首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysyl hydroxylase (EC 1.14.11.4), an alpha 2 dimer, catalyzes the formation of hydroxylysine in collagens by the hydroxylation of lysine residues in peptide linkages. A deficiency in this enzyme activity is known to exist in patients with the type VI variant of the Ehlers-Danlos syndrome, but no amino acid sequence data have been available for the wildtype or mutated human enzyme from any source. We report the isolation and characterization of cDNA clones for lysyl hydroxylase from a human placenta lambda gt11 cDNA library. The cDNA clones cover almost all of the 3.2-kb mRNA, including all the coding sequences. These clones encode a polypeptide of 709 amino acid residues and a signal peptide of 18 amino acids. The human coding sequences are 72% identical to the recently reported chick sequences at the nucleotide level and 76% identical at the amino acid level. The C-terminal region is especially well conserved, a 139-amino-acid region, residues 588-727 (C-terminus), being 94% identical between the two species and a 76-amino-acid region, residues 639-715, 99% identical. These comparisons, together with other recent data, suggest that lysyl hydroxylase may contain functionally significant sequences especially in its C-terminal region. The human lysyl hydroxylase gene (PLOD) was mapped to chromosome 1 by Southern blot analysis of human-mouse somatic cell hybrids, to the 1p34----1pter region by using cell hybrids that contain various translocations of human chromosome 1, and by in situ hybridization to 1p36.2----1p36.3. This gene is thus not physically linked to those for the alpha and beta subunits of prolyl 4-hydroxylase, which are located on chromosomes 10 and 17, respectively.  相似文献   

2.
Prolyl 4-hydroxylase (EC 1.14.11.2), an alpha 2 beta 2 tetramer, catalyses the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in peptide linkages. We report here the isolation of cDNA clones coding for the beta-subunit of prolyl 4-hydroxylase from a human hepatoma lambda gt11 library and a corresponding human placenta library. Five overlapping clones covering all the coding sequences and almost all the non-coding sequences were characterized. The size of the mRNA hybridizing with these clones in Northern blotting is approximately 2.5 kb. The clones encode a polypeptide of 508 amino acid residues, including a signal peptide of 17 amino acids. These human sequences were found to be very similar to those recently reported for rat protein disulphide isomerase (EC 5.3.4.1). The degree of homology between these two proteins was 84% at the level of nucleotide sequences or 94% at the level of amino acid sequences. Southern blot analyses of human genomic DNA with a cDNA probe for the beta-subunit indicated the presence of only one gene containing these sequences. The product of a single gene thus appears to possess two different enzymatic functions depending on whether it is present in cells in monomer form or in the prolyl 4-hydroxylase tetramer.  相似文献   

3.
Antibodies to pure lysyl hydroxylase from whole chick embryos were prepared in rabbits and used for immunological characterization of this enzyme of collagen biosynthesis. In double immunodiffusion a single precipitation line was seen between the antiserum and crude or pure chick-embryo lysyl hydroxylase. The antiserum effectively inhibited chick-embryo lysyl hydroxylase activity, whether measured with the biologically prepared protocollagen substrate or a synthetic peptide consisting of only 12 amino acids. This suggests that the antigenic determinant was located near the active site of the enzyme molecule. Essentially identical amounts of the antiserum were required for 40% inhibition of the same amount of lysyl hydroxylase activity units from different chick-embryo tissues synthesizing various genetically distinct collagen types. In double immunodiffusion a single precipitation line of complete identity was found between the antiserum and the purified enzyme from whole chick embryos and the crude enzymes from chick-embryo tendon, cartilage and kidneys. These results do not support the hypothesis that lysyl hydroxylase has collagen-type-specific or tissue-specific isoenzymes with markedly different specific activities or immunological properties. The antibodies to chick-embryo lysyl hydroxylase showed a considerable degree of species specificity when examined either by activity-inhibition assay or by double immuno-diffusion. Nevertheless, a distinct, although weak, cross-reactivity was found between the chick-embryo enzyme and those from all mammalian tissues tested. The antiserum showed no cross-reactivity against prolyl 3-hydroxylase, hydroxylysyl galactosyl-transferase or galactosylhydroxylysyl glucosyltransferase in activity-inhibition assays, whereas a distinct cross-reactivity was found against prolyl 4-hydroxylase. Furthermore, antiserum to pure prolyl 4-hydroxylase inhibited lysyl hydroxylase activity. These findings suggest that there are structural similarities between these two enzymes, possibly close to or at their active sites.  相似文献   

4.
Concomitant hydroxylation of proline and lysine residues in protocollagen was studied using purified enzymes. The data suggest that prolyl 4-hydroxylase (prolyl-glycyl-peptide, 2-oxoglutarate: oxygen oxidoreductase (4-hydroxylating), EC 1.14.11.2) and lysyl hydroxylase (peptidyllysine, 2-oxoglutarate; oxygen 5-oxidoreductase, EC 1.14.11.4) are competing for the protocollagen substrate, this competition resulting in an inhibition of the lysyl hydroxylase but not of the prolyl 4-hydroxylase reaction. When the same protocollagen was used for these hydroxylases, the affinity of prolyl 4-hydroxylase to the protocollagen substrate was about 2-fold higher than that of lysyl hydroxylase. Hydroxylation of lysine residues in protocollagen had no effect on the affinity of prolyl 4-hydroxylase, whereas hydroxylation of proline residues decreased the affinity of lysyl hydroxylase to one-half of the value determined before the hydroxylation. When enzyme preparations containing different ratios of lysyl hydroxylase activity to prolyl 4-hydroxylase activity were used to hydroxylase protocollagen substrate, it was found that in the case of a low ratio the hydroxylation of lysine residues seemed to proceed only after a short lag period. Accordingly, it seems probable that most proline residues are hydroxylated to 4-hydroxyproline residues before hydroxylation of lysine residues if the prolyl 4-hydroxylase and lysyl hydroxylase are present as free enzymes competing for the same protocollagen substrate.  相似文献   

5.
Several recent studies indicate that a single polypeptide may act as the beta-subunit of prolyl 4-hydroxylase, the enzyme protein disulphide-isomerase and a cellular thyroid-hormone-binding protein. We report here the isolation and characterization of cDNA clones encoding this multifunctional protein in the chicken. All the coding sequences were determined on the basis of nucleotide sequencing of five cDNA clones and amino acid sequencing of the N-terminal end of the chicken beta-subunit. The processed polypeptide contains 493 amino acid residues, the size of the respective mRNA being about 2.7 kb. The chicken beta-subunit cDNA sequences were 78% homologous to the previously reported human beta-subunit cDNA sequences at the nucleotide level and 85% homologous at the amino acid level. The homology of the chicken beta-subunit sequences to those reported for bovine thyroid-hormone-binding protein and rat protein disulphide-isomerase was also 85% at the amino acid level. Primary-structure comparisons between the four species indicated that the two proposed active sites of protein disulphide-isomerase, the two Trp-Cys-Gly-His-Cys-Lys sequences, are located within highly conserved regions, which are also homologous to the active sites of a number of thioredoxins. The middle of the polypeptide has an additional conserved region 100 amino acid residues in length in which the degree of homology between the four species is 94% at the amino acid level. This long conserved region may also be important for some of the multiple functions of the protein. The four extreme C-terminal amino acids of the polypeptide in all four species are Lys-Asp-Glu-Leu, a sequence that has been suggested to function as a signal for the retention of a protein in the endoplasmic reticulum.  相似文献   

6.
Lysyl oxidase (EC 1.4.3.13) initiates the crosslinking of collagens and elastin by catalyzing oxidative deamination of the epsilon-amino group in certain lysine and hydroxylysine residues. We report here on the isolation and characterization of cDNA clones for the enzyme from human placenta and rat aorta lambda gt11 cDNA libraries. A cDNA clone for human lysyl oxidase covers all the coding sequences, 230 nucleotides of the 5' and 299 nucleotides, of the 3' untranslated sequences, including a poly(A) tail of 23 nucleotides. This cDNA encodes a polypeptide of 417 amino acid residues, including a signal peptide of 21 amino acids. Sequencing of two rat lysyl oxidase cDNA clones indicated six differences between the present and the previously published sequence for the rat enzyme [Trackman et al. (1990) Biochemistry 29: 4863-4870], resulting in frameshifts in the translated sequence. The human lysyl oxidase sequence was found to be 78% identical to the revised rat sequence at the nucleotide level and 84% identical at the amino acid level, with the degree of identity unevenly distributed between various regions of the coded polypeptide. Northern blot analysis of human skin fibroblasts RNA indicated that the human lysyl oxidase cDNA hybridizes to at least four mRNA species; their sizes are about 5.5, 4.3, 2.4, and 2.0 kb. Analysis of a panel of 25 human x hamster cell hybrids by Southern blotting mapped the human lysyl oxidase gene to chromosome 5, and in situ hybridization mapped it to 5q23.3-31.2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Prolyl 4-hydroxylase, a key enzyme in collagen biosynthesis, catalyzes the conversion of selected prolyl residues to trans-hydroxyproline in nascent or completed pro-alpha chains of procollagen. The enzyme is a tetramer composed of two nonidentical subunits, designated alpha and beta. To compare the enzyme and its subunits from different sources, the chick embryo and human placental prolyl 4-hydroxylases were purified to homogeneity and their physicochemical and immunological properties were determined. Both enzymes were glycoproteins with estimated apparent molecular weights ranging between 400 and 600 kDa. Amino acid and carbohydrate analyses showed slight differences between the two holomeric enzymes, consistent with their deduced amino acid sequences from their respective cDNAs. Human placental prolyl 4-hydroxylase contained more tightly bound iron than the chick embryo enzyme. Immunodiffusion of the human placental enzyme with antibodies raised against the purified chick embryo prolyl 4-hydroxylase demonstrated partial identity, indicating different antigenic determinants in their tertiary structures. The enzymes could be separated by high-resolution capillary electrophoresis, indicating differential charge densities for the native chick embryo and human placental proteins. Electrophoretic studies revealed that the human prolyl 4-hydroxylase is a tetrameric enzyme containing two nonidentical subunits of about 64 and 62 kDa, in a ratio of approximately 1 to 2, designated alpha and beta, respectively. In contrast, the chick embryo alpha and beta subunit ratio was 1 to 1. Notably, the human alpha subunit was partially degraded when subjected to electrophoresis under denaturing conditions. Analogously, when the chick embryo enzyme was subjected to limited proteolysis, selective degradation of the alpha subunit was observed. Finally, only the alpha subunit was bound to Concanavalin A demonstrating that the alpha subunits of prolyl 4-hydroxylase in both species were glycosylated. Using biochemical techniques, these results demonstrated that the 4-trans-hydroxy-L-proline residues in human placental collagens are synthesized by an enzyme whose primary structure and immunological properties differ from those of the previously well-characterized chick embryo enzyme, consistent with their recently deduced primary structures from cDNA sequences.  相似文献   

8.
A single polypeptide is shown to act both as the beta subunit of the proline hydroxylase (EC 1.14.11.2) and as a protein disulfide-isomerase (EC 5.3.4.1). When isolated from chick embryos or rat liver, the beta subunit of prolyl 4-hydroxylase and the enzyme protein disulfide-isomerase have identical molecular weights and peptide maps as produced by digestion with Staphylococcus aureus V8 protease. The apparent molecular weights of both proteins isolated from human placental tissue are slightly higher, and the human beta subunit and one of its peptides have molecular weights about Mr 500 higher than the protein disulfide-isomerase and its corresponding peptide. Experiments with polyclonal and monoclonal antibodies also suggest a structural identity between the two proteins. The beta subunit isolated from the prolyl 4-hydroxylase tetramer has protein disulfide-isomerase activity similar to protein disulfide-isomerase itself, and even the beta subunit when present in the prolyl 4-hydroxylase tetramer has one-half of this activity.  相似文献   

9.
10.
Lysyl hydroxylase is the enzyme catalyzing the formation of hydroxylysyl residues in collagens. Large differences in the extent of hydroxylysyl residues are found among collagen types. Three lysyl hydroxylase isoenzymes (LH1, LH2, LH3) have recently been characterized from human and mouse tissues. Nothing is known about the distribution of these isoforms within cells or whether they exhibit collagen type specificity. We measured mRNA levels of the three isoforms, as well as the mRNAs of the main collagen types I, III, IV, and V and the alpha subunit of prolyl 4-hydroxylase, another enzyme involved in collagen biosynthesis, in different human cell lines. Large variations were found in mRNA expression of LH1 and LH2 but not LH3. Immunoblotting was utilized to confirm the results of Northern hybridization. The levels of mRNA of LH1, LH2, and the alpha subunit of prolyl 4-hydroxylase showed significant correlations with each other. The LH3 mRNA levels did not correlate with those of LH1, LH2, or the alpa subunit of prolyl 4-hydroxylase, clearly indicating a difference in the regulation of LH3. No correlation was observed between LH isoforms and individual collagen types, indicating a lack of collagen type specificity for lysyl hydroxylase isoforms. Our observations suggest that LH1, LH2, and the alpha subunit of prolyl 4-hydroxylase are coregulated together with total collagen synthesis but not with the specific collagen types and indicate that LH3 behaves differently from LH1 and LH2, implying a difference in their substrates. These observations set the basis for further studies to define the functions of lysyl hydroxylase isoforms.  相似文献   

11.
The collagen prolyl hydroxylases are enzymes that are required for proper collagen biosynthesis, folding, and assembly. They reside within the endoplasmic reticulum and belong to the group of 2-oxoglutarate and iron-dependent dioxygenases. Although prolyl 4-hydroxylase has been characterized as an alpha2beta2 tetramer in which protein disulfide isomerase is the beta subunit with two different alpha subunit isoforms, little is known about the enzyme prolyl 3-hydroxylase (P3H). It was initially characterized and shown to have an enzymatic activity distinct from that of prolyl 4-hydroxylase, but no amino acid sequences or genes were ever reported for the mammalian enzyme. Here we report the characterization of a novel prolyl 3-hydroxylase enzyme isolated from embryonic chicks. The primary structure of the enzyme, which we now call P3H1, demonstrates that P3H1 is a member of a family of prolyl 3-hydroxylases, which share the conserved residues present in the active site of prolyl 4-hydroxylase and lysyl hydroxylase. P3H1 is the chick homologue of mammalian leprecan or growth suppressor 1. Two other P3H family members are the genes previously called MLAT4 and GRCB. In this study we demonstrate prolyl 3-hydroxylase activity of the purified enzyme P3H1 on a full-length procollagen substrate. We also show it to specifically interact with denatured collagen and to exist in a tight complex with other endoplasmic reticulum-resident proteins. Immunohistochemistry with a monoclonal antibody specific for chick P3H1 localizes P3H1 specifically to tissues that express fibrillar collagens, suggesting that other P3H family members may be responsible for modifying basement membrane collagens.  相似文献   

12.
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the hydroxylation of -X-Pro-Gly- sequences and plays a central role in the synthesis of all collagens. The [alpha(I)]2beta2 type I enzyme is effectively inhibited by poly(L-proline), whereas the [alpha(II)]2beta2 type II enzyme is not. We report here that the poly(L-proline) and (Pro-Pro-Gly)10 peptide substrate-binding domain of prolyl 4-hydroxylase is distinct from the catalytic domain and consists of approximately 100 amino acids. Peptides of 10-19 kDa beginning around residue 140 in the 517 residue alpha(I) subunit remained bound to poly(L-proline) agarose after limited proteolysis of the human type I enzyme tetramer. A recombinant polypeptide corresponding to the alpha(I) subunit residues 138-244 and expressed in Escherichia coli was soluble, became effectively bound to poly(L-proline) agarose and could be eluted with (Pro-Pro-Gly)10. This polypeptide is distinct from the SH3 and WW domains, and from profilin, and thus represents a new type of proline-rich peptide-binding module. Studies with enzyme tetramers containing mutated alpha subunits demonstrated that the presence of a glutamate and a glutamine in the alpha(II) subunit in the positions corresponding to Ile182 and Tyr233 in the alpha(I) subunit explains most of the lack of poly(L-proline) binding of the type II prolyl 4-hydroxylase. Keywords: collagen/dioxygenases/peptide-binding domain/ proline-rich/prolyl hydroxylase  相似文献   

13.
Morphological studies were carried out on fibroblasts from chick embryo tendons, cells which have been used in a number of recent studies on collagen biosynthesis. The cells were relatively rich in endoplasmic reticulum and contained a well-developed Golgi complex comprised of small vesicles, stacked membranes, and large vacuoles. Techniques were then devised for preparing cell fragments which were penetrated by ferritin-antibody conjuates but which retained the essential morphological features of the cells. Finally, the new procedures were employed to develop further information as to how collagen is synthesized. As reported elsewhere, preliminary studies with ferritin-labeled antibodies showed that prolyl hydroxylase was found in the endoplasmic reticulum of freshly isolated fibroblasts and that procollagen is found in both the cisternae of the endoplasmic reticulum and the large Golgi vacuoles. In the experiments described here, the cells were manipulated so that amino acids continued to be incorporated into polypeptide chains but assembly of the molecule was not completed because hydroxylation of prolyl and lysyl residues was prevented. The results indicated that these manipulations produced no change in the distribution of prolyl hydroxylase. Examination of the cells with ferritin conjugated to antibodies which reacted with protocollagen, the unhydroxylated form of procollagen, demonstrated that protocollagen was retained in the cisternae of the endoplasmic reticulum during inhibition of the prolyl and lysyl hydroxylases. Assays for prolyl hydroxylase with an immunologic technique demonstrated that although the enzyme is found within the endoplasmic reticulum, it is not secreted along with procollagen. The observations provided further evidence for a special role for prolyl hydroxylase in the control of collagen biosynthesis.  相似文献   

14.
1. Subcellular fractions of freshly isolated matrix-free embryonic chick tendon and sternal cartilage cells have been characterized by chemical analysis, electron microscopy and the location of specific marker enzymes. These data indicate the fractions to be of a high degree of purity comparable with those obtained from other tissues, e.g. liver and kidney. 2. When homogenates were assayed for protocollagen prolyl hydroxylase and protocollagen lysyl hydroxylase activities, addition of Triton X-100 (0.1%, w/v) was found to stimulate enzyme activities by up to 60% suggesting that the enzymes were probably membrane-bound. 3. Assay of subcellular fractions obtained by differential centrifugation for protocollagen prolyl hydroxylase activity indicated the specific activity to be highest in the microsomal fraction. Similar results were obtained for protocollagen lysyl hydroxylase activity. 4. Submicrosomal fractions obtained by discontinuous sucrose-gradient centrifugation were assayed for the two enzymes and protocollagen prolyl hydroxylase and protocollagen lysyl hydroxylase were found to be associated almost exclusively with the rough endoplasmic reticulum fraction in both tendon and cartilage cells.  相似文献   

15.
The kinetics of the lysyl hydroxylase (peptidyllysine, 2-oxoglutarate:oxygen 5-oxidoreductase, EC 1.14.11.4) reaction were studied using enzyme from chick embryos by varying the concentration of one substrate in the presence of different fixed concentrations of the second substrate, while the concentrations of the other substrates were held constant. Intersecting lines were obtained in double-reciprocal plots for all possible pairs involving Fe2+, alpha-ketoglutarate, O2 and the peptide substrate, whereas parallel lines were obtained for pairs comprising ascorbate and each of the other substrates. The pair composed of Fe2+ and alpha-ketoglutarate gave an asymmetrical initial veolcity pattern, indicating binding of these two reactants in this order, that of Fe2+ being at thermodynamic equilibrium. The initial velocity patterns are identical with those reported for prolyl 4-hydroxylase, and the apparent Km and Kd values calculated from these data are also very similar. The largest difference was fo-nd in Km and Kd for alpha-ketoglutarate, which were about 4 times the corresponding values for prolyl 4-hydroxylase. Ascorbate was found to be a quite specific requirement for lysyl hydroxylase, but the enzyme catalyzed its reaction for a short time at a high rate in the complete absence of this vitamin, suggesting that the reaction with ascorbate does not occur during each catalytic cycle. Lysyl hydroxylase catalyzed an uncoupled decarboxylation of alpha-ketoglutarate in the absence of the peptide substrate, the rate being about 4% of that observed in the presence of a saturating concentration of the peptide substrate. This uncoupled decarboxylation required the same cosubstrates as the complete reaction.  相似文献   

16.
A purification of up to 4000-fold is reported for lysyl hydroxylase (EC 1.14.11.4) from extract of chick-embryo homogenate and one of about 300-fold from extract of chick-embryo cartilage. Multiple forms of the enzyme were observed during purification from whole chick embryos. In gel filtration the elution positions of the two main forms corresponded to average molecular weights of about 580000 and 220000. These two forms could also be clearly separated in hydroxyapatite chromatography. In addition, some enzyme activity was always eluted between the two main peaks both in gel filtration and in hydroxyapatite chromatography. The presence of the two main forms was also observed when purifying enzyme from chick embryo cartilage. Both forms of the enzyme hydroxylated lysine in arginine-rich histone, which does not contain any -X-Lys-Gly- sequence. No difference was found between the enzyme from whole chick embryos and from chick embryo cartilage in this respect. Lysyl hydroxylase was found to have affinity for concanavalin A, indicating the presence of some carbohydrate residues in the enzyme molecule. Lysyl and prolyl hydroxylase activities increased when the chick embryo homogenate was assayed in the presence of lysolecithin. Preincubation of the homogenate either with lysolecithin or with Triton X-100 increased lysyl hydroxylase activity in homogenate, and in the 1500 x g and 150000 x g supernatants, suggesting that the increase in the enzyme activity was due to liberation of the enzyme from the membranes. Divalent cations were found to inhibit the activity of lysyl and prolyl hydroxylases in vitro. An inhibition of about 50% was achieved with 15 mM calcium 60 muM copper and 3 muM zinc concentrations. The mode of inhibition was tested with Cu2+, and was found to be competitive with Fe2+.  相似文献   

17.
The localization of collagen hydroxylysine galactosyl- and galactosyl-hydroxylysine glucosyltransferases in purified chick embryo bone microsomes was studied by differential solubilization with nonionic detergents. Brij-35 (polyoxyethylene 25-lauryl ether) which selectively releases intracisternal proteins, and Triton X-100, whose specificity varies with its concentration, were used in the presence or absence of high ionic strength NaCl. These methods were used previously to characterize prolyl hydroxylase as intracisternal and lysyl hydroxylase as mainly intramembranous. The distribution of both glycosyltransferases within microsomes was similar to that of lysyl hydroxylase; approximately 70-80% of their activities are intramembranous with the remainder intracisternal. Collagen hydroxylysine glucosyltransferase differed from prolyl and lysyl hydroxylase and the galactosyltransferase in that its activity in vitro was apparently inhibited by membrane vesicles, even in the presence of detergents at concentrations which permeabilize the membrane. Accurate measurement of its activity could be achieved only by its separation from vesicles after detergent treatment. The common location of the major portion of lysyl hydroxylase and the glycosyltransferase activities suggests that they may act as a multienzyme complex to preferentially modify certain lysyl residues in nascent procollagen chains as they traverse the membrane of the endoplasmic reticulum. Since these enzymes do not act on helical collagen, their physical separation from prolyl hydroxylase may ensure that modifications of lysine residues occur prior to formation of hydroxyproline, which stabilizes the helical form.  相似文献   

18.
An assay is reported for prolyl 3-hydroxylase activity. The method is based on the release of tritiated water (THO) during 3-hydroxylation of a 2,3-T-l-proline-labeled (T = tritium) polypeptide substrate in which all prolyl residues recognized by prolyl 4-hydroxylase have been converted to 4-hydroxyprolyl residues. The formation of THO was essentially linear with enzyme concentration and time, and the Km for the polypeptide substrate was about 3.4 × 10?8m. A linear correlation was found between THO release and the synthesis of 3-hydroxyproline, the latter being analyzed by amino acid analyzer. The assay is simple, rapid, sensitive, and reproducible, and it is specific even in tissue samples containing a large excess of prolyl 4-hydroxylase activity.  相似文献   

19.
From the structure-activity relationships of known competitive inhibitors, coumalic acid (2-oxo-1,2H-pyran-5-carboxylic acid) was deduced to be a potential syncatalytic inhibitor for chick-embryo prolyl 4-hydroxylase. The compound caused time-dependent inactivation, the reaction rate being first-order. The inactivation constant was 0.094 min-1, the Ki 17 mM and the bimolecular rate constant 0.09 M-1 X S-1. Human prolyl 4-hydroxylase and chick embryo lysyl hydroxylase were also inactivated, though to a lesser extent. Inactivation could be prevented by adding high concentrations of 2-oxoglutarate or its competitive analogues to the reaction mixture. In Lineweaver-Burk kinetics, coumalic acid displayed S-parabolic competitive inhibition with respect to 2-oxoglutarate. The inactivation reaction had cofactor requirements similar to those for the decarboxylation of 2-oxoglutarate. Enzymic activity was partially preserved in the absence of iron, but the rescue was incomplete, owing to decreased stability of the enzyme under this condition. Coumalic acid also decreased the electrophoretic mobility of the alpha-subunit, but the beta-subunit was not affected. Prolonged incubation of coumalic acid above pH 6.8 led to loss of its inactivating potency, owing to hydrolysis. It is concluded that the inactivation of prolyl 4-hydroxylase by coumalic acid is due to a syncatalytic mechanism. The data also suggest that the 2-oxoglutarate-binding site of the enzyme is located within the alpha-subunit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号