首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Similar to ischemic preconditioning, diazoxide was documented to elicit beneficial bioenergetic consequences linked to cardioprotection. Inhibition of ATPase activity of mitochondrial F(0)F(1) ATP synthase may have a role in such effect and may involve the natural inhibitor protein IF(1). We recently documented, using purified enzyme and isolated mitochondrial membranes from beef heart, that diazoxide interacts with the F(1) sector of F(0)F(1) ATP synthase by promoting IF(1) binding and reversibly inhibiting ATP hydrolysis. Here we investigated the effects of diazoxide on the enzyme in cultured myoblasts. Specifically, embryonic heart-derived H9c2 cells were exposed to diazoxide and mitochondrial ATPase was assayed in conditions maintaining steady-state IF(1) binding (basal ATPase activity) or detaching bound IF(1) at alkaline pH. Mitochondrial transmembrane potential and uncoupling were also investigated, as well as ATP synthesis flux and ATP content. Diazoxide at a cardioprotective concentration (40 muM cell-associated concentration) transiently downmodulated basal ATPase activity, concomitant with mild mitochondria uncoupling and depolarization, without affecting ATP synthesis and ATP content. Alkaline stripping of IF(1) from F(0)F(1) ATP synthase was less in diazoxide-treated than in untreated cells. Pretreatment with glibenclamide prevented, together with mitochondria depolarization, inhibition of ATPase activity under basal but not under IF(1)-stripping conditions, indicating that diazoxide alters alkaline IF(1) release. Diazoxide inhibition of ATPase activity in IF(1)-stripping conditions was observed even when mitochondrial transmembrane potential was reduced by FCCP. The results suggest that diazoxide in a model of normoxic intact cells directly promotes binding of inhibitor protein IF(1) to F(0)F(1) ATP synthase and enhances IF(1) binding indirectly by mildly uncoupling and depolarizing mitochondria.  相似文献   

2.
The effect of increased expression or reconstitution of the mitochondrial inhibitor protein (IF1) on the dimer/monomer ratio (D/M) of the rat liver and bovine heart F1F0-ATP synthase was studied. The 2-fold increased expression of IF1 in AS-30D hepatoma mitochondria correlated with a 1.4-fold increase in the D/M ratio of the ATP synthase extracted with digitonin as determined by blue native electrophoresis and averaged densitometry analyses. Removal of IF1 from rat liver or bovine heart submitochondrial particles increased the F1F0-ATPase activity and decreased the D/M ratio of the ATP synthase. Reconstitution of recombinant IF1 into submitochondrial particles devoid of IF1 inhibited the F1F0-ATPase activity by 90% and restored partially the D/M ratio of the whole F1F0 complex as revealed by blue native electrophoresis and subsequent SDS-PAGE or glycerol density gradient centrifugation. Thus, the inhibitor protein promotes or stabilizes the dimeric form of the intact F1F0-ATP synthase. A possible location of the IF1 protein in the dimeric structure of the rat liver F1F0 complex is proposed. According to crystallographic and electron microscopy analyses, dimeric IF1 could bridge the F1-F1 part of the dimeric F1F0-ATP synthase in the inner mitochondrial membrane.  相似文献   

3.
The topography of the subunits of the membrane sector F0 of the ATP synthase complex in the bovine mitochondrial inner membrane was studied with the help of subunit-specific antibodies raised to the F0 subunits b, d, 6, F6, A6L, OSCP (oligomycin-sensitivity-conferring protein), and N,N' -dicyclohexylcarbodiimide (DCCD)-binding proteolipid and to the ATPase inhibitor protein (IF1) as an internal control. Exposure of F0 subunits in inverted and right-side-out inner membranes was investigated by direct antibody binding as well as by susceptibility of these subunits to degradation by various proteases as monitored by gel electrophoresis of the membrane digests and immunoblotting with the subunit-specific antibodies. Results show that subunits b, d, F6, A6L (including its C-terminal end) and OSCP were exposed on the matrix side. Sufficient masses of these subunits to recognize antibodies or undergo proteolysis were not exposed on the cytosolic side. This was also the case for subunit 6 and the DCCD-binding proteolipid on either side of the inner membrane. Quantitative immunoblotting in which bound radio-activity from [125I]protein A was employed to estimate the concentration of an antigen in a sample allowed the determination of the stoichiometry of several F0 subunits and IF1 relative to F1-ATPase. Results showed that per mol of F1 there are in bovine heart mitochondria 1 mol each of d, OSCP, and IF1, and 2 mol each of b and F6. Subunit 6 and the DCCD-binding proteolipid could not be quantitated, because the former transferred poorly to nitrocellulose and the latter's antibody did not bind [125I]protein A.  相似文献   

4.
In mitochondria, the hydrolytic activity of ATP synthase is regulated by a natural inhibitor protein, IF(1). The binding of IF(1) to ATP synthase depends on pH values, and below neutrality, IF(1) forms a stable complex with the enzyme. Bovine IF(1) has two oligomeric states, dimer and tetramer, depending on pH values. At pH 6.5, where it is active, IF(1) dimerizes by formation of an antiparallel alpha-helical coiled-coil in its C-terminal region. This arrangement places the inhibitory N-terminal regions in opposition, implying that active dimeric IF(1) can bind two F(1) domains simultaneously. Evidence of dimerization of F(1)-ATPase by binding to IF(1) is provided by gel filtration chromatography, analytical ultracentrifugation, and electron microscopy. At present, it is not known whether IF(1) can bring about the dimerization of the F(1)F(0)-ATPase complex.  相似文献   

5.
Angiostatin binds to endothelial cell (EC) surface F(1)-F(0) ATP synthase, leading to inhibition of EC migration and proliferation during tumor angiogenesis. This has led to a search for angiostatin mimetics specific for this enzyme. A naturally occurring protein that binds to the F1 subunit of ATP synthase and blocks ATP hydrolysis in mitochondria is inhibitor of F1 (IF1). The present study explores the effect of IF1 on cell surface ATP synthase. IF1 protein bound to purified F(1) ATP synthase and inhibited F(1)-dependent ATP hydrolysis consistent with its reported activity in studies of mitochondria. Although exogenous IF1 did not inhibit ATP production on the surface of EC, it did conserve ATP on the cell surface, particularly at low extracellular pH. IF1 inhibited ATP hydrolysis but not ATP synthesis, in contrast to angiostatin, which inhibited both. In cell-based assays used to model angiogenesis in vitro, IF1 did not inhibit EC differentiation to form tubes and only slightly inhibited cell proliferation compared with angiostatin. From these data, we conclude that inhibition of ATP synthesis is necessary for an anti-angiogenic outcome in cell-based assays. We propose that IF1 is not an angiostatin mimetic, but it can serve a protective role for EC in the tumor microenvironment. This protection may be overridden in a concentration-dependent manner by angiostatin. In support of this hypothesis, we demonstrate that angiostatin blocks IF1 binding to ATP synthase and abolishes its ability to conserve ATP. These data suggest that there is a relationship between the binding sites of IF1 and angiostatin on ATP synthase and that IF1 could be employed to modulate angiogenesis.  相似文献   

6.
In order to identify the subunits constituting the rat liver F0F1-ATP synthase, the complex prepared by selective extraction from the mitochondrial membranes with a detergent followed by purification on a sucrose gradient has been compared to that obtained by immunoprecipitation with an anti-F1 serum. The subunits present in both preparations that are assumed to be authentic components of the complex have been identified. The results show that the total rat liver F0F1-ATP synthase contains at least 13 different proteins, seven of which can be attributed to F0. The following F0 subunits have been identified: the subunit b (migrating as a 24 kDa band in SDS-PAGE), the oligomycin-sensitivity-conferring protein (20 kDa), and F6 (9 kDa) that have N-terminal sequences homologous to the beef-heart ones; the mtDNA encoded subunits 6 (20 kDa) and 8 (less than 7 kDa) that can be synthesized in isolated mitochondria; an additional 20 kDa protein that could be equivalent to the beef heart subunit d.  相似文献   

7.
In mitochondria, the hydrolytic activity of ATP synthase is prevented by an inhibitor protein, IF1. The active bovine protein (84 amino acids) is an alpha-helical dimer with monomers associated via an antiparallel alpha-helical coiled coil composed of residues 49-81. The N-terminal inhibitory sequences in the active dimer bind to two F1-ATPases in the presence of ATP. In the crystal structure of the F1-IF1 complex at 2.8 A resolution, residues 1-37 of IF1 bind in the alpha(DP)-beta(DP) interface of F1-ATPase, and also contact the central gamma subunit. The inhibitor opens the catalytic interface between the alpha(DP) and beta(DP) subunits relative to previous structures. The presence of ATP in the catalytic site of the beta(DP) subunit implies that the inhibited state represents a pre-hydrolysis step on the catalytic pathway of the enzyme.  相似文献   

8.
Dimerization or oligomerization of ATP synthase has been proposed to play an important role for mitochondrial cristae formation and to be involved in regulating ATP synthase activity. We found comparable oligomycin-sensitive ATPase activity for monomeric and oligomeric ATP synthase suggesting that oligomerization/monomerization dynamics are not directly involved in regulating ATP synthase activity. Binding of the natural IF1 inhibitor protein has been shown to induce dimerization of F1-subcomplexes. This suggested that binding of IF1 might also dimerize holo ATP synthase, and possibly link dimerization and inhibition. Analyzing mitochondria of human rho zero cells that contain mitochondria but lack mitochondrial DNA, we identified three subcomplexes of ATP synthase: (i) F1 catalytic domain, (ii) F1-domain with bound IF1, and (iii) F1-c subcomplex with bound IF1 and a ring of subunits c. Since both IF1 containing subcomplexes were present in monomeric state and exhibited considerably reduced ATPase activity as compared to the third subcomplex lacking IF1, we postulate that inhibition and induction of dimerization of F1-subcomplexes by IF1 are independent events. F1-subcomplexes were also found in mitochondria of patients with specific mitochondrial disorders, and turned out to be useful for the clinical differentiation between various types of mitochondrial biosynthesis disorders. Supramolecular associations of respiratory complexes, the "respirasomes", seem not to be the largest assemblies in the structural organization of the respiratory chain, as suggested by differential solubilization of mitochondria and electron microscopic analyses of whole mitochondria. We present a model for a higher supramolecular association of respirasomes into a "respiratory string".  相似文献   

9.
Blue native gel electrophoresis purification and immunoprecipitation of F0F1-ATP synthase from bovine heart mitochondria revealed that cyclophilin (CyP) D associates to the complex. Treatment of intact mitochondria with the membrane-permeable bifunctional reagent dimethyl 3,3-dithiobis-propionimidate (DTBP) cross-linked CyPD with the lateral stalk of ATP synthase, whereas no interactions with F1 sector subunits, the ATP synthase natural inhibitor protein IF1, and the ATP/ADP carrier were observed. The ATP synthase-CyPD interactions have functional consequences on enzyme catalysis and are modulated by phosphate (increased CyPD binding and decreased enzyme activity) and cyclosporin (Cs) A (decreased CyPD binding and increased enzyme activity). Treatment of MgATP submitochondrial particles or intact mitochondria with CsA displaced CyPD from membranes and activated both hydrolysis and synthesis of ATP sustained by the enzyme. No effect of CsA was detected in CyPD-null mitochondria, which displayed a higher specific activity of the ATP synthase than wild-type mitochondria. Modulation by CyPD binding appears to be independent of IF1, whose association to ATP synthase was not affected by CsA treatment. These findings demonstrate that CyPD association to the lateral stalk of ATP synthase modulates the activity of the complex.  相似文献   

10.
A decrease in the rate of ATP hydrolysis was observed after preincubation of intact mitochondria from hepatoma 22a with an uncoupler. This effect is due both to a decrease in the rate of ATP transport and to an inactivation of the F0F1-ATPase. The former effect is shown to result from an uncoupler-induced ADP efflux. In de-energized mitochondria from hepatoma (but not from mice liver), the concentration of adenine nucleotides in the matrix equilibrates with the medium concentration via a carboxyatractyloside (CATR)-insensitive transport system. CATR-insensitive accumulation of medium ADP and stoichiometric exchange of added ATP are observed in energized hepatoma mitochondria. The dependence of the uncoupler-induced inactivation of ATPase activity on delta mu H+, pH, and ATP is consistent with the effect being caused by the natural protein inhibitor (IF1) of F0F1. ATP- and pH-dependent inactivation of the enzyme is also observed after disruption of mitochondria with the detergent Lubrol-WX. Almost all F0F1 in hepatoma mitochondria have IF1 bound in a noninhibitory manner. In the presence of uncoupler, this complex converts, via a reversible pH-dependent and an irreversible ATP-dependent process, to an inhibitory complex. The pH-dependent step can be blocked by Zn2+ and Cd2+ ions which probably bind to negatively charged residues on IF1, thereby preventing their protonation and conversion of the protein to an inhibitory conformation.  相似文献   

11.
The inhibitor protein IF1 is a basic protein of 84 residues which inhibits the ATPase activity of the mitochondrial FoF1-ATP synthase complex without having any effect on ATP synthesis. Results of cross-linking and limited proteolysis experiments are presented showing that in the intact FoF1 complex "in situ," in the inner membrane of bovine heart mitochondria, the central segment of IF1 (residues 42-58) binds to the alpha and beta subunits of F1 in a pH dependent process, and inhibits the ATPase activity. The C-terminal region of IF1 binds, simultaneously, to the OSCP subunit of Fo in a pH-independent process. This binding keeps IF1 anchored to the complex, both under inhibitory conditions, at acidic pH, and noninhibitory conditions at alkaline pH.  相似文献   

12.
Inhibition of the yeast F(0)F(1)-ATP synthase by the regulatory peptides IF1 and STF1 was studied using intact mitochondria and submitochondrial particles from wild-type cells or from mutants lacking one or both peptides. In intact mitochondria, endogenous IF1 only inhibited uncoupled ATP hydrolysis and endogenous STF1 had no effect. Addition of alamethicin to mitochondria readily made the mitochondrial membranes permeable to nucleotides, and bypassed the kinetic control exerted on ATP hydrolysis by the substrate carriers. In addition, alamethicin made the regulatory peptides able to cross mitochondrial membranes. At pH 7.3, F(0)F(1)-ATPase, initially inactivated by either endogenous IF1 or endogenous STF1, was completely reactivated hours or minutes after alamethicin addition, respectively. Previous application of a membrane potential favored the release of endogenous IF1 and STF1. These observations showed that IF1 and STF1 can fully inhibit ATP hydrolysis at physiological concentrations and are sensitive to the same effectors. However, ATP synthase has a much lower affinity for STF1 than for IF1, as demonstrated by kinetic studies of ATPase inhibition in submitochondrial particles by externally added IF1 and STF1 at pHs ranging from 5.5 to 8.0. Our data do not support previously proposed effects of STF1, like the stabilization of the IF1-F(0)F(1) complex or the replacement of IF1 on its binding site in the presence of the proton-motive force or at high pH, and raise the question of the conditions under which STF1 could regulate ATPase activity in vivo.  相似文献   

13.
The mechanism of inhibition of yeast F(0)F(1)-ATPase by its naturally occurring protein inhibitor (IF1) was investigated in submitochondrial particles by studying the IF1-mediated ATPase inhibition in the presence and absence of a protonmotive force. In the presence of protonmotive force, IF1 added during net NTP hydrolysis almost completely inhibited NTPase activity. At moderate IF1 concentration, subsequent uncoupler addition unexpectedly caused a burst of NTP hydrolysis. We propose that the protonmotive force induces the conversion of IF1-inhibited F(0)F(1)-ATPase into a new form having a lower affinity for IF1. This form remains inactive for ATP hydrolysis after IF1 release. Uncoupling simultaneously releases ATP hydrolysis and converts the latent form of IF1-free F(0)F(1)-ATPase back to the active form. The relationship between the different steps of the catalytic cycle, the mechanism of inhibition by IF1 and the interconversion process is discussed.  相似文献   

14.
Extracellular ATP formation from ADP and inorganic phosphate, attributed to the activity of a cell surface ATP synthase, has so far only been reported in cultures of some proliferating and tumoral cell lines. We now provide evidence showing the presence of a functionally active ecto-F(o)F(1)-ATP synthase on the plasma membrane of normal tissue cells, i.e. isolated rat hepatocytes. Both confocal microscopy and flow cytometry analysis show the presence of subunits of F(1) (alpha/beta and gamma) and F(o) (F(o)I-PVP(b) and OSCP) moieties of ATP synthase at the surface of rat hepatocytes. This finding is confirmed by immunoblotting analysis of the hepatocyte plasma membrane fraction. The presence of the inhibitor protein IF(1) is also detected on the hepatocyte surface. Activity assays show that the ectopic-ATP synthase can work both in the direction of ATP synthesis and hydrolysis. A proton translocation assay shows that both these mechanisms are accompanied by a transient flux of H(+) and are inhibited by F(1) and F(o)-targeting inhibitors. We hypothesise that ecto-F(o)F(1)-ATP synthase may control the extracellular ADP/ATP ratio, thus contributing to intracellular pH homeostasis.  相似文献   

15.
The ATP synthase of bovine heart mitochondria possesses a regulatory subunit called the endogenous inhibitory protein (IF(1)). This subunit regulates the catalytic activity of the F(1) sector in the mitochondrial inner membrane. When DeltamuH(+) falls, IF(1) binds to the enzyme and inhibits ATP hydrolysis. On the other hand, the establishment of a DeltamuH(+) induces the release of the inhibitory action of IF(1), allowing ATP synthesis to proceed. IF(1) is also involved in the dimerization of soluble F(1). Dynamic domain analysis and normal mode analysis of the reported crystallographic structure of IF(1) revealed that it has an effective hinge formed by residues 46-52. Molecular dynamics data of a 27 residue fragment confirmed the existence of the hinge. The hinge may act as a regulatory region that links the inhibitory and anchoring domains of IF(1). The residues assigned to the hinge are conserved between mammals, but not in other species, such as yeasts. Likewise, unlike the heart inhibitor, the yeast protein does not have the residues that allow it to form stable dimers through coiled-coil interactions. Collectively, the data suggest that the hinge and the dimerization domain of the inhibitor protein from bovine heart are related to its ability to form stable dimers and to interact with other subunits of the ATP synthase.  相似文献   

16.
The content of an intrinsic ATPase inhibitor in mitochondria was determined by a radioimmunoassay procedure which showed the molar ratio of the inhibitor to ATPase to be 1:1. The ratio in submitochondrial particles, where half of the enzyme was activated, was the same as that of mitochondria, indicating that the inhibitor protein has affinity for the mitochondrial membrane as well as for F1-ATPase. The inhibitor protein could be removed from the mitochondrial membrane by incubation with 0.5 M Na2SO4 and concomitantly the enzyme was fully activated. The enzyme fully activated by the salt treatment was inactivated again by the externally added ATPase inhibitor in the presence of ATP and Mg2+. The enzyme-inhibitor complex (inactive) on the mitochondrial membrane was more stable than the solubilized enzyme-inhibitor complex but gradually dissociated in the absence of ATP and Mg2+. However, in mitochondria, the enzyme activity was inhibited even in the absence of the cofactors. A protein factor stabilizing the enzyme-inhibitor complex on the mitochondrial membrane was isolated from yeast mitochondria. This factor stabilized the inhibitor complex of membrane-bound ATPase while having no effect on that of purified F1-ATPase. It also efficiently facilitated the binding of the inhibitor to membrane-bound ATPase to form the complex, which reversibly dissociated at slightly alkaline pH.  相似文献   

17.
Recent studies on the IF(1) inhibitor protein of the mitochondrial F(1)F(0)-ATPase from molecular biochemistry to possible pathophysiological roles are reviewed. The apparent mechanism of IF(1) inhibition of F(1)F(0)-ATPase activity and the biophysical conditions that influence IF(1) activity are summarized. The amino acid sequences of human, bovine, rat and murine IF(1) are compared and domains and residues implicated in IF(1) function examined. Defining the minimal inhibitory sequence of IF(1) and the role of conserved histidines and conformational changes using peptides or recombinant IF(1) is reviewed. Luft's disease, a mitochondrial myopathy where IF(1) is absent, is described with respect to IF(1) relevance to mitochondrial bioenergetics and clinical observations. The possible pathophysiological role of IF(1) in conserving ATP under conditions where cells experience oxygen deprivation (tumor growth, myocardial ischemia) is evaluated. Finally, studies attempting to correlate IF(1) activity to ATP conservation in myocardial ischemic preconditioning are compared.  相似文献   

18.
Bovine IF(1) is a basic, 84 amino acid residue protein that inhibits the hydrolytic action of the F(1)F(0) ATP synthase in mitochondria under anaerobic conditions. Its oligomerization state is dependent on pH. At a pH value below 6.5 it forms an active dimer. At higher pH values, two dimers associate to form an inactive tetramer. Here, we present the solution structure of a C-terminal fragment of IF(1) (44-84) containing all five of the histidine residues present in the sequence. Most unusually, the molecule forms an anti-parallel coiled-coil in which three of the five histidine residues occupy key positions at the dimer interface.  相似文献   

19.
Mitochondrial ATP synthase (F1Fo-ATPase) catalyzes the terminal step of oxidative phosphorylation. In this paper, we demonstrate the functional expression of the hexahistidine-tagged beta-subunit of yeast ATP synthase and the purification of the F1-ATPase from yeast cells. A gene encoding the beta-subunit from Saccharomyces cerevisiae was modified to encode a protein of which the original N-terminus import signal sequence was replaced by a sequence containing the import signal sequence of a mitochondrial ATPase inhibitor, its processing site, and six consecutive histidines. Expression of the modified gene generated a functional F1Fo complex in host yeast cells lacking a functional copy of the endogenous ATP2 gene, as judged by growth of rescued cells on lactate medium. F1 was extracted from the yeast mitochondria by chloroform treatment and purified by immobilized metal affinity chromatography and gel filtration chromatography. The specific activity of the purified F1 was comparable to that of the wild-type enzyme, and the F1 contained all of the 5 known subunits (alpha, beta, gamma, delta, and epsilon). Moreover, the activity of the F1 was completely inhibited by the specific ATPase inhibitor protein, IF1. These results indicate that F1 containing the tagged beta-subunit is fully assembled and active. The application of this novel procedure simplifies the number of steps required for the isolation of F1 used for studying the molecular mechanism of catalysis and regulation of the enzyme.  相似文献   

20.
The natural inhibitor proteins IF1 regulate mitochondrial F0F1 ATPsynthase in a wide range of species. We characterized the interaction of CaM with purified bovine IF1, two bovine IF1 synthetic peptides, as well as two homologous proteins from yeast, namely IF1 and STF1. Fluorometric analyses showed that bovine and yeast inhibitors bind CaM with a 1:1 stoichiometry in the pH range between 5 and 8 and that CaM-IF1 interaction is Ca2+-dependent. Bovine and yeast IF1 have intermediate binding affinity for CaM, while the Kd (dissociation constant) of the STF1-CaM interaction is slightly higher. Binding studies of CaM with bovine IF1 synthetic peptides allowed us to identify bovine IF1 sequence 33-42 as the putative CaM-binding region. Sequence alignment revealed that this region contains a hydrophobic motif for CaM binding, highly conserved in both yeast IF1 and STF1 sequences. In addition, the same region in bovine IF1 has an IQ motif for CaM binding, conserved as an IQ-like motif in yeast IF1 but not in STF1. Based on the pH and Ca2+ dependence of IF1 interaction with CaM, we suggest that the complex can be formed outside mitochondria, where CaM could regulate IF1 trafficking or additional IF1 roles not yet clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号