首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Involvement of host DNA gyrase in growth of bacteriophage T5.   总被引:1,自引:0,他引:1       下载免费PDF全文
Bacteriophage T5 did not grow at the nonpermissive temperature of 42 degrees C in Escherichia coli carrying a temperature-sensitive mutation in gyrB [gyrB(Ts)], but it did grow in gyrA(Ts) mutants at 42 degrees C. These findings indicate that the A subunit of host DNA gyrase is unnecessary, whereas the B subunit is necessary for growth of T5. The necessity for the B subunit was confirmed by a strong inhibition of T5 growth by novobiocin and coumermycin A1, which interfere specifically with the function of the B subunit of host DNA gyrase. However, T5 growth was also strongly inhibited by nalidixic acid, which interferes specifically with the function of the A subunit. This inhibition was due to the interaction of nalidixic acid with the A subunit and not just to its binding to DNA, because appropriate mutations in the gyrA gene of the host conferred nalidixic acid resistance to the host and resistance to T5 growth in such a host. The inhibition by nalidixic acid was also not due to a cell poison formed between nalidixic acid and the A subunit (K. N. Kreuzer and N. R. Cozzarelli, J. Bacteriol. 140:424-435, 1979) because nalidixic acid inhibited growth of T5 in a gyrA(Ts) mutant (KNK453) at 42 degrees C. We suggest that T5 grows in KNK453 at 42 degrees C because its gyrA(Ts) mutation is leaky for T5. Inhibition of T5 growth due to inactivation of host DNA gyrase was caused mainly by inhibition of T5 DNA replication. In addition, however, late T5 genes were barely expressed when host DNA gyrase was inactivated.  相似文献   

3.
Bacillus subtilis deoxyribonucleic acid gyrase   总被引:15,自引:7,他引:8       下载免费PDF全文
Bacillus subtilis 168 was shown to contain a deoxyribonucleic acid (DNA) gyrase activity which closely resembled those of the enzymes isolated from Escherichia coli and Micrococcus luteus in its enzymatic requirements, substrate specificity, and sensitivity to several antibiotics. The enzyme was purified from the wild type and nalidixic acid-resistant and novobiocin-resistant mutants of B. subtilis and was functionally characterized in vitro. The genetic loci nalA and novA but not novB were shown to code for portions of the functional gyrase. Enzyme from the antibiotic-resistant mutants was resistant to the drug in vitro. The most striking observation was the remarkable similarity between the B. subtilis enzyme and other DNA gyrases, especially with respect to the oxolinic acid-induced DNA cleavage in the presence of sodium dodecyl sulfate. All of the enzymes appeared to possess the same specificity of cutting sites regardless of the source or type of DNA used. This result implies that gyrase binding to DNA is highly specific.  相似文献   

4.
5.
6.
Several spontaneous cya and crp mutants of Escherichia coli have been selected as clones simultaneously resistant to phage lambda and nalidixic acid and characterized. Both cya and crp mutants have been found to grow as cocci with increased doubling times. They have increased resistance to some mutagens (methylmethanesulfonate, ultraviolet light, gamma rays), antibiotics (nalidixic acid, ampicillin), phages (lambda, T6), sublethal heat and hypotonic shock, and decreased resistance to neutral detergents (sodium dodecyl sulfate, sodium deoxycholate), a protein synthesis inhibitor (streptomycin), and a respiratory inhibitor (sodium azide). The nature of changes in cell parameters indicate fundamental alterations in the envelope structure of the cya and crp mutant cells. The new cya and crp mutants have been found to be multiply carbohydrate negative and nonmotile in conformity with similar previously isolated mutants. Studies of revertants and phi80 cya+ and phi80 cya transductants indicated that the pleiotropic phenotype is related to a single mutational event at the cya or the crp locus in the mutants.  相似文献   

7.
SP01 development was inhibited by nalidixic acid and novobiocin in the sensitive host Bacillus subtilis 168M. Inhibition by novobiocin was prevented by a Novr mutation in the cellular DNA gyrase gene. Nalidixic acid inhibition persisted in hosts carrying a Nalr gyrase, but could be overcome by phage mutation. We conclude that SP01 requires for its development subunit B of the host DNA gyrase, but replaces or modifies subunit A.  相似文献   

8.
Incorporation of labeled deoxynucleoside triphosphates into mtDNA by isolated rat liver mitochondria has been shown previously to reflect DNA replication. We have used this system to seek evidence for a mtDNA gyrase. Coumermycin, novobiocin, nalidixic acid, and oxolinic acid are known to be inhibitors of Escherichia coli gyrase, to inhibit E. coli DNA replication, to abolish colicin E1 replication, and to depress the supercoiling of phage lambda DNA, the last two via inhibition of the DNA gyrase. Our results show that these agents inhibit [3H]dATP incorporation into bulk mtDNA at concentrations similar to those used for E. coli. Analysis by sucrose gradient sedimentation confirms the inhibition and shows further that the synthesis of the highly supercoiled form of mtDNA (i.e. 39 S DNA) is depressed relative to other mtDNA forms (i.e. 27 S DNA), suggesting an inhibition of the supercoiling process. Analysis of the DNA by CsCl/propidium diiodide centrifugation shows, in addition, that incubation with coumermycin results in the appearance of a mtDNA form shown to be relaxed mtDNA. The results are consistent with the occurrence of a mtDNA gyrase and its operation in mtDNA replication.  相似文献   

9.
Wild-type bacteriophage T4 and DNA-delay am mutants defective in genes 39, 52, 60 and 58–61 were tested for intracellular sensitivity to the antibiotics coumermycin and novobiocin, drugs which inhibit the DNA gyrase of Escherichia coli. Treatment with these antibiotics drastically reduced the characteristic growth of gene 39, 52 and 60 DNA-delay am mutants in E. coli lacking an amber suppressor (su?). Wild-type phage-infected cells were unaffected by the drugs while the burst size of a gene 58–61 mutant was affected to an intermediate extent. A su?E. coli strain which is resistant to coumermycin due to an altered gyrase permitted growth of the DNA-delay am mutants in the presence of the drug. Thus, the characteristic growth of the DNA-delay am mutants in an su? host apparently depends on the host gyrase. An E. coli himB mutant is defective in the coumermycin-sensitive subunit of gyrase (H. I. Miller, personal communication). Growth of the gene 39, 52 and 60 am mutants was inhibited in the himB mutant while the gene 58–61 mutant and wild-type T4 showed small reductions in burst size in this host. Experiments with nalidixic acid-sensitive and resistant strains of E. coli show that wild-type phage T4 requires a functional nalA protein for growth.Novobiocin and coumermycin inhibit phage DNA synthesis in DNA-delay mutant-infected su?E. coli if added during the early logarithmic phase of phage DNA synthesis. The gene 58–61 mutant showed the smallest inhibition of DNA synthesis in the presence of the drugs. Addition of the drugs during the late linear phase of phage DNA synthesis had no effect on further synthesis in DNA-delay mutant-infected cells. Coumermycin and novobiocin had no effect on DNA synthesis in wild-type-infected cells regardless of the time of addition of the antibiotics. Models are considered in which the DNA-delay gene products either form an autonomous phage gyrase or interact with the host gyrase and adapt it for proper initiation of phage DNA replication.  相似文献   

10.
The 1600-bp (base pair) fragment encoding a portion of the nalidixic acid resistant DNA gyrase, subunit B, was characterized to determine what parameters effect transformation in the gonococcus. When this DNA (pSY2) was isolated from Escherichia coli, it was able to transform a variety of gonococcal strains to resistance to nalidixic acid via DNA-mediated transformation, irrespective of their restriction-modification phenotype. Nalidixic acid resistant transformants contained no plasmid DNA sequences that corresponded to the vector, as measured by plasmid screening procedures and colony hybridization techniques. Supercoiled and linear DNA transformed the gonococcus at the same efficiency. DNA fragments as small as 615 bp were able to transform the gonococcus. The presence of a 10-bp uptake sequence enhanced a DNA fragment's ability to transform the gonococcus by four orders of magnitude. When the fragment encoding the nalidixic acid resistant DNA gyrase was subcloned into M13mp18, both the replicative form and the single-stranded form of the phage were able to transform the gonococcus to nalidixic acid resistance.  相似文献   

11.
When DNA gyrase is trapped on bacterial chromosomes by quinolone antibacterials, reversible complexes form that contain DNA ends constrained by protein. Two subsequent processes lead to rapid cell death. One requires ongoing protein synthesis; the other does not. The prototype quinolone, nalidixic acid, kills wild-type Escherichia coli only by the first pathway; fluoroquinolones kill by both. Both lethal processes correlated with irreversible chromosome fragmentation, detected by sedimentation and viscosity of DNA from quinolone-treated cells. However, only fluoroquinolones fragmented purified nucleoids when incubated with gyrase purified from wild-type cells. A GyrA amino acid substitution (A67S) expected to perturb a GyrA-GyrA dimer interface allowed nalidixic acid to fragment chromosomes and kill cells in the absence of protein synthesis; moreover, it made a non-inducible lexA mutant hypersusceptible to nalidixic acid, a property restricted to fluoroquinolones with wild-type cells. The GyrA variation also facilitated immunoprecipitation of DNA fragments by GyrA antiserum following nalidixic acid treatment of cells. The ability of changes in both gyrase and quinolone structure to enhance protein synthesis-independent lethality and chromosome fragmentation is explained by drug-mediated destabilization of gyrase-DNA complexes. Instability of type II topoisomerase-DNA complexes may be a general phenomenon that can be exploited to kill cells.  相似文献   

12.
Escherichia coli strains bearing plasmids expressing phage P22 anti-RecBCD functions abc1 and abc2 were tested for the presence of recBC-like phenotypes. Abc2 induces moderate sensitivity to UV light in wild-type and recD mutant strains but severely sensitizes both recF and recJ mutants. Abc1 has little effect on UV sensitivity in wild-type or recF or recJ mutant hosts but increases the sensitivity of recD mutants to a UV dose of 20 J/m2 about 10-fold. Abc2 induces E. coli to segregate inviable cells during growth, interferes with the growth of lambda red gam chi+ and chi 0 phage (the effect is greater with chi+ phage), inhibits Chi and Chi-like activity as measured by lambda red gam crosses, and prevents SOS induction in response to nalidixic acid; Abc1 has no effect in these tests. Abc2, alone or with Abc1, does not allow the growth of lambda red gam in the presence of a P2 prophage but does not kill the P2 lysogenic host (as lambda Gam does). Finally, Abc2 inhibits conjugational recombination in wild-type cells to the level seen in recBC mutants. These data suggest that Abc2 inhibits the recombination-promoting ability of RecBCD but leaves the exonuclease functions intact.  相似文献   

13.
The effect of the deoxyribonucleic acid (DNA) gyrase inhibitors coumermycin A1, novobiocin, and oxolinic acid on ribonucleic acid (RNA) synthesis in Escherichia coli was studied in vivo and in vitro. Preferential inhibition of ribosomal RNA (rRNA) synthesis was observed. No effect of oxolinic acid and coumermycin on rRNA synthesis was seen in mutants having a DNA gyrase which is resistant to these inhibitors. In a temperature-sensitive DNA gyrase mutant rRNA synthesis was decreased at nonpermissive temperatures. Thus, a functional DNA gyrase is required for rRNA synthesis. Purified DNA gyrase had no effect on rRNA synthesis in a purified system. However, DNA gyrase does show preferential stimulation of rRNA synthesis in a system supplemented with other proteins. Apparently, DNA gyrase stimulation of rRNA synthesis requires another protein.  相似文献   

14.
15.
The effect of nalidixic acid on the growth of various deoxyribonucleic acid (DNA) bacteriophages has been investigated by one-step growth experiments. The Escherichia coli bacteriophages T5, lambda, T7 and phiR are strongly inhibited by nalidixic acid, whereas T4 and T2 are only partially inhibited. The Bacillus subtilis bacteriophages SP82, SP50, and phi29 are relatively unaffected by nalidixic acid. There is no correlation between those bacteriophages which can grow in the presence of nalidixic acid and the presence of an unusual base in the phage DNA.  相似文献   

16.
Novobiocin and nalidixic acid, inhibitors of the bacterial enzyme DNA gyrase, inhibit DNA, RNA and protein synthesis in several human and rodent cell lines. The sensitivity of DNA synthesis (both replicative and repair) to inhibition by novobiocin and nalidixic acid is greater than that of protein synthesis. Novobiocin inhibits RNA synthesis about half as effectively as it does DNA synthesis, whereas nalidixic acid inhibits both equally well. Replicative DNA synthesis, as measured by incorporation of [3H]thymidine, is blocked by novobiocin in a number of cell strains; the inhibition is reversible with respect to both DNA synthesis and cell killing, and continues for as long as 20--30 h if the cells are kept in novobiocin-containing growth medium. Both novobiocin and nalidixic acid inhibit repair DNA synthesis (measured by BND-cellulose chromatography) induced by ultraviolet light or N-methyl-N'-nitro-N-nitrosoguanidine (but not that induced by methyl methanesulfonate) at lower concentration (as low as 5 micrograms/ml) than those required to inhibit replicative DNA synthesis (50 micrograms/ml or greater). Neither novobiocin nor nalidixic acid alone induces DNA repair synthesis. Incubation of ultraviolet-irradiated cells with 10--100 micrograms/ml novobiocin results in little, if any, further reduction of colony-forming ability (beyond that caused by the ultraviolet irradiation). Novobiocin at sufficiently low concentrations (200 micrograms/ml) apparently generates a quiescent state (in terms of cellular DNA metabolism) from which recovery is possible. Under more drastic conditions of time in contact with cells and concentration, however, novobiocin itself induces mammalian cell killing.  相似文献   

17.
A ciprofloxacin resistant mutant (Cf(R)) of Rhizobium leguminossarum bv phaseoli USDA 2695 which nodulates common bean plants (Phaseolus vulgaris L) was isolated after nitrous acid mutagenesis. Another mutant resistant to nalidixic acid (Nal(R)) was isolated spontaneously. Both mutants showed thermotolerance as evident by their ability to grow at elevated (40 degrees C) temperature, although the wild type (USDA 2695) failed to grow at this temperature. Transformation and plasmid curing experiments suggested the gene(s) controlling thermotolerance (TrR) and resistance to nalidixic acid or ciprofloxacin were located on the main chromosome and not on the plasmids. High frequency of co-transfer of TrR-Cr(R) and Tr(R)-Nal(R) during transformation experiments indicated a close association of these gene(s). Role of DNA gyrase and supercoiling in these thermotolerant mutants has been discussed.  相似文献   

18.
We isolated 142 Hir- (host inhibition of replication) mutants of an Escherichia coli K-12 Mu cts Kil- lysogen that survived heat induction and the killing effect of Mu replicative transposition. All the 86 mutations induced by insertion of Tn5 or a kanamycin-resistant derivative of Tn10 and approximately one-third of the spontaneous mutations were found by P1 transduction to be linked to either zdh-201::Tn10 or Tn10-1230, indicating their location in or near himA or hip, respectively. For a representative group of these mutations, complementation by a plasmid carrying the himA+ gene or by a lambda hip+ transducing phage confirmed their identification as himA or hip mutations, respectively. Some of the remaining spontaneously occurring mutations were located in gyrA or gyrB, the genes encoding DNA gyrase. Mutations in gyrA were identified by P1 linkage to zei::Tn10 and a Nalr gyrA allele; those in gyrB were defined by linkage to tna::Tn10 and to a gyrB(Ts) allele. In strains carrying these gyrA or gyrB mutations, pBR322 plasmid DNA exhibited altered levels of supercoiling. The extent of growth of Mu cts differed in the various gyrase mutants tested. Phage production in one gyrA mutant was severely reduced, but it was only delayed and slightly reduced in other gyrA and gyrB mutants. In contrast, growth of a Kil- Mu was greatly reduced in all gyrase mutant hosts tested.  相似文献   

19.
cysB, the regulatory gene of the cysteine regulon, is autoregulated. Inhibitors of both gyrase subunits, nalidixic acid and novobiocin, affect the expression of cysB, as monitored by beta-galactosidase activity in cysB::lac fusion strains. In gyrA mutants that are resistant to nalidixic acid, this drug does not affect cysB expression. The amount of mRNA transcribed from the cysB promoter isolated from cultures grown in the presence of gyrase inhibitors was significantly lower than that from the control culture without inhibitors. Urea also decreased cysB expression. These results suggest that DNA topology could play a role in cysB expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号