首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hantavirus pulmonary syndrome (HPS) is a human disease caused by a newly identified hantavirus, which we will refer to as Four Corners virus (FCV). FCV is related most closely to Puumala virus (PUU) and to Prospect Hill virus (PHV). Twenty-five acute HPS serum samples were tested for immunoglobulin G (IgG) and IgM antibody reactivities to FCV-encoded recombinant proteins in Western blot (immunoblot) assays. All HPS serum samples contained both IgG and IgM antibodies to the FCV nucleocapsid (N) protein. FCV N antibodies cross-reacted with PUU N and PHV N proteins. A dominant FCV N epitope was mapped to the segment between amino acids 17 and 59 (QLVTARQKLKDAERAVELDPDDVNKSTLQSRRAAVSALETKLG). All HPS serum samples contained IgG antibodies to the FCV glycoprotein-1 (G1) protein, and 21 of 25 serum samples contained FCV G1 IgM antibodies. The FCV G1 antibodies did not cross-react with PUU G1 and PHV G1 proteins. The FCV G1 type-specific antibody reactivity mapped to a segment between amino acids 59 and 89 (LKIESSCNFDLHVPATTTQKYNQVDWTKKSS). One hundred twenty-eight control serum samples were tested for IgG reactivities to the FCV N and G1 proteins. Nine (7.0%) contained FCV N reactivities, 3 (2.3%) contained FCV G1 reactivities, and one (0.8%) contained both FCV N and FCV G1 reactivities. The epitopes recognized by antibodies present in control serum samples were different from the epitopes recognized by HPS antibodies, suggesting that the control antibody reactivities were unrelated to FCV infections. These reagents constitute a type-specific assay for FCV antibodies.  相似文献   

2.
对我国东北地区捕获的157份棕背鼠平的肺组织进行普马拉病毒检测.其中免疫荧光检测出阳性标本1份,PCR检测出核苷酸阳性标本7份.对PCR产物进行测序后发现,其核苷酸的序列与报道的普马拉病毒核苷酸序列存在着差异.系统进化分析表明,我国发现的这株普马拉病毒,在进化树上形成了一个新的分支,为一新亚型.并且与在韩国和日本发现的普马拉病毒亲缘关系最为接近.  相似文献   

3.
A key genomic characteristic that helps define Hantavirus as a genus of the family Bunyaviridae is the presence of distinctive terminal complementary nucleotides that promote the folding of the viral genomic segments into "panhandle" hairpin structures. The hantavirus nucleocapsid protein (N protein), which is encoded by the smallest of the three negative-sense genomic RNA segments, undergoes in vivo and in vitro trimerization. Trimeric hantavirus N protein specifically recognizes the panhandle structure formed by complementary base sequence of 5' and 3' ends of viral genomic RNA. N protein trimers from the Andes, Puumala, Prospect Hill, Seoul, and Sin Nombre viruses recognize their individual homologous panhandles as well as other hantavirus panhandles with high affinity. In contrast, these hantavirus N proteins bind with markedly reduced affinity to the panhandles from the genera Bunyavirus, Tospovirus, and Phlebovirus or Nairovirus. Interactions between most hantavirus N and heterologous hantavirus viral RNA panhandles are mediated by the nine terminal conserved nucleotides of the panhandle, whereas Sin Nombre virus N requires the first 23 nucleotides for high-affinity binding. Trimeric hantavirus N complexes undergo a prominent conformational change while interacting with panhandles from members of the genus Hantavirus but not while interacting with panhandles from viruses of other genera of the family Bunyaviridae. These data indicate that high-affinity interactions between trimeric N and hantavirus panhandles are conserved within the genus Hantavirus.  相似文献   

4.
Antibody responses to Four Corners hantavirus (FCV) infections in the deer mouse (Peromyscus maniculatus) were characterized by using FCV nucleocapsid protein (N), glycoprotein 1 (G1), and glycoprotein 2 (G2) recombinant polypeptides in Western immunoblot assays. Strong immunoglobulin G reactivities to FCV N were observed among FCV-infected wild P. maniculatus mice (n = 34) and in laboratory-infected P. maniculatus mice (n = 11). No immunoglobulin G antibody reactivities to FCV G1 or G2 linear determinants were detected. The strongest N responses were mapped to an amino-proximal segment between amino acids 17 and 59 (QLVTARQKLKDAERAVELDPDDVNKSTLQSRRAAVSALETKLG). FCV N antibodies cross-reacted with recombinant N proteins encoded by Puumala, Seoul, and Hantaan viruses.  相似文献   

5.
A novel hantavirus has been discovered in European common voles, Microtus arvalis and Microtus rossiaemeridionalis. According to sequencing data for the genomic RNA S segment and nucleocapsid protein and data obtained by immunoblotting with a panel of monoclonal antibodies, the virus, designated Tula virus, is a distinct novel member of the genus Hantavirus. Phylogenetic analyses of Tula virus indicate that it is most closely related to Prospect Hill, Puumala, and Muerto Canyon viruses. The results support the view that the evolution of hantaviruses follows that of their primary carriers. Comparison of strains circulating within a local rodent population revealed a genetic drift via accumulation of base substitutions and deletions or insertions. The Tula virus population from individual animals is represented by quasispecies, indicating the potential for rapid evolution of the agent.  相似文献   

6.
Hantaviruses replicate primarily in the vascular endothelium and cause two human diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). In this report, we demonstrate that the cellular entry of HFRS-associated hantaviruses is facilitated by specific integrins expressed on platelets, endothelial cells, and macrophages. Infection of human umbilical vein endothelial cells and Vero E6 cells by the HFRS-causing hantaviruses Hantaan (HTN), Seoul (SEO), and Puumala (PUU) is inhibited by antibodies to alphavbeta3 integrins and by the integrin ligand vitronectin. The cellular entry of HTN, SEO, and PUU viruses, but not the nonpathogenic Prospect Hill (PH) hantavirus (i.e., a virus with no associated human disease), was also mediated by introducting recombinant alphaIIbbeta3 or alphavbeta3 integrins into beta3-integrin-deficient CHO cells. In addition, PH infectivity was not inhibited by alphavbeta3-specific sera or vitronectin but was blocked by alpha5beta1-specific sera and the integrin ligand fibronectin. RGD tripeptides, which are required for many integrin-ligand interactions, are absent from all hantavirus G1 and G2 surface glycoproteins, and GRGDSP peptides did not inhibit hantavirus infectivity. Further, a mouse-human hybrid beta3 integrin-specific Fab fragment, c7E3 (ReoPro), also inhibited the infectivity of HTN, SEO, and PUU as well as HPS-associated hantaviruses, Sin Nombre (SN) and New York-1 (NY-1). These findings indicate that pathogenic HPS- and HFRS-causing hantaviruses enter cells via beta3 integrins, which are present on the surfaces of platelets, endothelial cells, and macrophages. Since beta3 integrins regulate vascular permeability and platelet function, these findings also correlate beta3 integrin usage with common elements of hantavirus pathogenesis.  相似文献   

7.
A novel hantavirus, first detected in Siberian lemmings (Lemmus sibiricus) collected near the Topografov River in the Taymyr Peninsula, Siberia (A. Plyusnin et al., Lancet 347:1835-1836, 1996), was isolated in Vero E6 cells and in laboratory-bred Norwegian lemmings (Lemmus lemmus). The virus, named Topografov virus (TOP), was most closely related to Khabarovsk virus (KBR) and Puumala viruses (PUU). In a cross focus reduction neutralization test, anti-TOP Lemmus antisera showed titers at least fourfold higher with TOP than with other hantaviruses; however, a rabbit anti-KBR antiserum neutralized TOP and KBR at the same titer. The TOP M segment showed 77% nucleotide and 88% amino acid identity with KBR and 76% nucleotide and 82% amino acid identity with PUU. However, the homology between TOP and the KBR S segment was disproportionately higher: 88% at the nucleotide level and 96% at the amino acid level. The 3' noncoding regions of KBR and the TOP S and M segments were alignable except for 113- and 58-nucleotide deletions in KBR. The phylogenetic relationships of TOP, KBR, and PUU and their respective rodent carriers suggest that an exceptional host switch took place during the evolution of these viruses; while TOP and KBR are monophyletic, the respective rodent host species are only distantly related.  相似文献   

8.
Sen N  Sen A  Mackow ER 《Journal of virology》2007,81(8):4323-4330
Pathogenic hantaviruses cause two human diseases: hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). The hantavirus G1 protein contains a long, 142-amino-acid cytoplasmic tail, which in NY-1 virus (NY-1V) is ubiquitinated and proteasomally degraded (E. Geimonen, I. Fernandez, I. N. Gavrilovskaya, and E. R. Mackow, J. Virol. 77: 10760-10768, 2003). Here we report that the G1 cytoplasmic tails of pathogenic Andes (HPS) and Hantaan (HFRS) viruses are also degraded by the proteasome and that, in contrast, the G1 tail of nonpathogenic Prospect Hill virus (PHV) is stable and not proteasomally degraded. We determined that the signals which direct NY-1V G1 tail degradation are present in a hydrophobic region within the C-terminal 30 residues of the protein. In contrast to that of PHV, the NY-1V hydrophobic domain directs the proteasomal degradation of green fluorescent protein and constitutes an autonomous degradation signal, or "degron," within the NY-1V G1 tail. Replacing 4 noncontiguous residues of the NY-1V G1 tail with residues present in the stable PHV G1 tail resulted in a NY-1V G1 tail that was not degraded by the proteasome. In contrast, changing a different but overlapping set of 4 PHV residues to corresponding NY-1V residues directed proteasomal degradation of the PHV G1 tail. The G1 tails of pathogenic, but not nonpathogenic, hantaviruses contain intervening hydrophilic residues within the C-terminal hydrophobic domain, and amino acid substitutions that alter the stability or degradation of NY-1V or PHV G1 tails result from removing or adding intervening hydrophilic residues. Our results identify residues that selectively direct the proteasomal degradation of pathogenic hantavirus G1 tails. Although a role for the proteasomal degradation of the G1 tail in HPS or HFRS is unclear, these findings link G1 tail degradation to viral pathogenesis and suggest that degrons within hantavirus G1 tails are potential virulence determinants.  相似文献   

9.
We previously developed a model for studies on hantavirus host adaptation and initiated genetic analysis of Puumala virus variants passaged in colonized bank voles and in cultured Vero E6 cells. With the data presented in this paper, the sequence comparison of the wild-type and Vero E6-adapted variants of Puumala virus, strain Kazan, has been completed. The only amino acid substitution that distinguished the two virus variants was found in the L protein, Ser versus Phe at position 2053. Another mutation found in the L segment, the silent transition C1053U, could result from the selection of a variant with altered L RNA folding. Nucleotide substitutions observed in individual L cDNA clones, most of them A-->G and U-->C transitions, suggested that the population of L RNA molecules is represented by quasispecies. The mutation frequency in the L segment quasispecies appeared to be similar to the corresponding values for the S and M quasispecies. Analysis of the cDNA clones with the complete S segment sequences from passage 20 confirmed our earlier conclusion that the cell-adapted genotype of the virus is represented mostly by variants with mutated S segment noncoding regions. However, the spectrum of the S segment quasispecies appeared to be changing, suggesting that, after the initial adaptation (passages 1 to 11), the viral population is still being driven by selection for variants with higher fitness.  相似文献   

10.
11.
Genetic analysis of virus detected in autopsy tissues of a fatal hantavirus pulmonary syndrome-like case in Louisiana revealed the presence of a previously unrecognized hantavirus. Nucleotide sequence analysis of PCR fragments of the complete S and M segments of the virus amplified from RNA extracted from the tissues showed the virus to be novel, differing from the closest related hantavirus, Sin Nombre virus, by approximately 30%. Both genome segments were unique, and there was no evidence of genetic reassortment with previously characterized hantaviruses. The primary rodent reservoir of Sin Nombre virus, the deer mouse Peromyscus maniculatus, is absent from Louisiana. Thus, the virus detected in Louisiana, referred to here as Bayou virus, must possess a different rodent reservoir.  相似文献   

12.
This paper reports the establishment of a model for hantavirus host adaptation. Wild-type (wt) (bank vole-passaged) and Vero E6 cell-cultured variants of Puumala virus strain Kazan were analyzed for their virologic and genetic properties. The wt variant was well adapted for reproduction in bank voles but not in cell culture, while the Vero E6 strains replicated to much higher efficiency in cell culture but did not reproducibly infect bank voles. Comparison of the consensus sequences of the respective viral genomes revealed no differences in the coding region of the S gene. However, the noncoding regions of the S gene were found to be different at positions 26 and 1577. In one additional and independent adaptation experiment, all analyzed cDNA clones from the Vero E6-adapted variant were found to carry substitutions at position 1580 of the S segment, just 3 nucleotides downstream of the mutation observed in the first adaptation. No differences were found in the consensus sequences of the entire M segments from the wt and the Vero E6-adapted variants. The results indicated different impacts of the S and the M genomic segments for the adaptation process and selective advantages for the variants that carried altered noncoding sequences of the S segment. We conclude that the isolation in cell culture resulted in a phenotypically and genotypically altered hantavirus.  相似文献   

13.
Nucleotide sequences were determined for the complete S genome segments of the six distinct hantavirus genotypes from Argentina and for two cell culture-isolated Andes virus strains from Chile. Phylogenetic analysis indicates that, although divergent from each other, all Argentinian hantavirus genotypes group together and form a novel phylogenetic clade with the Andes virus. The previously characterized South American hantaviruses Laguna Negra virus and Rio Mamore virus make up another clade that originates from the same ancestral node as the Argentinian/Chilean viruses. Within the clade of Argentinian/Chilean viruses, three subclades can be defined, although the branching order is somewhat obscure. These are made of (i) "Lechiguanas-like" virus genotypes, (ii) Maciel virus and Pergamino virus genotypes, and (iii) strains of the Andes virus. Two hantavirus genotypes from Brazil, Araraquara and Castello dos Sonhos, were found to group with Maciel virus and Andes virus, respectively. The nucleocapsid protein amino acid sequence variability among the members of the Argentinian/Chilean clade does not exceed 5.8%. It is especially low (3.5%) among oryzomyine species-associated virus genotypes, suggesting recent divergence from the common ancestor. Interestingly, the Maciel and Pergamino viruses fit well with the rest of the clade although their hosts are akodontine rodents. Taken together, these data suggest that under conditions in which potential hosts display a high level of genetic diversity and are sympatric, host switching may play a prominent role in establishing hantavirus genetic diversity. However, cospeciation still remains the dominant factor in the evolution of hantaviruses.  相似文献   

14.
Recently, the high-level expression of authentic and hexahistidine (His)-tagged Puumala (strain Vranica/H?lln?s) hantavirus nucleocapsid protein derivatives in the yeast Saccharomyces cerevisiae has been reported [Dargeviciute et al., Vaccine, 20 (2002) 3523-3531]. Here we describe the expression of His-tagged nucleocapsid proteins of other Puumala virus strains (Sotkamo, Kazan) as well as Dobrava (strains Slovenia and Slovakia) and Hantaan (strain Fojnica) hantaviruses using the same system. All nucleocapsid proteins were expressed in the yeast S. cerevisiae at high levels. The nucleocapsid proteins can be easily purified by nickel chelate chromatography; the yield for all nucleocapsid proteins ranged from 0.5 to 1.5 mg per g wet weight of yeast cells. In general, long-term storage of all nucleocapsid proteins without degradation can be obtained by storage in PBS at -20 degrees C or lyophilization. The nucleocapsid protein of Puumala virus (strain Vranica/H?lln?s) was demonstrated to contain only traces of less than 10 pg nucleic acid contamination per 100 microg of protein. The yeast-expressed nucleocapsid proteins of Hantaan, Puumala and Dobrava viruses described here represent useful tools for serological hantavirus diagnostics and for vaccine development.  相似文献   

15.
Four hantaviruses-Hantaan virus (HTNV), Seoul virus (SEOV), Dobrava virus (DOBV) and Puumala virus-are known to cause hemorrhagic fever with renal syndrome (HFRS) in Europe and Asia. HTNV causes the most severe form of HFRS (5 to 15% case-fatality rate) and afflicts tens of thousands of people annually. Previously, we demonstrated that DNA vaccination with a plasmid expressing the SEOV M gene elicited neutralizing antibodies and protected hamsters against infection with SEOV and HTNV. Here, we report the construction and evaluation of a DNA vaccine that expresses the HTNV M gene products, G1 and G2. DNA vaccination of hamsters with the HTNV M gene conferred sterile protection against infection with HTNV, SEOV, and DOBV. DNA vaccination of rhesus monkeys with either the SEOV or HTNV M gene elicited high levels of neutralizing antibodies. These are the first immunogenicity data for hantavirus DNA vaccines in nonhuman primates. Because a neutralizing antibody response is considered a surrogate marker for protective immunity in humans, our protection data in hamsters combined with the immunogenicity data in monkeys suggest that hantavirus M gene-based DNA vaccines could protect humans against the most severe forms of HFRS.  相似文献   

16.
Hantaviruses infect human endothelial cells and cause two vascular permeability-based diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Hantavirus infection alone does not permeabilize endothelial cell monolayers. However, pathogenic hantaviruses inhibit the function of alphav beta3 integrins on endothelial cells, and hemorrhagic disease and vascular permeability deficits are consequences of dysfunctional beta3 integrins that normally regulate permeabilizing vascular endothelial growth factor (VEGF) responses. Here we show that pathogenic Hantaan, Andes, and New York-1 hantaviruses dramatically enhance the permeability of endothelial cells in response to VEGF, while the nonpathogenic hantaviruses Prospect Hill and Tula have no effect on endothelial cell permeability. Pathogenic hantaviruses directed endothelial cell permeability 2 to 3 days postinfection, coincident with pathogenic hantavirus inhibition of alphav beta3 integrin functions, and hantavirus-directed permeability was inhibited by antibodies to VEGF receptor 2 (VEGFR2). These studies demonstrate that pathogenic hantaviruses, similar to alphav beta3 integrin-deficient cells, specifically enhance VEGF-directed permeabilizing responses. Using the hantavirus permeability assay we further demonstrate that the endothelial-cell-specific growth factor angiopoietin 1 (Ang-1) and the platelet-derived lipid mediator sphingosine 1-phosphate (S1P) inhibit hantavirus directed endothelial cell permeability at physiologic concentrations. These results demonstrate the utility of a hantavirus permeability assay and rationalize the testing of Ang-1, S1P, and antibodies to VEGFR2 as potential hantavirus therapeutics. The central importance of beta3 integrins and VEGF responses in vascular leak and hemorrhagic disease further suggest that altering beta3 or VEGF responses may be a common feature of additional viral hemorrhagic diseases. As a result, our findings provide a potential mechanism for vascular leakage after infection by pathogenic hantaviruses and the means to inhibit hantavirus-directed endothelial cell permeability that may be applicable to additional vascular leak syndromes.  相似文献   

17.
18.
Larson RS  Brown DC  Ye C  Hjelle B 《Journal of virology》2005,79(12):7319-7326
Specific therapy is not available for the treatment of hantavirus cardiopulmonary syndrome caused by Sin Nombre virus (SNV). The entry of pathogenic hantaviruses into susceptible human cells is dependent upon expression of the alpha(v)beta(3) integrin, and transfection of human beta(3) integrin is sufficient to confer infectibility onto CHO (Chinese hamster ovary) cells. Furthermore, pretreatment of susceptible cells with anti-beta(3) antibodies such as c7E3 or its Fab fragment ReoPro prevents hantavirus entry. By using repeated selection of a cyclic nonamer peptide phage display library on purified alpha(v)beta(3), we identified 70 peptides that were competitively eluted with ReoPro. Each of these peptides was examined for its ability to reduce the number of foci of SNV strain SN77734 in a fluorescence-based focus reduction assay according to the method of Gavrilovskaya et al. (I. N. Gavrilovskaya, M. Shepley, R. Shaw, M. H. Ginsberg, and E. R. Mackow, Proc. Natl. Acad. Sci. USA 95:7074-7079, 1998). We found that 11 peptides reduced the number of foci to a greater extent than did 80 mug/ml ReoPro when preincubated with Vero E6 cells. In addition, 8 of the 70 peptides had sequence similarity to SNV glycoproteins. We compared all 18 peptide sequences (10 most potent, 7 peptides with sequence similarity to hantavirus glycoproteins, and 1 peptide that was in the group that displayed the greatest potency and had significant sequence similarity) for their abilities to inhibit SNV, Hantaan virus (HTNV), and Prospect Hill virus (PHV) infection. There was a marked trend for the peptides to inhibit SNV and HTNV to a greater extent than they inhibited PHV, a finding that supports the contention that SNV and HTNV use beta(3) integrins and PHV uses a different receptor, beta1 integrin. We then chemically synthesized the four peptides that showed the greatest ability to neutralize SNV. These peptides inhibited viral entry in vitro as free peptides outside of the context of a phage. Some combinations of peptides proved more inhibitory than did individual peptides. In all, we have identified novel peptides that inhibit entry by SNV and HTNV via beta(3) integrins and that can be used as lead compounds for further structural optimization and consequent enhancement of activity.  相似文献   

19.
Virus-like particles generated by the heterologous expression of virus structural proteins are able to potentiate the immunogenicity of foreign epitopes presented on their surface. In recent years epitopes of various origin have been inserted into the core antigen of hepatitis B virus (HBV) allowing the formation of chimaeric HBV core particles. Chimaeric core particles carrying the 45 N-terminal amino acids of the Puumala hantavirus nucleocapsid protein induced protective immunity in bank voles, the natural host of this hantavirus. Particles applied in the absence of adjuvant are still immunogenic and partially protective in bank voles. Although a C-terminally truncated core antigen of HBV (HBcAg delta) tolerates the insertion of extended foreign sequences, for the construction of multivalent vaccines the limited insertion capacity is still a critical factor. Recently, we have described a new system for generating HBV 'mosaic particles' in an Escherichia coli suppressor strain based on a readthrough mechanism on a stop linker located in front of the insert. Those mosaic particles are built up by both HBcAg delta and the HBcAg delta/Puumala nucleocapsid readthrough protein. The particles formed presented the 114 amino acid (aa) long hantavirus sequence, at least in part, on their surface and induced antibodies against the hantavirus sequence in bank voles. Variants of the stop linker still allowed the formation of mosaic particles demonstrating that stop codon suppression alone is sufficient for the packaging of longer foreign sequences in mosaic particles. Another approach to increase the insertion capacity is based on the simultaneous insertion of different Puumala nucleocapsid protein sequences (aa 1-45 and aa 75-119) into two different positions (aa 78 and behind aa 144) of a single HBcAg molecule. The data presented are of high relevance for the generation of multivalent vaccines requiring a high insertion capacity for foreign sequences.  相似文献   

20.
Hantavirus pulmonary syndrome (HPS) is a severe respiratory disease which is thought to result from a dysregulated immune response to infection with pathogenic hantaviruses, such as Sin Nombre virus or Andes virus (ANDV). Other New World hantaviruses, such as Prospect Hill virus (PHV), have not been associated with human disease. Activation of an antiviral state and cell signaling in response to hantavirus infection were examined using human primary lung endothelial cells, the main target cell infected in HPS patients. PHV, but not ANDV, was found to induce a robust beta interferon (IFN-beta) response early after infection of primary lung endothelial cells. The level of IFN induction correlated with IFN regulatory factor 3 (IRF-3) activation, in that IRF-3 dimerization and nuclear translocation were detected in PHV but not ANDV infection. In addition, phosphorylated Stat-1/2 levels were significantly lower in the ANDV-infected cells relative to PHV. Presumably, this reflects the lower level of IRF-3 activation and initial IFN induced by ANDV relative to PHV. To determine whether, in addition, ANDV interference with IFN signaling also contributed to the low Stat-1/2 activation seen in ANDV infection, the levels of exogenous IFN-beta-induced Stat-1/2 activation detectable in uninfected versus ANDV- or PHV-infected Vero-E6 cells were examined. Surprisingly, both viruses were found to downregulate IFN-induced Stat-1/2 activation. Analysis of cells transiently expressing only ANDV or PHV glycoproteins implicated these proteins in this downregulation. In conclusion, while both viruses can interfere with IFN signaling, there is a major difference in the initial interferon induction via IRF-3 activation between ANDV and PHV in infected primary endothelial cells, and this correlates with the reported differences in pathogenicity of these viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号