首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Proteomics, the global study of protein expression and characteristics, has recently emerged as a key component in the field of molecular analysis. The dynamic nature of proteins, from ion channels to chaperones, presents a challenge, yet the understanding of these molecules provides a rich source of information. When applying proteomic analysis directly to human tissue samples, additional difficulties arise. The following article presents an overview of the current proteomic tools used in the analysis of tissues, beginning with conventional methods such as western blot analysis and 2D polyacrylamide gel electrophoresis. The most current high-throughput techniques being used today are also reviewed. These include protein arrays, reverse-phase protein lysate arrays, matrix-assisted laser desorption/ionization, surface-enhanced laser desorption/ionization and layered expression scanning. In addition, bioinformatics as well as issues regarding tissue preservation and microdissection to obtain pure cell populations are included. Finally, future directions of the tissue proteomics field are discussed.  相似文献   

2.
Laser-based tissue microdissection is an important tool for the molecular evaluation of histological sections. The technology has continued to advance since its initial commercialization in the 1990s, with improvements in many aspects of the process. More recent developments are tailored toward an automated, operator-independent mode that relies on antibodies as targeting probes, such as immuno–laser capture microdissection or expression microdissection (xMD). Central to the utility of expression-based dissection techniques is the effect of the staining process on the biomolecules in histological sections. To investigate this issue, the authors analyzed DNA, RNA, and protein in immunostained, microdissected samples. DNA was the most robust molecule, exhibiting no significant change in quality after immunostaining but a variable 50% to 75% decrease in the total yield. In contrast, RNA in frozen and ethanol-fixed, paraffin-embedded samples was susceptible to hydrolysis and digestion by endogenous RNases during the initial steps of staining. Proteins from immunostained tissues were successfully analyzed by one-dimensional electrophoresis and mass spectrometry but were less amenable to solution phase assays. Overall, the results suggest investigators can use immunoguided microdissection methods for important analytic techniques; however, continued improvements in staining protocols and molecular extraction methods are key to further advancing the capability of these methods.  相似文献   

3.
探讨显微切割过程中有效保持RNA完整性的组织固定方法,建立一种简易的手工显微切割法.应用自制“T形板”辅助冰冻切片,100%无水乙醇一次性脱水固定,“排除切割法”获取目的细胞,用TRIzol提取RNA,琼脂糖凝胶电泳和RT-PCR分析RNA质量.“一步法”固定可长时间保存RNA的完整性;从食管癌标本5个特定阶段的细胞中提取的RNA,经电泳和RT-PCR分析均具有较高的质量.无水乙醇“一步法”固定,在显微切割的过程中可有效保持RNA的完整性;T形板和“排除切割法”简化了手工显微切割的操作,提取的RNA质、量均可满足后续分子水平研究的需要.  相似文献   

4.
Needle in a haystack: microdissecting the proteome of a tissue   总被引:1,自引:0,他引:1  
Ball HJ  Hunt NH 《Amino acids》2004,27(1):1-7
Summary. Laser-assisted microdissection is a recent technology that enables cells to be harvested from tissue sections. Proteins can be extracted from the dissected cells for molecular analysis. This enables the analysis of proteins in specific cell types in an in vivo system. Although quantities of protein obtained from the dissected material can be small, it is possible to use established methods such as Western Blotting and 2D-PAGE, as well as newer technologies such as SELDI-MS, to analyse the proteins. This review describes the applications and technical considerations for using laser-assisted dissected cells in proteomics research.  相似文献   

5.
Understanding the molecular basis of disease requires gene expression profiling of normal and pathological tissue. Although the advent of laser microdissection (LMD) has greatly facilitated the procurement of specific cell populations, often only small amounts of low quality RNA is recovered. This precludes the use of global approaches of gene expression profiling which require sizable amounts of high quality RNA. Here we report a method for processing of snap-frozen tissue to prepare large amounts of intact RNA using LMD.  相似文献   

6.
Proteomic analysis of the brain is complicated by the need to obtain cells from specific anatomical regions, or nuclei. Laser capture microdissection (LCM) is a technique that is precise enough to dissect single cells within a tissue section, and thus could be useful for isolating specific brain nuclei for analysis. However, we and others have previously demonstrated that histological staining protocols used to guide LCM have detrimental effects on protein separation by two-dimensional electrophoresis (2-DE). Here we describe a new LCM method called navigated LCM. This microdissection method uses fixed but unstained tissue as starting material and thus enables us to avoid artifacts induced by tissue staining. By comparing 2-DE results obtained from fixed, unstained LCM brain tissue samples to those obtained from manually dissected samples, we demonstrated that this microdissection process gave similar protein recovery rates and similar resolution of protein spots on 2-DE gels. Moreover, matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis of selected spots from gels derived from control and fixed, LCM samples revealed that the fixation-LCM process had no effect on protein identification. Navigated LCM of tissue sections is therefore a practical and powerful method for performing proteomic studies in specifically defined brain regions.  相似文献   

7.
8.
Proteomics, the global study of protein expression and characteristics, has recently emerged as a key component in the field of molecular analysis. The dynamic nature of proteins, from ion channels to chaperones, presents a challenge, yet the understanding of these molecules provides a rich source of information. When applying proteomic analysis directly to human tissue samples, additional difficulties arise. The following article presents an overview of the current proteomic tools used in the analysis of tissues, beginning with conventional methods such as western blot analysis and 2D polyacrylamide gel electrophoresis. The most current high-throughput techniques being used today are also reviewed. These include protein arrays, reverse-phase protein lysate arrays, matrix-assisted laser desorption/ionization, surface-enhanced laser desorption/ionization and layered expression scanning. In addition, bioinformatics as well as issues regarding tissue preservation and microdissection to obtain pure cell populations are included. Finally, future directions of the tissue proteomics field are discussed.  相似文献   

9.
鼻咽癌组织的显微切割及其 RNA 线性扩增   总被引:3,自引:3,他引:0  
从微小体积鼻咽癌活检标本中获取纯净癌细胞一直是鼻咽癌分子生物学研究中的难题 . 为了寻找一种能从鼻咽癌活检组织中获得高纯度、高质量 RNA 来完成 cDNA 微阵列 (cDNA Microarray) 实验的简便实用方法,采用 RNAlater 技术保存鼻咽癌活检组织,显微切割技术来获得高纯度鼻咽癌细胞,利用 RNA 线性扩增技术得到 cDNA 微阵列实验所需 RNA. 结果表明:利用 RNAlater 技术可以很好地保持组织 RNA 的稳定,通过优化显微切割和 RNA 线性扩增的条件获得了 cDNA 微阵列实验所需的高纯度、高质量 RNA.  相似文献   

10.
Laser-assisted microdissection (LAM) permits the procurement of relatively pure cell populations from histological sections. When applied to the kidney, LAM combined with molecular biological techniques has expanded our understanding of renal biology and pathology. Both frozen and fixed renal tissues can be microdissected. However, sample type and tissue processing can influence the quality of molecular data generated. Data analysis may also be complicated by relative variations in gene expression levels. Importantly, preliminary studies have shown that molecular data obtained following LAM on the kidney can offer new diagnostic and prognostic information. Thus, LAM and molecular markers may eventually become incorporated into the routine kidney biopsy examination.  相似文献   

11.
12.
13.
Current advances in quantitative genome and gene expression analyses allow precise molecular genetic fingerprinting of tumor tissues. A crucial factor for the reliability of the data obtained with these refined techniques is the use of morphologically well-defined cell populations. Microdissection technology has been developed to procure pure cell populations from specific areas of tissue sections under microscopic control. This review covers techniques of tissue microdissection in the context of commonly used methods of quantitative genome and gene expression analysis. The first part of the review will summarize the technical aspects of various methods developed for tissue microdissection. In the latter part, current applications of quantitative genome and gene expression analysis techniques employed in microdissected tissue samples will be described.  相似文献   

14.
High-throughput next-generation sequencing provides a revolutionary platform to unravel the precise DNA aberrations concealed within subgroups of tumour cells. However, in many instances, the limited number of cells makes the application of this technology in tumour heterogeneity studies a challenge. In order to address these limitations, we present a novel methodology to partner laser capture microdissection (LCM) with sequencing platforms, through a whole-genome amplification (WGA) protocol performed in situ directly on LCM engrafted cells. We further adapted current Illumina mate pair (MP) sequencing protocols to the input of WGA DNA and used this technology to investigate large genomic rearrangements in adjacent Gleason Pattern 3 and 4 prostate tumours separately collected by LCM. Sequencing data predicted genome coverage and depths similar to unamplified genomic DNA, with limited repetition and bias predicted in WGA protocols. Mapping algorithms developed in our laboratory predicted high-confidence rearrangements and selected events each demonstrated the predicted fusion junctions upon validation. Rearrangements were additionally confirmed in unamplified tissue and evaluated in adjacent benign-appearing tissues. A detailed understanding of gene fusions that characterize cancer will be critical in the development of biomarkers to predict the clinical outcome. The described methodology provides a mechanism of efficiently defining these events in limited pure populations of tumour tissue, aiding in the derivation of genomic aberrations that initiate cancer and drive cancer progression.  相似文献   

15.
16.
17.
18.
激光捕获显微切割技术在植物基因组研究中的应用   总被引:2,自引:0,他引:2  
蔡民华  胡英考  李雅轩  晏月明 《遗传》2006,28(10):1325-1336
植物的生长和发育在很大程度上取决于组织和(或)器官特异表达的基因, 但要获取某一发育阶段的特异细胞类群来进行基因表达分析又是相当困难的。近年发展起来的激光捕获显微切割技术可以在显微镜下快速准确地获取单一的细胞类群, 甚至单个细胞, 成功地解决了组织中细胞的异质性问题。介绍了该技术的原理, 并对其在植物中的应用进展情况做了综述, 同时指出了该技术在植物中应用的可能发展方向。  相似文献   

19.
Incomplete methods sections have made it difficult for researchers to replicate and build on the work of others, contributing to problems in reproducibility. It is important to increase the level of detail in our methods sections and to share step-by-step protocols in protocol repositories or journals. Request a Protocol is a new feature in Molecular Biology of the Cell that allows readers to request detailed protocols directly from the methods section of the research article, with links between the protocols and the research articles, and has the potential to improve research reproducibility and help everyone design and execute robust life science experiments.  相似文献   

20.
Microdissection is a novel technique that can isolate specific regions of a tissue and eliminate contamination from cellular sources in adjacent areas. This method was first utilized in the study of Nestin-expressing progenitors (NEPs), a newly identified population of cells in the cerebellar external germinal layer (EGL). Using microdissection in combination with fluorescent-activated cell sorting (FACS), a pure population of NEPs was collected separately from conventional granule neuron precursors in the EGL and from other contaminating Nestin-expressing cells in the cerebellum. Without microdissection, functional analyses of NEPs would not have been possible with the current methods available, such as Percoll gradient centrifugation and laser capture microdissection. This technique can also be applied for use with various tissues that contain either recognizable regions or fluorescently-labeled cells. Most importantly, a major advantage of this microdissection technique is that isolated cells are living and can be cultured for further experimentation, which is currently not possible with other described methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号