首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmission of Caprine Arthritis Encephalitis virus (CAEV) from the mother to offspring is principally mediated by infected cells from colostrum and milk. The infection of the dam is often sub-clinical, and results in increased cellularity of milk, sometimes exacerbated by bacterial co-infections. Although monocytes are the major viral host cells, several other cell types, including epithelial mammary cells, fibroblasts and endothelial cells show low levels of in vivo infection. In vitro, however, all phenotypes of mammary gland cells are individually highly sensitive to CAEV infection. This suggests that local mechanisms act to control viral expression. Our goal is to analyse the mechanisms regulating local virus infection, including the physiological status of the mammary gland and bacterial co-infections. In this work, we present the development of a model for the in vitro reconstitution of mammary gland tissue using 3D cultures in Matrigel. Mononuclear cells from the blood are added to the 3D cultures in vitro. In these experimental conditions, the mammary cells spontaneously organize into mammospheres. Blood leucocytes migrate into the culture gel, and localize particularly at the periphery of the mammospheres. Mammospheres were susceptible to infection in vitro by CAEV, as shown by a cytopathic effect and expression of late CAEV antigen p30. This model will allow the in vitro study of virus expression, transfer of infection to mammary gland cells and interactions between the mammary gland cells, infected monocytes and immunocompetent cells. It will allow the study of mechanisms participating in the control of passage of pathogens into milk, according to the physiological and CAEV-infection status of the animal, microenvironment and the presence of bacterial co-infections.  相似文献   

2.
Pten作为抑癌基因,参与调控细胞生长、粘附、凋亡以及其它细胞活动.目前,国内外关于Pten在奶牛乳腺发育过程中表达及调节的研究鲜有报道.为了揭示Pten的表达与奶牛乳腺发育与泌乳之间的关系,本研究应用qRT-PCR技术检测Pten在不同泌乳时期和不同乳品质的奶牛乳腺组织中的表达差异,进而应用脂质体转染方法,通过siRNA介导的RNA干扰技术改变Pten基因在奶牛乳腺上皮细胞中的表达量,CASY法检测细胞活力,用ELISA试剂盒检测细胞分泌β-酪蛋白的含量,采用qRT-PCR、Western 印迹等技术检测Pten对奶牛乳腺上皮细胞中乳蛋白相关信号通路基因表达的影响.结果显示,泌乳期高乳品质奶牛乳腺组织中Pten表达水平显著低于泌乳期低乳品质及干乳期奶牛;Pten基因沉寂后,细胞活力提高,β-酪蛋白质量浓度增加,CSN2、AKT、MTOR、STAT5表达量增加.研究表明,Pten可通过抑制细胞活力和乳蛋白分泌而影响泌乳.  相似文献   

3.
Mouse glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1), also known as mC26 and homologous to bovine PP3, is a milk protein synthesized in the mammary gland. Several studies have investigated the regulation of casein, the major milk protein, gene in the mammary gland, but little is known about GlyCAM-1. Here we examined GlyCAM-1 gene expression in mouse mammary epithelial cells. First, we detected GlyCAM-1 expression in mammary epithelial cells in situ by immunohistochemistry; almost all mammary epithelial cells of the lactating mouse expressed GlyCAM-1. Second, mammary epithelial cells were digested with collagenase and cultured with insulin, prolactin and/or glucocorticoid. alpha-Casein and beta-casein genes were expressed following treatment with insulin, prolactin and glucocorticoid. In contrast, GlyCAM-1 expression could not be detected with any combination of these three hormones. We also analyzed changes in the levels of GlyCAM-1 and caseins mRNAs in cultured cells. The addition of hormones to the culture medium increased casein mRNAs, but surprisingly reduced GlyCAM-1 mRNA. Our results suggest that the mechanisms that regulate GlyCAM-1 gene in mammary cells of lactating mice are different from those involved in the regulation of casein genes.  相似文献   

4.
5.
Agr2 is a putative protein disulfide isomerase (PDI) initially identified as an estrogen-responsive gene in breast cancer cell lines. While Agr2 expression in breast cancer is positively correlated with estrogen receptor (ER) expression, it is upregulated in both hormone dependent and independent carcinomas. Several in vitro and xenograft studies have implicated Agr2 in different oncogenic features of breast cancer; however, the physiological role of Agr2 in normal mammary gland development remains to be defined. Agr2 expression is developmentally regulated in the mammary gland, with maximum expression during late pregnancy and lactation. Using a mammary gland specific knockout mouse model, we show that Agr2 facilitates normal lobuloalveolar development by regulating mammary epithelial cell proliferation; we found no effects on apoptosis in Agr2(-/-) mammary epithelial cells. Consequently, mammary glands of Agr2(-/-) females exhibit reduced expression of milk proteins, and by two weeks post-partum their pups are smaller in size. Utilizing a conditional mouse model, we show that Agr2 constitutive expression drives precocious lobuloalveolar development and increased milk protein expression in the virgin mammary gland. In vitro studies using knock down and overexpression strategies in estrogen receptor positive and negative mammary epithelial cell lines demonstrate a role for Agr2 in estradiol-induced cell proliferation. In conclusion, the estrogen-responsive Agr2, a candidate breast cancer oncogene, regulates epithelial cell proliferation and lobuloalveolar development in the mammary gland. The pro-proliferative effects of Agr2 may explain its actions in early tumorigenesis.  相似文献   

6.
In an attempt to understand the roles of endothelin-1 (ET-1) and vasoactive intestinal contractor/endothelin-2 (VIC/ET-2), we have studied the genes for both peptides to be expressed in the mammary gland of lactating mice. We observed through real-time PCR analysis that ET-1 and VIC/ET-2 gene expression gradually increase after parturition and that ET-1 gene expression is significantly higher than that of VIC/ET-2. The distribution of ET-1 peptide was found to be localized mainly in the epithelial cells of the mammary gland at 14th day of lactation. ET-1 gene expression increases significantly, parallel to the increase in beta-casein gene expression, in epithelial cell lines (HC11) of mouse mammary gland after hormonal stimulation by addition of dexamethazone and prolactin. The observed increase in ET-1 expression in differentiated epithelial cells suggests physiological roles for ET-1, including milk production and secretion in the mammary gland of lactating mice.  相似文献   

7.
8.
9.
10.
11.
Glucocorticoids have been shown to influence mammary gland function in vivo and to stimulate milk protein gene expression in vitro. Here, we describe the generation and analysis of a mouse model to study glucocorticoid receptor (GR, NR3C1) function in mammary epithelial cells. Using the Cre-loxP system, mutant mice were obtained in which the GR gene is specifically deleted in epithelial cells during lobuloalveolar development, leading to a complete loss of epithelial GR at the onset of lactation. Mice harboring the mammary-epithelial-specific GR mutation are able to nurse their litters until weaning. During pregnancy, however, GR deficiency delays lobuloalveolar development, leading to an incomplete epithelial penetration of the mammary fat pad that persists throughout lactation. We identified a reduced cell proliferation during lobuloalveolar development as reason for this delay. This reduction is compensated for by increased epithelial proliferation after parturition in the mutant glands. During lactation, GR-deficient mammary epithelium is capable of milk production and secretion. The expression of two milk proteins, namely whey acidic protein and beta-casein, during lactation was not critically affected in the absence of GR. We conclude that GR function is not essential for alveolar differentiation and milk production, but influences cell proliferation during lobuloalveolar development.  相似文献   

12.
The lactating mammary gland utilizes free plasma amino acids as well as those derived by hydrolysis from circulating short-chain peptides for protein synthesis. Apart from the major route of amino acid nitrogen delivery to the gland by the various transporters for free amino acids, it has been suggested that dipeptides may also be taken up in intact form to serve as a source of amino acids. The identification of peptide transporters in the mammary gland may therefore provide new insights into protein metabolism and secretion by the gland. The expression and distribution of the high-affinity type proton-coupled peptide transporter PEPT2 were investigated in rat lactating mammary gland as well as in human epithelial cells derived from breast milk. By use of RT-PCR, PEPT2 mRNA was detected in rat mammary gland extracts and human milk epithelial cells. The expression pattern of PEPT2 mRNA revealed a localization in epithelial cells of ducts and glands by nonisotopic high resolution in situ hybridization. In addition, immunohistochemistry was carried out and showed transporter immunoreactivity in the same epithelial cells of the glands and ducts. In addition, two-electrode voltage clamp recordings using PEPT2-expressing Xenopus laevis oocytes demonstrated positive inward currents induced by selected dipeptides that may play a role in aminonitrogen handling in mammalian mammary gland. Taken together, these data suggest that PEPT2 is expressed in mammary gland epithelia, in which it may contribute to the reuptake of short-chain peptides derived from hydrolysis of milk proteins secreted into the lumen. Whereas PEPT2 also transports a variety of drugs, such as selected beta-lactams, angiotensin-converting enzyme inhibitors, and antiviral and anticancer metabolites, their efficient reabsorption via PEPT2 may reduce the burden of xenobiotics in milk.  相似文献   

13.
14.
The regulation of milk trace mineral homeostasis requires the temporal integration of three main processes, (A) mineral uptake into the secretory mammary epithelial cell (MEC); followed by (B) mineral secretion from MEC into the alveoli lumen of the mammary gland for sequestration in milk; and then (C) milk release in response to suckling. Trace mineral requirements of term infants are generally met by exclusive breast-feeding through about the first 6 months of life and although milk zinc (Zn), iron (Fe), and copper (Cu) concentrations are relatively refractory to maternal trace mineral status, they normally decline throughout lactation. Recently, Zn-, Fe- and Cu-specific transporters have been identified that regulate trace element uptake and efflux in various cell types; however, there is currently little information available regarding the processes through which the mammary gland regulates milk trace mineral transport. The homology of trace mineral transporters between species permits the utilization of rodent models to examine the regulation of mammary gland mineral transport. Therefore, we have used the lactating rat to determine changes in mammary gland Zn, Fe and Cu transporter expression and localization that occur throughout lactation and in response to maternal trace mineral deficiency in hope of elucidating some of the changes which occur during mammary gland trace element homeostasis and also may be occurring in lactating women.  相似文献   

15.
16.
Lactation-dependent regulation of leptin expression in mouse mammary gland and parametrial adipose tissue was estimated by RT-PCR analysis for virgin, pregnant, lactating and post-lactating mice, and the serum and milk leptin levels of these mice were also determined by ELISA. Leptin gene expression in mammary gland as well as in adipose tissue was obviously detected before pregnancy, markedly decreased to 30-50% after parturition and kept at the low level during lactation period, and restored to the original level after weaning. The leptin concentration of milk collected just before weaning was about two-fold higher than that of the milk collected at mid-lactating stages. The serum leptin levels of the mid- and late-lactating mice were not significantly higher than those of non-pregnant mice. These results suggested that the lactation-induced down regulation of leptin was associated with autocrine/paracrine action of leptin in mammary and adipose tissues, and that the milk leptin, especially at the latter stages of lactation, was not only ascribed to diffusive transport from maternal blood stream, but also regional production and secretion by mammary epithelial cells. This possible production of leptin by mammary epithelial cells was further supported by the fact that leptin was expressed by cultured cells of mammary epithelial cell line, COMMA-1D, in a manner negatively dependent on the lactogenic hormones.  相似文献   

17.
The Hedgehog signaling pathway regulates the development and function of numerous tissues and when mis-regulated causes tumorigenesis. To assess the role of a deregulated Hedgehog signaling pathway in the mammary gland we targeted the expression of the Hedgehog effector protein, GLI1, to mammary epithelial cells using a bigenic inducible system. A constitutively active Hedgehog signaling pathway resulted with 100% penetrance in an undifferentiated mammary lobuloalveolar network during pregnancy. GLI1-expressing transgenic females were unable to lactate and milk protein gene expression was essentially absent. The inability to lactate was permanent and independent of continued GLI1 transgene expression. An increased expression of the GLI1 response gene Snail coupled to reduced expression of E-cadherin and STAT5 in the transgenic mammary gland provides a likely molecular explanation, underlying the observed phenotypic changes. In addition, remodeling of the mammary gland after parturition was impaired and expression of GLI1 was associated with accumulation of cellular debris in the mammary ducts during involution, indicating a defect in the clearance of dead cells. Areas with highly proliferative epithelial cells were observed in mammary glands with induced expression of GLI1. Within such areas an increased frequency of cells expressing nuclear Cyclin D1 was observed. Taken together the data support the notion that correct regulation of Hedgehog signaling within the epithelial cell compartment is critical for pregnancy-induced mammary gland development and remodeling.  相似文献   

18.
MicroRNAs (miRNAs), a well-defined group of small RNAs containing about 22 nucleotides, participate in various biological metabolic processes. miR-27a is a miRNA that is known to regulate fat synthesis and differentiation in preadipocyte cells. However, little is known regarding the role that miR-27a plays in regulating goat milk fat synthesis. In this study, we determined the miR-27a expression profile in goat mammary gland and found that miR-27a expression was correlated with the lactation cycle. Additionally, prolactin promoted miR-27a expression in goat mammary gland epithelial cells. Further functional analysis showed that over-expression of miR-27a down-regulated triglyceride accumulation and decreased the ratio of unsaturated/saturated fatty acid in mammary gland epithelial cells. miR-27a also significantly affected mRNA expression related to milk fat metabolism. Specifically, over-expression of miR-27a reduced gene mRNA expression associated with triglyceride synthesis by suppressing PPARγ protein levels. This study provides the first experimental evidence that miR-27a regulates triglyceride synthesis in goat mammary gland epithelial cells and improves our understanding about the importance of miRNAs in milk fat synthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号