首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  总被引:43,自引:2,他引:43  
  相似文献   

2.
  总被引:2,自引:0,他引:2  
The relationship between species richness and area is one of the oldest, most recognized patterns in ecology. Here we provide empirical evidence for strong impacts of fisheries exploitation on the slope of the species–area relationship (SAR). Using comparative field surveys of fish on protected and exploited reefs in three oceans and the Mediterranean Sea, we show that exploitation consistently depresses the slope of the SAR for both power-law and exponential models. The magnitude of change appears to be proportional to fishing intensity. Results are independent of taxonomic resolution and robust across coral and rocky reefs, sampling protocols and statistical methods. Changes in species richness, relative abundance and patch occupancy all appear to contribute to this pattern. We conclude that exploitation pressure impacts the fundamental scaling of biodiversity as well as the species richness and spatial distribution patterns of reef fish. We propose that species–area curves can be sensitive indicators of community-level changes in biodiversity, and may be useful in quantifying the human imprint on reef biodiversity, and potentially elsewhere.  相似文献   

3.
植物物种多样性与岛屿面积的关系   总被引:2,自引:0,他引:2       下载免费PDF全文
孙雀  卢剑波  张凤凤  徐高福 《生态学报》2009,29(5):2195-2202
由于水库蓄水导致千岛湖原有生境的破碎化和岛屿化.研究选取了50个岛屿,共设立样方70个.调查这些岛屿上乔木和灌木的种类及数量,选择9种曲线拟合岛屿面积与物种多样性指数之间的数学关系.结果发现:乔木、灌木和木本物种数与岛屿面积关系拟合较好的是对数函数、幂函数和S型曲线,其中对数函数为最优模型;乔木、木本Shannon-Wiener多样性指数与岛屿面积关系拟合较好的是S型曲线和逆函数,灌木Shannon-Wiener多样性指数与岛屿面积关系拟合不显著,乔木和木本Shannon-Wiener多样性指数与较小岛屿(y小于1 hm2)面积拟合呈S形曲线和逆函数,而灌木Shannon-Wiener多样性指数与较大岛屿(y大于1 hm2)面积拟合呈S形曲线和逆函数;均匀度、优势度指数与面积拟合关系不显著. 在岛屿面积较小时,物种多样性指数随着面积的增加而迅速增加,但在面积增加到一定限度时,物种多样性指数增加的速率就逐渐变缓.植物物种数增加速率的转折点约为4 hm2,乔木、木本Shannon-Wiener多样性指数增加速率的转折点约为1 hm2,对面积小于的1 hm2的岛屿进行拟合时发现,乔木、木本Shannon-Wiener多样性指数增加速率的转折点在0.15~0.2 hm2之间.  相似文献   

4.
海南橡胶林植物多样性特征   总被引:1,自引:0,他引:1  
为探讨人工林物种多样性维持机制及人为干扰后人工林群落的多样性恢复机制, 作者依据自然林的核心理论建立了一个1 ha的橡胶(Hevea brasiliensis)林固定样地, 通过研究近自然管理后样地内植物物种组成与分布来探讨近自然管理后橡胶林生物多样性的特征。结果表明: 近自然管理后橡胶林群落物种多样性较高, 1 ha样地内共有植物69科155属183种。在面积为4,000 m2、3,000 m2和2,000 m2时分别包含了样地内大约90%的种、属和科; 逻辑斯蒂模型拟合拟合种-面积曲线效果较好(R2=0.997), 证明了1 ha取样尺度可以满足橡胶林群落物种多样性研究的需要。多度-面积曲线和丰富度-面积曲线与随机分布模型有明显的差异, 表明橡胶林群落内个体数及物种分布呈非随机性。(4)对数级数模型和对数正态模型拟合橡胶林群落的种-多度分布都不理想, 相比而言后者拟合效果稍好。  相似文献   

5.
6.
生物群落的种-面积关系   总被引:14,自引:2,他引:12  
种—面积关系主要探讨物种数量随面积扩大而变化的规律, 它联系不同尺度的生物多样性, 是生物多样性尺度转换的重要依据。利用种—面积关系可以估算群落或区域的物种数量、评价区域生物多样性的丧失。由于构建方式、尺度效应以及区域差异, 种—面积关系的具体形式及其普适性还存在争议。本文主要从构建、尺度效应、区域分异以及与种—多度分布的联系等方面综述种—面积关系的主要进展, 并探讨它在不同方面的适用性。最后给出了利用基于组合样方系列构建的种—面积关系来估算秦岭山地物种数的实例, 结果表明估算精度良好。  相似文献   

7.
Despite two centuries of exploration, our understanding of factors determining the distribution of life on Earth is in many ways still in its infancy. Much of the disagreement about governing processes of variation in species richness may be the result of differences in our perception of species‐richness patterns. Until recently, most studies of large‐scale species‐richness patterns assumed implicitly that patterns and mechanisms were scale invariant. Illustrated with examples and a quantitative analysis of published data on altitudinal gradients of species richness (n = 204), this review discusses how scale effects (extent and grain size) can influence our perception of patterns and processes. For example, a hump‐shaped altitudinal species‐richness pattern is the most typical (c. 50%), with a monotonic decreasing pattern (c. 25%) also frequently reported, but the relative distribution of patterns changes readily with spatial grain and extent. If we are to attribute relative impact to various factors influencing species richness and distribution and to decide at which point along a spatial and temporal continuum they act, we should not ask only how results vary as a function of scale but also search for consistent patterns in these scale effects. The review concludes with suggestions of potential routes for future analytical exploration of species‐richness patterns.  相似文献   

8.
9.
空间尺度是影响我们理解生态学格局和过程的关键因素.目前已有多种关于物种多样性分布格局形成机制的假说且研究者未达成共识,原因之一是空间尺度对物种多样性分布格局的环境影响因子的解释力和相对重要性有重要影响.地形异质性是物种多样性分布格局的重要影响因素.本文综述了在地形异质性-物种多样性关系的研究中,不同空间粒度和幅度对研究...  相似文献   

10.
    
Scheiner (2003) presented a classification of species–area curves into six types based on the pattern of sampling and how the data are combined to form the curves. Gray et al. (2004) contended that five of those types should be termed ‘species‐accumulation curves’, reserving ‘species–area curve’ for those based on island‐type data. Their proposition contradicts 70 years of usage and confounds curves that are area‐explicit with those that are area‐undefined. In exploring these issues, I highlight additional aspects of species–area and species‐accumulation curves, including the assumption of nesting in Type IV (island) curves, how to convert area‐unspecified curves into area curves, and the effects of the grain of the analysis on the properties of the curve. Further exploration, theoretical development, and dialogue are needed before we will understand all the biology that species–area curves summarize.  相似文献   

11.
吉林蛟河阔叶红松林样地种-面积关系   总被引:1,自引:1,他引:1       下载免费PDF全文
种-面积关系是群落生态学的核心问题之一,是生物多样性尺度转换的重要依据。利用吉林蛟河阔叶红松林30 hm~2的样地数据,采用随机取样与巢式取样方法,分别在10、20、30 hm~2尺度上建立对数模型(Logarithmic function)、幂函数模型(Power function)和逻辑斯蒂模型(Logistic function)拟合局域种-面积关系,并利用赤池信息准则(AIC)进行拟合结果优度检验。结果表明,取样方法对种-面积关系的构建有显著影响,随机取样优于巢式取样。种-面积关系的构建与尺度(取样上限)密切相关:在小尺度上(10 hm~2),对数模型与逻辑斯蒂模型拟合效果优于幂函数模型;在中尺度和大尺度上(20、30 hm~2),相对于对数模型和幂函数模型,逻辑斯蒂模型能更好地拟合阔叶红松林的种-面积关系。据AIC值可知,随机取样下的逻辑斯蒂模型拟合效果最好,是拟合30 hm~2阔叶红松林样地种-面积关系的最适模型。因此研究时需要根据区域森林群落的实际情况选择种-面积模型。  相似文献   

12.
  总被引:1,自引:0,他引:1  
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere.  相似文献   

13.
A new relationship for rarefaction   总被引:4,自引:0,他引:4  
All diversity indices are functions of the vector of the numbers of individuals in different species in a statistical population. So they are also functions of the number of species. It is well known, from the species-area curve and from collector's curves, that the number of species is a function of sampling effort. The rarefaction and Coleman functions are both functions that allow comparisons to be made at the same number of individuals, but have different mathematical forms. We show that the numerical difference between them, in the samples we have studied, is negligibly small. We show how to modify the Coleman function to allow for sampling without replacement, and show that the modified function is identical to the hypergeometric rarefaction function. Rarefaction should always be used, with any index, when comparing diversity in different size samples, but the number of species is the preferred index. Suggestions for comparing rarefaction curves from different samples are made.  相似文献   

14.
    

Aim

Our aim is to document the dimensions of current squamate reptile biodiversity in the Americas by integrating taxonomic, phylogenetic and functional data, and assessing how this may vary across phylogenetic scales. We also explore the potential underlying mechanisms that may be responsible for the observed geographical diversity patterns.

Location

The Americas.

Time period

Present.

Major taxa

Squamate reptiles.

Methods

We used published data on the distribution, phylogeny, and body size of squamate reptiles to document the current dimensions of their alpha diversity in the Americas. We overlapped species ranges to estimate taxonomic diversity (TD) and calculated phylogenetic diversity (PD) using mean pairwise phylogenetic distance (MPD), speciation rate (DivRate) and Faith's phylogenetic index (PD). We estimated functional diversity (FD) as trait dispersion in the multivariate space using body size and leg development data. We implemented a deconstructive macroecological approach to understand how spatial mismatches between the three facets of diversity vary across phylogenetic scales, and the potential eco-evolutionary mechanisms driving these patterns across space.

Results

We found a strong latitudinal gradient of TD with a large accumulation in tropical regions. PD and FD patterns were largely similar likely due to the high phylogenetic signal in the traits used, and higher values tended to be concentrated in harsh and/or heterogeneous environments. We found differences between major clades within Squamata that display contrasting geographical patterns. Several regions across the continent shared the same spatial mismatches between dimensions across clades, suggesting that similar eco-evolutionary processes are shaping these regional reptile assemblages. However, we also found evidence that non-mutually exclusive processes can operate differently across clades.

Main conclusions

The deconstructive approach implemented here is based on a solid macroecological framework. We can extend this to other taxonomic groups to establish whether there are particularities about how different eco-evolutionary mechanisms shape biodiversity facets in a spatially explicit context.  相似文献   

15.
16.
太白山几类植物群落灌木及草本层的最小取样面积研究   总被引:1,自引:0,他引:1  
采用2条非饱和与2条饱和曲线方程对太白山7种类型植物群落(Ⅰ.锐齿栎林、Ⅱ.铁橡树林、Ⅲ.红桦林、Ⅳ.巴山冷杉-牛皮桦林、Ⅴ.巴山冷杉林、Ⅵ.太白红杉林和Ⅶ.头花杜鹃-大毛状薹草灌草丛)灌木及草本层拟合的种-面积曲线,计算研究精度要求分别为60%、70%、80%、90%时各群落各层的最小取样面积,并进行分析比较.结果表明,不同群落灌木及草本层最小取样面积均随研究精度增高而增大,群落Ⅰ~Ⅶ灌木层的取样面积分别为96、35、73、63、75、1701、8 m2时,草本层为91、91、57、59、71、657、m2时,可满足精度80%以下的研究要求;灌木层的取样面积为163、62、122、104、120、296、35 m2时,草本层为150、151、109、110、126、1192、9 m2时,可满足精度90%的研究要求.方差分析表明,不同群落灌木及草本层最小取样面积存在差异,有些差异达显著水平(P<0.05).因此,在野外调查时应根据研究精度要求和群落类型合理设置最小取样面积.  相似文献   

17.
    
  相似文献   

18.
    
β‐diversity (variation in community composition) is a fundamental component of biodiversity, with implications for macroecology, community ecology and conservation. However, its scaling properties are poorly understood. Here, we systematically assessed the spatial scaling of β‐diversity using 12 empirical large‐scale datasets including different taxonomic groups, by examining two conceptual types of β‐diversity and explicitly considering the turnover and nestedness components. We found highly consistent patterns across datasets. Multiple‐site β‐diversity (i.e. variation across multiple sites) scaling curves were remarkably consistent, with β‐diversity decreasing with sampled area according to a power law. For pairwise dissimilarities, the rates of increase of dissimilarity with geographic distance remained largely constant across scales, while grain size (or scale level) had a stronger effect on overall dissimilarity. In both analyses, turnover was the main contributor to β‐diversity, following total β‐diversity patterns closely, while the nestedness component was largely insensitive to scale changes. Our results highlight the importance of integrating both inter‐ and intraspecific aggregation patterns across spatial scales, which underpin substantial differences in community structure from local to regional scales.  相似文献   

19.
    

Aim

Modelling the response of β‐diversity (i.e., the turnover in species composition among sites) to environmental variation has wide‐ranging applications, including informing conservation planning, understanding community assembly and forecasting the impacts of climate change. However, modelling β‐diversity is challenging, especially for multiple diversity facets (i.e., taxonomic, functional and phylogenetic diversity), and current methods have important limitations. Here, we present a new approach for predicting the response of multifaceted β‐diversity to the environment, called Multifaceted Biodiversity Modelling (MBM). We illustrate the approach using both a plant diversity dataset from the French Alps and a set of simulated data. We also provide an implementation via an R package.

Location

French Alps.

Methods

For both the French Alps and the simulated communities, we compute β‐diversity indices (e.g., Sørensen dissimilarity, mean functional/phylogenetic pairwise distance) among site pairs. We then apply Gaussian process regression, a flexible nonlinear modelling technique, to predict β‐diversity in response to environmental distance among site pairs. For comparison, we also perform similar analyses using Generalized Dissimilarity Modelling (GDM), a well‐established method for modelling β‐diversity in response to environmental distance.

Results

In the Alps, we observed a general increase in taxonomic (TD) and functional (FD) β‐diversity (i.e., site pairs were more different from each other) as the climatic distance between site pairs increased. GDM performed better for TD and FD when fitting to calibration data, whereas MBM performed better for both when predicting to a validation dataset. For phylogenetic β‐diversity, MBM outperformed GDM in predicting the observed decrease in phylogenetic β‐diversity with increasing climatic distance.

Main conclusions

Multifaceted Biodiversity Modelling provides a flexible new approach that expands our capacity to model multiple facets of β‐diversity. Advantages of MBM over existing methods include simpler assumptions, more flexible modelling, potential to consider multiple facets of diversity across a range of diversity indices, and robust uncertainty estimation.
  相似文献   

20.
Aim Quinn & Harrison (1988; Oecologia, 75, 132) suggested that several small, isolated islands generally bore a higher diversity than fewer (or single) larger islands. They proposed a method by which the cumulative diversity of islands arranged small-to-large (‘STOL’) and large-to-small (‘LTOS’) could be used to identify how island area and species distributions interact to produce the system-wide or ensemble diversity. From these curves, an ‘index of saturation’ (SI) was calculated to summarize the way in which diversity is generated on a given archipelago. Unfortunately, the method did not allow statistical judgements to be made. Our paper considers the reliability of the Quinn-Harrison approach, especially in light of the inconsistency of its implications compared with ‘nestedness’ analyses. Location Three example data sets are used: reptiles from the archipelagos of the Sea of Cortéz, breeding land-birds from the Canary Islands, and stream invertebrates occupying rocks in the Steavenson River of central Victoria, Australia. Methods We refine the Quinn-Harrison technique to produce a method by which the difference between the STOL and LTOS cumulative diversity curves can be gauged statistically (the ξ statistic). We also propose an alternative statistic (η)—which we believe to be more intuitive—that preferentially weights species occurring on few patches and that can be statistically assessed by using Monte Carlo simulation. Results The basic Quinn-Harrison technique is not reliable for diagnosing whether systems are characterized by STOL or LTOS patterns. The three example data sets provide the range of options for faunal-diversity generation (STOL overlies LTOS, LTOS overlies STOL, and coincident). However, statistical analyses indicate that the patterns all are generated by the rarer species occupying larger islands. The results of the revised ξ statistic and especially the η statistic are consistent with this deduction, which in turn relate well with faunal-nestedness analyses. Main conclusions There was a contradiction between the Quinn-Harrison analyses, which suggested that most rarer taxa occurred in impoverished, smaller islands, and results of nestedness analyses, which indicated that the rarer taxa occurred on more speciose, larger islands. The resolution to this dilemma is that the Quinn-Harrison diagram and saturation index are so flawed that they yield unreliable results vis a vis the generation of diversity on archipelagos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号