首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acid phosphatase (EC 3.1.3.2.) activity in all fractions and growth phases of strawberry cell culture was 3-fold higher in the excessively agitated cells compared to a control. The stressed cells lost 9% of viability in the lag phase. Concomitantly the enzyme activity ratio of the lysosome fraction to the crude organelle mixture decreased (-33%) whereas the activity ratio of the cytosol fraction to the crude organelle mixture increased (+30%). This change in the enzyme activity of the ratio of the fractions was not observed in the exponential and stationary phase where the loss of viability was only 4 to 5%.  相似文献   

2.
A mixed yeast culture (Culture 4) was grown on representative gas oil samples as well as paraffin wax. Culture 4 was found to utilize n-paraffinic hydrocarbons almost quantitatively from most gas oil fractions; significant alteration of other hydrocarbon components was not detected. Generation times of 4.0–9.0hr. were typical during the exponential growth phase in fermentations with various gas oil fractions. Cell yields were 70–90% based on n-paraffin utilization. The culture appeared to exhibit maximum efficiency of n-alkane removal in the C19 to C24 range. The cells recovered from the fermentations contained 8.8–9.3% nitrogen. Paraffin wax also served as a suitable carbon source when dissolved in 2,6,10,14-tertramethylpentadecane (pristane). However, substrate utilization appeared to be incomplete.  相似文献   

3.
Crude oil with different concentrations was subjected to Pseudomonas species at 37 degrees C and various incubation periods. The results showed that Pseudomonas species grew faster at 1% (v/v) concentration of crude oil and exhibited high biodegradation ability within 1 week. On measuring the emulsification activity and emulsion stability during different stages of growth, in various immiscible hydrocarbons, it appeared that the species was able to produce a stable emulsion with a maximum at the end of stationary phase of growth. The gas chromatography analysis of the saturated hydrocarbons of crude oil showed that, an increase in concentration of iso-alkanes in the range of C15-C20, and a bioconversion of heavy iso-alkanes in the range of C21-C22+. Chemical analysis of crude oil by liquid chromatographic technique before and after growth showed that, the saturated alkanes were more degradable than aromatic and asphaltenic compounds. Treatment by Pseudomonas species may possibly be an effective method for the biodegradation of heavy paraffinic hydrocarbon leading to an enhancement in crude oil properties.  相似文献   

4.
Biodegradation of petroleum hydrocarbons in soil inoculated with yeasts   总被引:1,自引:0,他引:1  
Yeast species belonging to the Candida genus were added to the greyish-brown soil of the Apsheron Peninsula under laboratory conditions. The rate of CO2 production was used to estimate the degradation of crude oil, paraffin, cycloparaffin and aromatic hydrocarbons as well as their oxidized products. The rate of hydrocarbon degradation in the soil inoculated with yeast cells was shown to drop down gradually. The effective action on the process of hydrocarbon degradation depended on the special properties of an inoculated population and on the structure of a hydrocarbon. Some yeast species stimulated the degradation of various aromatic hydrocarbons and their oxidized products. Aromatic hydrocarbons were decomposed at a lower rate comparing to their oxidized products. When the soil was inoculated with C. guilliermondii populations, n-hexadecane added to the soil at a concentration of 1% was decomposed within 250-300 days. Field experiments confirmed that crude oil biodegradation was more intensive in the soil inoculated with yeast cells.  相似文献   

5.
Four chemical dispersants, Corexit 8666, Gamlen Sea Clean, G. H. Woods Degreaser-Formula 11470, and Sugee 2 were examined singly and in individual combinations with Arabian Crude Oil (1:1 ratio) at 10 and 25 C for their effects on the growth of bacteria indigenous to local marine waters, the bacterial population composition, and biodegradation of crude oil; in addition, their emulsifying capacities, at approximately 24 C, were determined. None of the dispersants used alone were toxic even at relatively high concentrations (1.25%), although Gamlen Sea Clean and G. H. Woods Degreaser-Formula 11470 did cause an increase in the lag phase which was more pronounced at 10 than at 25 C; addition of the crude oil reduced the lag phase increase. All of the dispersants used alone supported good growth of microorganisms, but qualitative population shifts were caused by the dispersant-oil combinations. The degrees of degradation of the n-alkane fraction of the crude oil varied depending upon the dispersant used. Under these test conditions, only Sugee 2, which had the poorest emulsifying capacity, promoted n-alkane degradation compared with the values obtained by using the crude oil alone.  相似文献   

6.
Summary Growth hormone production by a rat pituitary tumor cell line (GH1) was measured during lag, exponential, and plateau phases of growth in different culture media. Growth hormone secretion was low during lag and early exponential phase; it increased late in the exponential phase and continued to increase during the plateau phase. This biphasic pattern of growth hormone production was observed in all media and sera utilized. Both the doubling time and growth hormone production were influenced by the choice of media and sera. In addition, the length of time in culture affected the growth fraction with passage level 40 GH1 cells having a 79% growth fraction, whereas the growth fraction of passage level 100 cells was 95%. Using the population doubling time as a criterion for a choice of medium, F-10 medium supplemented with 20% fetal bovine serum consistently yielded the most rapid doubling time (32 hr), whereas Dulbecco's MEM supplemented with 15% horse serum and 2.5% fetal bovine serum yielded the greatest plateau cell density. Growth hormone secretion and the population doubling times were directly related to culture conditions including length of time in culture, choice of tissue culture media, choice of sera, and the phase of cell growth (lag, exponential or plateau).  相似文献   

7.
Aims: To investigate hydrocarbon degradation by hydrophobic, hydrophilic and parental strains of Pseudomonas aeruginosa. Methods and Results: Partitioning of hydrocarbon‐degrading P. aeruginosa strain in a solvent/aqueous system yielded hydrophobic and hydrophilic fractions. Exhaustive partitioning of aqueous‐phase cells yielded the hydrophilic variants (L), while sequential fractionation of the hydrophobic phase cells yielded successive fractions exhibiting increasing cell‐surface hydrophobicity (CSH). In hydrocarbon adherence assays (bacterial attachment to hydrocarbon), L had a value of 20%, which increased from 61·7% in first hydrophobic fraction (H1) to 72·2% in the third (H3). Crude oil degradation by L was 70%, but increased from 82% in H1 to 93% in H3. L variant produced most exopolysaccharides and reduced surface tension from about 73 to 49 mN m?1. Rhamnolipid production was highest in L, but was not detected in all crude oil cultures. Conclusions: Hydrophobic subpopulations of hydrocarbon‐degrading P. aeruginosa exhibited greater hydrocarbon‐utilizing ability than hydrophilic ones, or the parental strain. Significance and Impact of the Study: Results demonstrate that a population of P. aeruginosa consists of cells with different CSH which affect hydrocarbon utilization. This potentially provides the population with the capacity to utilize different hydrophobic substrates found in petroleum. Judicious selection of such hydrophobic subpopulations can enhance hydrocarbon pollution bioremediation.  相似文献   

8.
Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella.  相似文献   

9.
The application of a surfactant from Bacillus subtilis O9 (Bs) on the bioremediation of soils polluted with crude oil was assayed in soil microcosms under laboratory conditions. Three concentrations of biosurfactant were assayed (1.9, 19.5, and 39 mg kg(-1) soil). Microcosms without biosurfactant were prepared as controls. During the experiment, the crude oil-degrading bacterial population, the aliphatic and aromatic hydrocarbons were monitored in each microcosm. The results indicated that applying Bs did not negatively affect the hydrocarbon-degrading microbial population Concentrations of 19 and 19.5mg (Bs) per kilogram of soil stimulated the growth of the population involved in the crude oil degradation, and accelerated the biodegradation of the aliphatic hydrocarbons. However, none of the assayed Bs concentrations stimulated aromatic hydrocarbon degradation.  相似文献   

10.
The effects of inorganic commercial fertiliser (N:P:K = 8:8:1) and oil palm empty fruit bunch (EFB) as nutrient amendments for crude oil degradation and microbial population shift by a microbial consortium [Pseudomonas sp. (UKMP-14T), Acinetobacter sp. (UKMP-12T), Trichoderma sp. (TriUKMP-1M and TriUKMP-2M)] were assessed. The bacterial populations present during crude oil degradation were analysed by spread plate method and 16S rRNA sequences, whereas the presence of fungi was assessed by growth on potato dextrose agar. Crude oil degradation analysed using gas chromatography-flame ionisation detection showed total petroleum hydrocarbon reduced between 70 and 100%, depending on the type of amendments compared to control (≈55%) after 30 days of incubation. Nutrient amendments using NPK fertiliser or EFB were found to influence the domination of different bacterial species, which in turn preferentially utilised different hydrocarbons. This study suggested different nutrient amendments could be used to preferentially select bacteria to degrade different components of crude oil, particularly pertaining to the recalcitrant phytane. This information is very useful for application of in situ bioremediation of soil hydrocarbon contamination.  相似文献   

11.
The water-soluble fractions of three crude and two refined oils reduced the growth rate and maximum cell density of the marine bacterium Serratia marinorubra grown in batch culture. The weathering of a crude and a refined oil was simulated in the laboratory. The water-soluble fractions remaining from this process were more toxic to S. marinorubra than were the parent unweathered oils. Increases in the magnitude of toxic effect of 3 to 30 times were observed as a function of decreasing the concentration of yeast extract in the cultures from 0.1 to 0.05 and 0.01%. The toxicity did not correlate with the concentration of total water-soluble fraction or of aromatic hydrocarbons in the water-soluble fraction. Affected cultures did not exhibit a residual toxicity after being back-inoculated into control media.  相似文献   

12.
The purified extracellular emulsifying factor produced by Arthrobacter RAG-1 (EF-RAG) emulsified light petroleum oil, diesel oil, and a variety of crude oils and gas oils. Although kerosine and gasoline were emulsified poorly by EF-RAG, they were converted into good substrates for emulsification by addition of aromatic compounds, such as 2-methylnaphthalene. Neither aromatic nor aliphatic fractions of crude oil were emulsified by EF-RAG; however, mixtures containing both fractions were emulsified. Pure aliphatic or aromatic hydrocarbons were emulsified poorly by EF-RAG. Binary mixtures containing an aliphatic and an aromatic hydrocarbon, however, were excellent substrates for EF-RAG-induced emulsification. Of a variety of alkylcyclohexane and alkylbenzene derivatives tested, only hexyl- or heptylbenzene and octyl- or decylcyclohexane were effectively emulsified by EF-RAG. These data indicate that for EF-RAG to induce emulsification of hydrocarbons in water, the hydrocarbon substrate must contain both aliphatic and cyclic components. With binary mixtures of methylnaphthalene and hexadecane, maximum emulsion was obtained with 25% hexadecane.  相似文献   

13.
The purified extracellular emulsifying factor produced by Arthrobacter RAG-1 (EF-RAG) emulsified light petroleum oil, diesel oil, and a variety of crude oils and gas oils. Although kerosine and gasoline were emulsified poorly by EF-RAG, they were converted into good substrates for emulsification by addition of aromatic compounds, such as 2-methylnaphthalene. Neither aromatic nor aliphatic fractions of crude oil were emulsified by EF-RAG; however, mixtures containing both fractions were emulsified. Pure aliphatic or aromatic hydrocarbons were emulsified poorly by EF-RAG. Binary mixtures containing an aliphatic and an aromatic hydrocarbon, however, were excellent substrates for EF-RAG-induced emulsification. Of a variety of alkylcyclohexane and alkylbenzene derivatives tested, only hexyl- or heptylbenzene and octyl- or decylcyclohexane were effectively emulsified by EF-RAG. These data indicate that for EF-RAG to induce emulsification of hydrocarbons in water, the hydrocarbon substrate must contain both aliphatic and cyclic components. With binary mixtures of methylnaphthalene and hexadecane, maximum emulsion was obtained with 25% hexadecane.  相似文献   

14.
This study showed that the minimum latent period (20 minutes) of the intracellular multiplication of dysentery bacteriophage S-9 in the population of S. sonnei substrate strain under the conditions of static heterogeneous surface batch cultivation was observed at the end of the lag phase and at the growth acceleration phase, in the first and second thirds of the exponential curve, while the maximum latent period (35-40 minutes) was observed at the stationary phase. The maximum yield of phage S-9 from one infected bacterial cell (628.3 +/- 116.8) was registered during the first third of the phase of the exponential growth of the bacterial population and the minimum yield (18.66 +/- 6.6), at the beginning of the lag phase. The significant direct correlation between the specific growth rate of the bacterial population and the yield of the phage from one infected bacterial cell at the end of the lag phase, at the growth acceleration and deceleration phases, as well as the significant inverse correlation between the yield of the phage and the time of the generation of the bacterial population at the growth acceleration phase were established.  相似文献   

15.
Bacteria which attack petroleum hydrocarbons in a saline medium   总被引:6,自引:0,他引:6  
Bacterial strains were isolated from California coastal areas which showed the ability to oxidize normal paraffins, iso-paraffins, and aromatic hydrocarbons in a synthetic seawater medium. The ability to utilize a particular hydrocarbon was established not only on the basis of visible bacterial growth but also through a chromatographic technique which was standardized and which could define the amount of each hydrocarbon consumed by the bacteria in a mixture. Some of the strains exhibited vigorous hydrocarbon oxidation when exposed to synthetic mixtures of hydrocarbons as well as crude oil. Under conditions of aeration and agitation, mixed cultures could destroy approximately 50% of a South Louisiana crude oil in a period of 48 hr.  相似文献   

16.
Embar K  Forgacs C  Sivan A 《Biodegradation》2006,17(4):369-377
The biodegradation capacity of indigenous microbial populations was examined in a desert soil contaminated with crude oil. To evaluate biodegradation, soil samples supplemented with 5, 10 or 20% (w/w) of crude oil were incubated for 90 days at 30 °C. The effect of augmentation of the soil with vermiculite (50% v/v) as a bulking agent providing increased surface/volume ratio and improved soil aeration was also tested. Maximal biodegradation (91%) was obtained in soil containing the highest concentration of crude oil (20%) and supplemented with vermiculite; only 74% of the oil was degraded in samples containing the same level of crude oil but lacking vermiculite. Gas chromatograms of distilled fractions of crude oil extracted from the soil before and after incubation demonstrated that most of the light and part of the intermediate weight fractions initially present in the oil extracts could not be detected after incubation. Monitoring of microbial population densities revealed an initial decline in bacterial viable counts after exposure to oil, presumably as a result of the crude oil’s toxicity. This decline was followed by a steep recovery in microbial population density, then by a moderate increase that persisted until the end of incubation. By contrast, the inhibitory effect of crude oil on the fungal population was minimal. Furthermore, the overall increased growth response of the fungal population, at all three levels of contamination, was about one order of magnitude higher than that of the bacterial population.  相似文献   

17.
Within the framework of a study on the oil biodegradation potential of the sea the ability of a Flavobacterium sp. and Brevibacterium sp. to metabolize a paraffinic crude oil and a chemically defined hydrocarbon mixture was investigated. Major components of the crude oil were identified by combination gas chromatography and mass spectrometry. The rate and extent of total hydrocarbon biodegradation was measured. In addition, CO2 evolution from the crude oil was continuously monitored in a shaker-mounted gas train arrangement. Degradation started after a 2 to 4 day lag period, and reached its maximum within two weeks. At this time up to 60% of the crude oil and 75% of the model hydrocarbon mixture, each added at the level of 1 ml per 100 ml artificial sea water, were degraded. Mineralization(conversion to CO2) was slightly lower due to formation of products and bacterial cell material. n-Paraffins were preferentially degraded as compared to branched chain hydrocarbons. Biodegradation of n-paraffins in the range of C12 to C20 was simultaneous; no diauxie effects were observed.  相似文献   

18.
The effects of various hydrocarbon substrates, and a chemical surfactant capable of enhancing crude-oil biodegradation, on the community structure of a mixed-bacterial inoculum were examined in batch culture. Of 1000 TSA-culturable isolates, 68.6% were identified at the genus level or better by phospholipid fatty acid analysis over 7-day time course experiments. Cultures were exposed to 20 g/L Bow River crude oil with and without 0.625 g/L Igepal CO-630 (a nonylphenol ethoxylate surfactant), 5 g/L saturates, 5 g/L aromatics, or 125 g/L refinery sludge. A group of six genera dominated the cultures: Acinetobacter, Alcaligenes, Ochrobactrum, Pseudomonas/Flavimonas, Stenotrophomonas, and Yersinia. Species from four of the genera were shown to be capable of hydrocarbon degradation, and counts of hydrocarbon degrading and total heterotrophic bacteria over time were nearly identical. Pseudomonas/Flavimonas and Stenotrophomonas normally dominated during the early portions of cultures, although the lag phase of Stenotrophomonas appears to have been increased by surfactant addition. Acinetobacter calcoaceticus was the most frequently isolated microorganism during exposure to the saturate fraction of crude oil. Regardless of substrate, the culture medium supported a greater variety of organisms during the latter portions of cultures. Understanding the community structure and dynamics of mixed bacterial cultures involved in treatment of heterogeneous waste substrates may assist in process development and optimization studies.  相似文献   

19.
Soil vapor data for benzene and four aliphatic and aromatic hydrocarbon fractions from five volatile petroleum hydrocarbon (VPH)-contaminated sites in western Canada were used together with the Canadian Council of Ministers of the Environment (CCME) Canada-Wide Standard for petroleum hydrocarbons to investigate the relative importance of benzene and the different fractions in human health risk assessment. VPH concentrations in soil vapor samples ranged from 4.0 to 4200?mg/m3, of which 0 to 4.6% was BTEX and 90 to 95% was hydrocarbons of the C5–8 aliphatic fraction. VPH inhalation exposure by an adult receptor in a hypothetical, commercial building was modelled deterministically assuming 16- and 70 year occupational tenures. The magnitude of hazard quotients varied widely between sites, but their hydrocarbon fraction signatures were consistent, and characterized by higher hazard quotients in the C5–8 and C9–10 aliphatic and C9–10 aromatic fractions relative to benzene and the TEX aromatic fraction. This work has shown that the C5– and C9–10 aliphatic fractions yield greater relative risk than the commonlyregulated TEX compounds, and that benzene becomes the primary chemical of potential concern only when an occupational tenure approaching 70 years is assumed.  相似文献   

20.
Enzymatically synthesized lauroyl glucose emulsified different hydrophobic substrates when assayed spectrophotometrically. Stable emulsions were formed with triglycerides as well as with hydrocarbons. There was a linear relation between the concentration of lauroyl glucose (50-450 microg) and emulsification activity under the assay conditions when tested with aromatic and aliphatic hydrocarbons. This sugar ester was able to emulsify the aromatic hydrocarbons benzene, toluene and xylene. Long chain alkanes (n-decane and n-hexadecane) as well as brominated long chain alkanes (1-bromodecane and 1-bromohexadecane) were efficiently emulsified. The effect of lauroyl glucose ester on degradation of crude oil by a known oil-degrading Rhodococcus species was also investigated. The culture showed enhanced degradation of crude oil when lauroyl glucose ester was used as an emulsifier. It degraded 70% of the aliphatic fraction of Bombay High crude oil in the presence of the sugar ester at a concentration of 200mg l(-1) as compared to 50% without the emulsifier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号