNase A involved hydrolysis and deamidation under this condition at a steam saturation ratio of more than 100%. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

17.
Some microorganisms, including some bacteria isolated from soil, were found to secrete an extracellular soymilk-clotting enzyme. Among them, strain No. K-295G-7 showed the highest soymilk-clotting activity and stability of the production of the soymilk-clotting enzyme. The enzyme system (culture filtrate) coagulated protein in soymilk, a curd being formed at pH 5.8~6.7 and at 55~75°C. The optimum temperature for the soymilk-clotting activity was 75°C and the enzyme system was stable at temperatures below 50°C down to 35°C. About 80~100% of the original activity remained after 1 hr at pH 5~7 and 35°C.  相似文献   

18.
About 500 strains of dextranase producing microorganisms were examined in detail for pH- activity and enzyme stability. A gram positive bacterium identified as belonging to the genus Brevibacterium was found to produce alkaline dextranase. Maximal dextranase synthesis was obtained when grown aerobically at 26°C for 3 days in a medium containing 1 % dextran, 2% ethanol, 1 % polypeptone and 0.05 % yeast extract together with trace amounts of inorganic salts.

Brevibacterium dextranase had an optimum pH of 8.0 for activity at 37°C and an optimal temperature at 53°C at pH 7.5. The enzyme was quite stable over the range of pH 5.0 to 10.5 on 24 hr incubation at 37°C, especially on alkaline pH. The enzyme was also heat stable at 60°C for 10 min.  相似文献   

19.
Cotton fabric was first oxidized with sodium periodate, and then employed to immobilize catalase. Optimization studies for oxidation of the fabric and immobilization of the enzyme were performed. The properties of the immobilized catalase were examined and compared with those of the free enzyme. A high activity of the immobilized enzyme was obtained when the fabric was oxidized at 40°C and pH 6.0 for 8h in a bath containing 0.20 mol L?1 sodium periodate and the enzyme was immobilized at 4°C for 24h with a catalase dosage of 120.0 U mL?1. The immobilized enzyme exhibited optimum activity at 40°C, while the free enzyme had optimal temperature of 30°C, suggesting that the immobilized catalase could be used in a broader temperature range. Both the immobilized and free enzyme had pH optima of 7.0. The staining test and reusability showed that the catalase was fixed covalently on the oxidized cotton fabric.  相似文献   

20.
Paecilomyces lilacinus strain PL-HN-16 was found to have the ability to degrade feathers. During the degradation process, the broth initially turned as sticky as gelatin and then turned into fluid that means the feathers can be hydrolyzed completely. Keratinolytic protein (Ker) of aforementioned strain was purified using ammonium sulphate precipitation, HiTrap? Butyl FF chromatography and Sephacryl S-200 gel filtration. The Ker of P. lilacinus PL-HN-16 had molecular mass of 33 kDa, the optimum pH 8.0 and temperature optimum at 40°C. It used the soluble keratin as substrate. The enzyme showed high activity and stability over a wide range of pH (6.0 to 10.0) and temperature (30°C to 60°C) values but was completely inhibited by PMSF. Ker of P. lilacinus PL-HN-16 exhibited stability toward SDS. These promising properties make the enzyme a potential candidate for future applications in biotechnological processes as keratin hydrolysis and dehairing during leather processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号