首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urokinase plasminogen activator (uPA) plays a major role in fibrinolytic processes and also can potentiate LPS-induced neutrophil activation through interactions with its kringle domain (KD). To investigate the role of the uPA KD in modulating acute inflammatory processes in vivo, we cloned and then developed Abs to the murine uPA KD. Increased pulmonary expression of uPA and the uPA KD was present in the lungs after LPS exposure. Administration of anti-kringle Abs diminished LPS-induced up-regulation of uPA and uPA KD in the lungs, and also decreased the severity of LPS-induced acute lung injury, as determined by development of lung edema, pulmonary neutrophil accumulation, histology, and lung IL-6, MIP-2, and TNF-alpha cytokine levels. These proinflammatory effects of the uPA KD appeared to be mediated through activation of Akt and NF-kappaB. The present studies indicate that the uPA KD plays a major role in the development of TLR4-mediated acute inflammatory processes, including lung injury. Blockade of the uPA KD may prevent the development or ameliorate the severity of acute lung injury induced through TLR4-dependent mechanisms, such as would occur in the setting of Gram-negative pulmonary or systemic infection.  相似文献   

2.
Early inflammatory events include cytokine release, activation, and rapid accumulation of neutrophils, with subsequent recruitment of mononuclear cells. The p38 mitogen-activated protein kinase (MAPK) intracellular signaling pathway plays a central role in regulating a wide range of inflammatory responses in many different cells. A murine model of mild LPS-induced lung inflammation was developed to investigate the role of the p38 MAPK pathway in the initiation of pulmonary inflammation. A novel p38 MAPK inhibitor, M39, was used to determine the functional consequences of p38 MAPK activation. In vitro exposure to M39 inhibited p38 MAPK activity in LPS-stimulated murine and human neutrophils and macrophages, blocked TNF-alpha and macrophage inflammatory protein-2 (MIP-2) release, and eliminated migration of murine neutrophils toward the chemokines MIP-2 and KC. In contrast, alveolar macrophages required a 1000-fold greater concentration of M39 to block release of TNF-alpha and MIP-2. Systemic inhibition of p38 MAPK resulted in significant decreases in the release of TNF-alpha and neutrophil accumulation in the airspaces following intratracheal administration of LPS. Recovery of MIP-2 and KC from the airspaces was not affected by inhibition of p38 MAPK, and accumulation of mononuclear cells was not significantly reduced. When KC was instilled as a proinflammatory stimulus, neutrophil accumulation was significantly decreased by p38 MAPK inhibition independent of TNF-alpha or LPS. Together, these results demonstrate a much greater dependence on the p38 MAPK cascade in the neutrophil when compared with other leukocytes, and suggest a means of selectively studying and potentially modulating early inflammation in the lung.  相似文献   

3.
Vitronectin is present in large concentrations in serum and participates in regulation of humoral responses, including coagulation, fibrinolysis, and complement activation. Because alterations in coagulation and fibrinolysis are common in acute lung injury, we examined the role of vitronectin in LPS-induced pulmonary inflammation. Vitronectin concentrations were significantly increased in the lungs after LPS administration. Neutrophil numbers and proinflammatory cytokine levels, including IL-1beta, MIP-2, KC, and IL-6, were significantly reduced in bronchoalveolar lavage fluid from vitronectin-deficient (vitronectin(-/-)) mice, as compared with vitronectin(+/+) mice, after LPS exposure. Similarly, LPS induced increases in lung edema, myeloperoxidase-concentrations, and pulmonary proinflammatory cytokine concentrations were significantly lower in vitronectin(-/-) mice. Vitronectin(-/-) neutrophils demonstrated decreased KC-induced chemotaxis as compared with neutrophils from vitronectin(+/+) mice, and incubation of vitronectin(+/+) neutrophils with vitronectin was associated with increased chemotaxis. Vitronectin(-/-) neutrophils consistently produced more TNF-alpha, MIP-2, and IL-1beta after LPS exposure than did vitronectin(+/+) neutrophils and also showed greater degradation of IkappaB-alpha and increased LPS-induced nuclear accumulation of NF-kappaB compared with vitronectin(+/+) neutrophils. These findings provide a novel vitronectin-dependent mechanism contributing to the development of acute lung injury.  相似文献   

4.
We postulated that the seleno-organic compound ebselen would attenuate neutrophil recruitment and activation after aerosolized challenge with endotoxin (LPS) through its effect as an antioxidant and inhibitor of gene activation. Rats were given ebselen (1-100 mg/kg i.p.) followed by aerosolized LPS exposure (0.3 mg/ml for 30 min). Airway inflammatory indices were measured 4 h postchallenge. Bronchoalveolar lavage (BAL) fluid cellularity and myeloperoxidase activity were used as a measure of neutrophil recruitment and activation. RT-PCR analysis was performed in lung tissue to assess gene expression of TNF-alpha, cytokine-induced neutrophil chemoattractant-1 (CINC-1), macrophage-inflammatory protein-2 (MIP-2), ICAM-1, IL-10, and inducible NO synthase. Protein levels in lung and BAL were also determined by ELISA. Ebselen pretreatment inhibited neutrophil influx and activation as assessed by BAL fluid cellularity and myeloperoxidase activity in cell-free BAL and BAL cell homogenates. This protective effect was accompanied by a significant reduction in lung and BAL fluid TNF-alpha and IL-1 beta protein and/or mRNA levels. Ebselen pretreatment also prevented lung ICAM-1 mRNA up-regulation in response to airway challenge with LPS. This was not a global effect of ebselen on LPS-induced gene expression, because the rise in lung and BAL CINC-1 and MIP-2 protein levels were unaffected as were lung mRNA expressions for CINC-1, MIP-2, IL-10, and inducible NO synthase. These data suggest that the anti-inflammatory properties of ebselen are achieved through an inhibition of lung ICAM-1 expression possibly through an inhibition of TNF-alpha and IL-1 beta, which are potent neutrophil recruiting mediators and effective inducers of ICAM-1 expression.  相似文献   

5.
Regulatory effects of eotaxin on acute lung inflammatory injury   总被引:3,自引:0,他引:3  
Eotaxin, which is a major mediator for eosinophil recruitment into lung, has regulatory effects on neutrophil-dependent acute inflammatory injury triggered by intrapulmonary deposition of IgG immune complexes in rats. In this model, eotaxin mRNA and protein were up-regulated during the inflammatory response, resulting in eotaxin protein expression in alveolar macrophages and in alveolar epithelial cells. Ab-induced blockade of eotaxin in vivo caused enhanced NF-kappaB activation in lung, substantial increases in bronchoalveolar lavage levels of macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant (CINC), and increased MIP-2 and CINC mRNA expression in alveolar macrophages. In contrast, TNF-alpha levels were unaffected, and IL-10 levels fell. Under these experimental conditions, lung neutrophil accumulation was significantly increased, and vascular injury, as reflected by extravascular leak of (125)I-albumin, was enhanced. Conversely, when recombinant eotaxin was administered in the same inflammatory model of lung injury, bronchoalveolar lavage levels of MIP-2 were reduced, as was neutrophil accumulation and the intensity of lung injury. In vitro stimulation of rat alveolar macrophages with IgG immune complexes greatly increased expression of mRNA and protein for MIP-2, CINC, MIP-1alpha, MIP-1beta, TNF-alpha, and IL-1beta. In the copresence of eotaxin, the increased levels of MIP-2 and CINC mRNAs were markedly diminished, whereas MIP-1alpha, MIP-1beta, TNF-alpha, and IL-1beta expression of mRNA and protein was not affected. These data suggest that endogenous eotaxin, which is expressed during the acute lung inflammatory response, plays a regulatory role in neutrophil recruitment into lung and the ensuing inflammatory damage.  相似文献   

6.
7.
AMP-activated protein kinase (AMPK) is activated by increases in the intracellular AMP-to-ATP ratio and plays a central role in cellular responses to metabolic stress. Although activation of AMPK has been shown to have anti-inflammatory effects, there is little information concerning the role that AMPK may play in modulating neutrophil function and neutrophil-dependent inflammatory events, such as acute lung injury. To examine these issues, we determined the effects of pharmacological activators of AMPK, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) and barberine, on Toll-like receptor 4 (TLR4)-induced neutrophil activation. AICAR and barberine dose-dependently activated AMPK in murine bone marrow neutrophils. Exposure of LPS-stimulated neutrophils to AICAR or barberine inhibited release of TNF-alpha and IL-6, as well as degradation of IkappaBalpha and nuclear translocation of NF-kappaB, compared with findings in neutrophil cultures that contained LPS without AICAR or barberine. Administration of AICAR to mice resulted in activation of AMPK in the lungs and was associated with decreased severity of LPS-induced lung injury, as determined by diminished neutrophil accumulation in the lungs, reduced interstitial pulmonary edema, and diminished levels of TNF-alpha and IL-6 in bronchoalveolar lavage fluid. These results suggest that AMPK activation reduces TLR4-induced neutrophil activation and diminishes the severity of neutrophil-driven proinflammatory processes, including acute lung injury.  相似文献   

8.
We investigated the requirement for tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1 receptors in the pathogenesis of the pulmonary and hepatic responses to Escherichia coli lipopolysaccharide (LPS) by studying wild-type mice and mice deficient in TNF type 1 receptor [TNFR1 knockout (KO)] or both TNF type 1 and IL-1 receptors (TNFR1/IL-1R KO). In lung tissue, NF-kappaB activation was similar among the groups after exposure to aerosolized LPS. After intraperitoneal injection of LPS, NF-kappaB activation in liver was attenuated in TNFR1 KO mice and further diminished in TNFR1/IL-1R KO mice; however, in lung tissue, no impairment in NF-kappaB activation was found in TNFR1 KO mice and only a modest decrease was found in TNFR1/IL-1R KO mice. Lung concentrations of KC and macrophage-inflammatory peptide 2 were lower in TNFR1 KO and TNFR1/IL-1R KO mice after aerosolized and intraperitoneal LPS. We conclude that LPS-induced NF-kappaB activation in liver is mediated through TNF-alpha- and IL-1 receptor-dependent pathways, but, in the lung, LPS-induced NF-kappaB activation is largely independent of these receptors.  相似文献   

9.
10.
Src tyrosine kinases (TKs) are signaling proteins involved in cell signaling pathways toward cytoskeletal, membrane and nuclear targets. In the present study, using a selective Src TK inhibitor, PP1, we investigated the roles of Src TKs in the key pulmonary responses, NF-kappaB activation, and integrin signaling during acute lung injury in BALB/C mice intratracheally treated with LPS. LPS resulted in c-Src phosphorylation in lung tissue and the phospho-c-Src was predominantly localized in recruited neutrophils and alveolar macrophages. PP1 inhibited LPS-induced increases in total protein content in bronchoalveolar lavage fluid, neutrophil recruitment, and increases in the production or activity of TNF-alpha and matrix metalloproteinase-9. PP1 also blocked LPS-induced NF-kappaB activation, and phosphorylation and degradation of IkappaB-alpha. The inhibition of NF-kappaB activation by PP1 correlated with a depression of LPS-induced integrin signaling, which included increases in the phosphorylations of integrin beta(3), and of the focal adhesion kinase (FAK) family members, FAK and Pyk2, in lung tissue, and reductions in the fibrinogen-binding activity of alveolar macrophages. Moreover, treatment with anti-alpha(v), anti-beta(3), or Arg-Gly-Asp-Ser (RGDS), inhibited LPS-induced NF-kappaB activation. Taken together, our findings suggest that Src TKs play a critical role in LPS-induced activations of NF-kappaB and integrin (alpha(v)beta(3)) signaling during acute lung injury. Therefore, Src TK inhibition may provide a potential means of ameliorating inflammatory cascade-associated lung injury.  相似文献   

11.
Increased nuclear accumulation of NF-kappaB in LPS-stimulated peripheral blood neutrophils has been shown to be associated with more severe clinical course in patients with infection associated acute lung injury. Such observations suggest that differences in neutrophil response may contribute to the pulmonary inflammation induced by bacterial infection. To examine this question, we sequentially measured LPS-induced DNA binding of NF-kappaB in neutrophils collected from healthy humans on at least three occasions, each separated by at least 2 wk, and then determined pulmonary inflammatory responses after instillation of LPS into the lungs. Consistent patterns of peripheral blood neutrophil responses, as determined by LPS-induced NF-kappaB DNA binding, were present in volunteers, with a >80-fold difference between individuals in the mean area under the curve for NF-kappaB activation. The number of neutrophils recovered from bronchoalveolar lavage after exposure to pulmonary LPS was significantly correlated with NF-kappaB activation in peripheral blood neutrophils obtained over the pre-LPS exposure period (r = 0.65, p = 0.009). DNA binding of NF-kappaB in pulmonary neutrophils also was associated with the mean NF-kappaB area under the curve for LPS-stimulated peripheral blood neutrophils (r = 0.63, p = 0.01). Bronchoalveolar lavage levels of IL-6 and TNFRII were significantly correlated with peripheral blood neutrophil activation patterns (r = 0.75, p = 0.001 for IL-6; and r = 0.48, p = 0.049 for TNFRII. These results demonstrate that stable patterns in the response of peripheral blood neutrophils to LPS exist in the human population and correlate with inflammatory response following direct exposure to LPS in the lung.  相似文献   

12.
13.
Pulmonary bacterial diseases are a leading cause of mortality in the U.S. Innate immune response is vital for bacterial clearance from the lung, and TLRs play a critical role in this process. Toll-IL-1R domain-containing adaptor protein (TIRAP) is a key molecule in the TLR4 and 2 signaling. Despite its potential importance, the role of TIRAP-mediated signaling in lung responses has not been examined. Our goals were to determine the role of TIRAP-dependent signaling in the induction of lung innate immune responses against Escherichia coli LPS and viable E. coli, and in lung defense against E. coli in mice. LPS-induced neutrophil sequestration; NF-kappaB translocation; keratinocyte cell-derived chemokine, MIP-2, TNF-alpha, and IL-6 expression; histopathology; and VCAM-1 and ICAM-1 expression were abolished in the lungs of TIRAP-/- mice. A cell-permeable TIRAP blocking peptide attenuated LPS-induced lung responses. Furthermore, immune responses in the lungs of TIRAP-/- mice were attenuated against E. coli compared with TIRAP+/+ mice. TIRAP-/- mice also had early mortality, higher bacterial burden in the lungs, and more bacterial dissemination following E. coli inoculation. Moreover, we used human alveolar macrophages to examine the role of TIRAP signaling in the human system. The TIRAP blocking peptide abolished LPS-induced TNF-alpha, IL-6, and IL-8 expression in alveolar macrophages, whereas it attenuated E. coli-induced expression of these cytokines and chemokines. Taken together, this is the first study illustrating the crucial role of TIRAP in the generation of an effective early immune response against E. coli LPS and viable E. coli, and in lung defense against a bacterial pathogen.  相似文献   

14.
We have previously demonstrated that lipopolysaccharide (LPS) induces production of macrophage inflammatory protein-2 (MIP-2), a C-X-C chemokine for neutrophil recruitment and activation, in primary cultured rat lung alveolar epithelial cells. We have also demonstrated that LPS depolymerizes microfilaments in rat alveolar epithelial cells. To determine whether the polymerization status of microfilaments affects LPS-induced MIP-2 production, we treated rat alveolar epithelial cells with cytochalasin D (CytoD), a microfilament-disrupting agent, before and during LPS stimulation. A lower concentration (0.1 microM) of CytoD inhibited LPS-induced MIP-2 production without affecting microfilament polymerization. In contrast, LPS-induced MIP-2 production was enhanced by a higher concentration (10 microM) of CytoD, which disrupted the filamentous structure of actin. Jasplakinolide (1 nM to 1 microM), a polymerizing agent for microfilaments, decreased LPS-induced MIP-2 secretion. Jasplakinolide (1 microM) also blocked LPS-induced depolymerization of microfilaments. These results suggest that, in alveolar epithelial cells, LPS-induced MIP-2 production is at least partially regulated by microfilament depolymerization.  相似文献   

15.
Activation of innate immunity in the lungs can lead to a self-limited inflammatory response or progress to severe lung injury. We investigated whether specific parameters of NF-kappaB pathway activation determine the outcome of acute lung inflammation using a novel line of transgenic reporter mice. Following a single i.p. injection of Escherichia coli LPS, transient NF-kappaB activation was identified in a variety of lung cell types, and neutrophilic inflammation resolved without substantial tissue injury. However, administration of LPS over 24 h by osmotic pump (LPS pump) implanted into the peritoneum resulted in sustained, widespread NF-kappaB activation and neutrophilic inflammation that culminated in lung injury at 48 h. To determine whether intervention in the NF-kappaB pathway could prevent progression to lung injury in the LPS pump model, we administered a specific IkappaB kinase inhibitor (BMS-345541) to down-regulate NF-kappaB activation following the onset of inflammation. Treatment with BMS-345541 beginning at 20 h after osmotic pump implantation reduced lung NF-kappaB activation, concentration of KC and MIP-2 in lung lavage, neutrophil influx, and lung edema measured at 48 h. Therefore, sustained NF-kappaB activation correlates with severity of lung injury, and interdiction in the NF-kappaB pathway is beneficial even after the onset of lung inflammation.  相似文献   

16.
17.
The pro-inflammatory cytokines, including tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, contribute to the exacerbation of pathophysiological conditions in the lung. The regulation of cytokines involves the reduction-oxidation (redox)-sensitive nuclear factor-kappaB (NF-kappaB), the activation of which is mediated through an upstream kinase that regulates the phosphorylation and subsequent degradation of inhibitory-kappaB (IkappaB)-alpha, the major cytosolic inhibitor of NF-kappaB. It was hypothesized that lipopolysaccharide (LPS)-induced biosynthesis of TNF-alpha and IL-6 in vitro is tightly regulated by redox equilibrium. Furthermore, the likely involvement of the IkappaB-alpha/NF-kappaB signalling transduction pathway in mediating redox-dependent regulation of LPS-induced cytokine biosynthesis was revealed. Using alveolar epithelial cells, the role of L-buthionine-(S,R)-sulfoximine (BSO), a specific and irreversible inhibitor of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme in glutathione (GSH - an antioxidant thiol) biosynthesis, in regulating LPS-mediated TNF-alpha and IL-6 production and the IkappaB-alpha/NF-kappaB signalling pathway was investigated. Pre-treatment with BSO, prior to exposure to LPS augmented, in a dose-dependent manner, LPS-induced TNF-alpha and IL-6 biosynthesis, an effect associated with the induction of intracellular accumulation of reactive oxygen species (ROS). Interestingly, BSO blocked the phosphorylation of IkappaB-alpha, reduced its degradation, thereby allowing its cytosolic accumulation, and subsequently inhibited the activation of NF-kappaB. These results indicate that there are ROS and redox-mediated effects regulating pro-inflammatory cytokines, and that the IkappaB-alpha/NF-kappaB pathway is redox-sensitive and differentially involved in mediating redox-dependent regulation of cytokine signaling.  相似文献   

18.
19.
A peroxisome proliferator-activated receptor gamma (PPARgamma) ligand, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), has been reported to possess anti-inflammatory activity in activated monocytes/macrophages. In this study, we investigated the effect of 15d-PGJ(2) on the lipopolysaccharide (LPS)-induced expression of chemokine mRNAs, especially macrophage inhibitory protein (MIP)-2 (CXCL2), in mouse peritoneal macrophages. The inhibitory actions of the natural PPARgamma ligands, 15d-PGJ(2) and prostaglandin A1 (PGA1), on the expression of RANTES (regulated upon activation, normal T expressed and secreted; CCL5), MIP-1beta (CCL4), MIP-1alpha (CCL3), IFN-gamma-inducible protein 10 kilodaltons (IP-10; CXCL10) and monocyte chemoattractant protein-1 (MCP-1; CCL2) mRNA in LPS-treated cells were stronger than those of the synthetic PPARgamma ligands troglitazone and ciglitazone. However, 15d-PGJ(2) enhanced the expression of LPS-induced MIP-2 (CXCL2) mRNA. A specific PPARgamma antagonist (GW9662) had no effect on the inhibitory action of 15d-PGJ(2) and PGA1 in LPS-induced chemokine mRNA expression and on the synergistic action of 15d-PGJ(2) in LPS-induced MIP-2 (CXCL2) expression. Moreover, LPS itself reduced the expression of PPARgamma. Although the synergistic effect of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) mRNA expression was remarkable, the production of MIP-2 (CXCL2) in cells treated with 15d-PGJ(2) and LPS did not increase compared to the production in cells treated with LPS alone. The synergistic action of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) mRNA expression was dependent on the activation of nuclear factor-kappaB (NF-kappaB), and 15d-PGJ(2) increased the phosphorylation of p38 and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in cells stimulated with LPS. These results suggest that the synergistic effect of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) expression is PPARgamma-independent, and is mediated by the p38 and SAPK/JNK pathway in mitogen-activated protein kinase signaling pathways, which activates NF-kappaB. Our data may give more insights into the different mechanisms contrary to the anti-inflammatory effect of 15d-PGJ(2) on the expression of chemokine genes.  相似文献   

20.
OBJECTIVE AND DESIGN: The involvement of PAF, TXA2 and NO in LPS-induced pulmonary neutrophil sequestration an hyperlactataemia was studied in conscious rats. As pharmacological tools WEB 2170 (PAF receptor antagonist, 20 mg/kg), camongarel (inhibitor of TXA2 synthase, 30 mg/kg), N(G)-nitro L-arginine methyl ester (L-NAME -- non-selective nitric oxide synthase inhibitor, 30 mg/kg) were used. METHODS: Plasma lactate and NO2-/NO3- levels as well as myeloperoxidase (MPO) activity in lung tissue were measured one and five hours after administration of LPS (4 mg/kg(-1)). RESULTS: LPS induced a twofold increase in plasma lactate levels and nearly 10-fold increase in plasma NO2-/NO3- levels five but not one hour after LPS administration. However, LPS-induced increase in pulmonary MPO activity was seen at both time intervals. Neither WEB 2170 nor camonagrel changed one or five hours responses to LPS (lactate, NO2-/NO3-, MPO). L-NAME potentiated LPS-induced rise in MPO activity in the lung and this potentiation was not affected by WEB 2170 or camonagrel. L-NAME supressed plasma NO2-/NO3- response and substantially potentiated plasma lactate response to LPS and both effects were partially reversed by WEB 2170 or camonagrel. CONCLUSIONS: In summary, we demonstrated that PAF and TXA 2 play a role in overproduction of lactate during endotoxaemia in NO-deficient rats. However, these lipids do not mediate endotoxin-induced sequestration of neutrophils in the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号