首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Staphylococcus aureus is capable of infecting nearly every organ in the human body. In order to infiltrate and thrive in such diverse host tissues, staphylococci must possess remarkable flexibility in both metabolic and virulence programs. To investigate the genetic requirements for bacterial survival during invasive infection, we performed a transposon sequencing (TnSeq) analysis of S. aureus during experimental osteomyelitis. TnSeq identified 65 genes essential for staphylococcal survival in infected bone and an additional 148 mutants with compromised fitness in vivo. Among the loci essential for in vivo survival was SrrAB, a staphylococcal two-component system previously reported to coordinate hypoxic and nitrosative stress responses in vitro. Healthy bone is intrinsically hypoxic, and intravital oxygen monitoring revealed further decreases in skeletal oxygen concentrations upon S. aureus infection. The fitness of an srrAB mutant during osteomyelitis was significantly increased by depletion of neutrophils, suggesting that neutrophils impose hypoxic and/or nitrosative stresses on invading bacteria. To more globally evaluate staphylococcal responses to changing oxygenation, we examined quorum sensing and virulence factor production in staphylococci grown under aerobic or hypoxic conditions. Hypoxic growth resulted in a profound increase in quorum sensing-dependent toxin production, and a concomitant increase in cytotoxicity toward mammalian cells. Moreover, aerobic growth limited quorum sensing and cytotoxicity in an SrrAB-dependent manner, suggesting a mechanism by which S. aureus modulates quorum sensing and toxin production in response to environmental oxygenation. Collectively, our results demonstrate that bacterial hypoxic responses are key determinants of the staphylococcal-host interaction.  相似文献   

2.
Activation and mechanism of action of suppressor macrophages   总被引:1,自引:0,他引:1  
Intravenous administration of Corynebacterium parvum to alloimmunized mice activates splenic suppressor macrophages that effectively curtail primary and secondary generation of cytotoxic T lymphocytes (CTLs) in vitro. CTL generation was significantly inhibited in suppressed primary cultures by Day 3, the earliest time point that activity is first detected in control cultures. Suppressor macrophages had to be present during the first 24–48 hr of culture to effectively curtail the generation of CTLs. However, if suppressor macrophages were reactivated by 48-hr in vitro culture and then added to primary sensitizations that had been initiated 48 hr previously, they were capable of significant suppression. Suppressor cells produced a soluble factor that mediated the inhibition of CTL generation. The production or action of this factor could not be counteracted by indomethacin.  相似文献   

3.
Class 1 integrons are widespread genetic elements playing a major role in the dissemination of antibiotic resistance. They allow bacteria to capture, express and exchange antibiotic resistance genes embedded within gene cassettes. Acquisition of gene cassettes is catalysed by the class 1 integron integrase, a site-specific recombinase playing a key role in the integron system. In in vitro planktonic culture, expression of intI1 is controlled by the SOS response, a regulatory network which mediates the repair of DNA damage caused by a wide range of bacterial stress, including antibiotics. However, in vitro experimental conditions are far from the real lifestyle of bacteria in natural environments such as the intestinal tract which is known to be a reservoir of integrons. In this study, we developed an in vivo model of intestinal colonization in gnotobiotic mice and used a recombination assay and quantitative real-time PCR, to investigate the induction of the SOS response and expression and activity of the class 1 integron integrase, IntI1. We found that the basal activity of IntI1 was higher in vivo than in vitro. In addition, we demonstrated that administration of a subinhibitory concentration of ciprofloxacin rapidly induced both the SOS response and intI1 expression that was correlated with an increase of the activity of IntI1. Our findings show that the gut is an environment in which the class 1 integron integrase is induced and active, and they highlight the potential role of integrons in the acquisition and/or expression of resistance genes in the gut, particularly during antibiotic therapy.  相似文献   

4.
The conditions for the in vitro generation of primary and secondary immune responses by rabbit spleen cells to sheep red blood cell (SRBC) antigen have been examined. Spleen cells from many normal and all previously immunized rabbits are capable of producing in vitro plaque-forming cell (PFC) responses when cultured as dissociated cell suspensions in the presence of antigen. Primed spleen cells generate approximately 100 times the number of PFCs obtained in normal cultures with a shorter lag period. Both types of cultures demonstrate a period of exponential increase in PFCs during which the doubling time is 12–14 hr. This increase occurs after 1 day of culture of spleen cells from primed rabbits and after 4 days of culture of spleen cells from unprimed rabbits. The PFCs which arise in cultures of primed cells appear not to be the progeny of those generated in vivo but to be derived from an increased number of PFC precursors. Repeated immunization of the spleen cell donor is required to produce significant numbers of indirect (IgG) PFC or indirect precursors; most of the PFC found after a single immunization in vivo or in vitro are direct (IgM). There is no evidence for conversion of IgM to IgG PFC in vitro. This system should provide a means for further identification of the cellular interactions involved in the immune response of the rabbit.  相似文献   

5.
The plaque-forming cell and proliferative responses of human peripheral blood lymphocytes induced by formalin-treated Staphylococcus aureus of the Cowan strain were studied in vitro. Human blood mononuclear cells were incubated for 6 days with staphylococci in culture medium RPMI 1640 supplemented with 10% human AB serum. The number of anti-sheep erythrocyte plaque-forming cells was determined by the Jerne technique. Lymphocyte proliferation was measured by [3H]thymidine incorporation. Individual lymphocyte donors could be classified as high or low responders to staphylococci. Lymphocyte proliferation appeared necessary for the generation of plaque-forming cells. The plaque-forming cell response was greatly influenced by the source of the human AB serum used in the culture medium. The addition of hydrocortisone to the culture medium augmented the plaque-forming cell response. Human B lymphocytes prepared by passage through a column containing Sepharose 4B conjugated to anti-human F(ab)2 generated plaque-forming cells when incubated with staphylococci. However, the addition of T lymphocytes to these B-lymphocyte preparations augmented the plaque-forming cell response to staphylococci.  相似文献   

6.
7.
In the late 1940s, epidemics of antibiotic-resistant strains of Staphylococcus aureus began to plague postpartum nurseries in hospitals across the United States. Exacerbated by overcrowding and nursing shortages, resistant S. aureus outbreaks posed a novel challenge to physicians and nurses heavily reliant on antibiotics as both prophylaxis and treatment. This paper explores the investigation of the reservoir, mode of transmission, and virulence of S. aureus during major hospital outbreaks and the subsequent implementation of novel infection control measures from the late 1940s through the early 1960s. The exploration of these measures reveals a shift in infection control policy as hospitals, faced with the failure of antibiotics to slow S. aureus outbreaks, implemented laboratory culture routines, modified nursery structure and layout, and altered nursing staff procedures to counter various forms of S. aureus transmission. Showcasing the need for widespread epidemiologic surveillance, ultimately manifesting itself in specialized “hospital epidemiology” training promoted in the 1970s, the challenges faced by hospital nurses in the 1950s prove highly relevant to the continued struggle with methicillin-resistant Staphylococcus aureus (MRSA) and other resistant nosocomial infections.  相似文献   

8.
Interferon induced in mouse spleen cells by Staphylococcus aureus   总被引:4,自引:0,他引:4  
Interferon was produced in suspensions of mouse spleen cells treated with Staphylococcus aureus preparations (killed bacteria, culture supernatants, or purified enterotoxin) under a variety of cell culture conditions. The lysate of S. aureus was found to induce high levels of interferon (103.1 to 104.3 RU/ml) within 72 hr. The crude interferon was concentrated and partially purified by either ammonium sulfate precipitation or adsorption to silicic acid and elution by ethylene glycol-containing buffer. Sequential precipitation with 50 to 80% saturated ammonium sulfate resulted in a three- to seven-fold purification with 60% recovery of activity. Adsorption to silicic acid resulted in a 25- to 80-fold purification with 77% recovery. This material was further analyzed by gel filtration. The antiviral activity induced by S. aureus-treated spleen cells was characterized as due to interferon. Furthermore, the inhibitor was acidlabile and not neutralizable by antiserum against NDV-induced L-cell interferon, thus exhibiting properties of immune (γ) interferon. The partially purified interferon was used to prepare an antiserum in rabbits. This antiserum was able to neutralize mouse interferon induced by several T-cell mitogens, by antigens, and by mixed lymphocyte cultures, while remaining inactive against interferons induced in vitro by viruses or in vivo by Brucella abortus.  相似文献   

9.
10.
To slow the inexorable rise of antibiotic resistance we must understand how drugs impact on pathogenesis and influence the selection of resistant clones. Staphylococcus aureus is an important human pathogen with populations of antibiotic-resistant bacteria in hospitals and the community. Host phagocytes play a crucial role in controlling S. aureus infection, which can lead to a population “bottleneck” whereby clonal expansion of a small fraction of the initial inoculum founds a systemic infection. Such population dynamics may have important consequences on the effect of antibiotic intervention. Low doses of antibiotics have been shown to affect in vitro growth and the generation of resistant mutants over the long term, however whether this has any in vivo relevance is unknown. In this work, the population dynamics of S. aureus pathogenesis were studied in vivo using antibiotic-resistant strains constructed in an isogenic background, coupled with systemic models of infection in both the mouse and zebrafish embryo. Murine experiments revealed unexpected and complex bacterial population kinetics arising from clonal expansion during infection in particular organs. We subsequently elucidated the effect of antibiotic intervention within the host using mixed inocula of resistant and sensitive bacteria. Sub-curative tetracycline doses support the preferential expansion of resistant microorganisms, importantly unrelated to effects on growth rate or de novo resistance acquisition. This novel phenomenon is generic, occurring with methicillin-resistant S. aureus (MRSA) in the presence of β-lactams and with the unrelated human pathogen Pseudomonas aeruginosa. The selection of resistant clones at low antibiotic levels can result in a rapid increase in their prevalence under conditions that would previously not be thought to favor them. Our results have key implications for the design of effective treatment regimes to limit the spread of antimicrobial resistance, where inappropriate usage leading to resistance may reduce the efficacy of life-saving drugs.  相似文献   

11.
Invasive Staphylococcus aureus infections are frequently associated with bacteraemia. To support clinical decisions on antibiotic therapy, there is an urgent need for reliable markers as predictors of infection outcome. In the present study in mice, bacteraemia was established by intravenous inoculation of a clinical S. aureus isolate at the LD50 inoculum. As potential biomarkers for fatal outcome, blood culture (qualitative and quantitative), serum levels of C-reactive protein (CRP), as well as 31 selected cytokines and chemokines were assessed during the first three days of infection. A positive S. aureus blood culture, the quantitative blood culture, CRP levels, and levels of eight cytokines were indicative for the presence of S. aureus bacteraemia. However, only tumor necrosis factor (TNF) α, interleukin (IL) 1α, and keratinocyte chemoattractant (KC; a functional homologue of human IL-8) were each significantly elevated in eventually non-surviving infected mice versus eventually surviving infected mice. In severe S. aureus bacteraemia in mice, TNF-α, IL-1α, and KC are biomarkers predicting fatal outcome of infection. KC was a biomarker elevated irrespective the progression of infection, which is very interesting regarding clinical application in view of the heterogeneity of patients experiencing bacteraemia in this respect.  相似文献   

12.
Staphylococcus aureus produces many virulence factors, including toxins, immune-modulatory factors, and exoenzymes. Previous studies involving the analysis of virulence expression were mainly performed by in vitro experiments using bacterial medium. However, when S. aureus infects a host, the bacterial growth conditions are quite different from those in a medium, which may be related to the different expression of virulence factors in the host. In this study, we investigated the expression of virulence factors in S. aureus grown in calf serum. The expression of many virulence factors, including hemolysins, enterotoxins, proteases, and iron acquisition factors, was significantly increased compared with that in bacterial medium. In addition, the expression of RNA III, a global regulon for virulence expression, was significantly increased. This effect was partially restored by the addition of 300 μM FeCl3 into serum, suggesting that iron depletion is associated with the increased expression of virulence factors in serum. In chemically defined medium without iron, a similar effect was observed. In a mutant with agr inactivated grown in serum, the expression of RNA III, psm, and sec4 was not increased, while other factors were still induced in the mutant, suggesting that another regulatory factor(s) is involved. In addition, we found that serum albumin is a major factor for the capture of free iron to prevent the supply of iron to bacteria grown in serum. These results indicate that S. aureus expresses virulence factors in adaptation to the host environment.  相似文献   

13.
14.
Staphylococcus aureus is a prominent human pathogen and leading cause of bacterial infection in hospitals and the community. Community-associated methicillin-resistant S. aureus (CA-MRSA) strains such as USA300 are highly virulent and, unlike hospital strains, often cause disease in otherwise healthy individuals. The enhanced virulence of CA-MRSA is based in part on increased ability to produce high levels of secreted molecules that facilitate evasion of the innate immune response. Although progress has been made, the factors that contribute to CA-MRSA virulence are incompletely defined. We analyzed the cell surface proteome (surfome) of USA300 strain LAC to better understand extracellular factors that contribute to the enhanced virulence phenotype. A total of 113 identified proteins were associated with the surface of USA300 during the late-exponential phase of growth in vitro. Protein A was the most abundant surface molecule of USA300, as indicated by combined Mascot score following analysis of peptides by tandem mass spectrometry. Unexpectedly, we identified a previously uncharacterized two-component leukotoxin–herein named LukS-H and LukF-G (LukGH)-as two of the most abundant surface-associated proteins of USA300. Rabbit antibody specific for LukG indicated it was also freely secreted by USA300 into culture media. We used wild-type and isogenic lukGH deletion strains of USA300 in combination with human PMN pore formation and lysis assays to identify this molecule as a leukotoxin. Moreover, LukGH synergized with PVL to enhance lysis of human PMNs in vitro, and contributed to lysis of PMNs after phagocytosis. We conclude LukGH is a novel two-component leukotoxin with cytolytic activity toward neutrophils, and thus potentially contributes to S. aureus virulence.  相似文献   

15.
16.
Staphylococcus aureus is an intracellular bacterium responsible for serious infectious processes. This pathogen escapes from the phagolysosomal pathway into the cytoplasm, a strategy that allows intracellular bacterial replication and survival with the consequent killing of the eukaryotic host cell and spreading of the infection. S. aureus is able to secrete several virulence factors such as enzymes and toxins. Our recent findings indicate that the main virulence factor of S. aureus, the pore-forming toxin α-hemolysin (Hla), is the secreted factor responsible for the activation of an alternative autophagic pathway. We have demonstrated that this noncanonical autophagic response is inhibited by artificially elevating the intracellular levels of cAMP. This effect is mediated by RAPGEF3/EPAC (Rap guanine nucleotide exchange factor (GEF)3/exchange protein activated by cAMP), a cAMP downstream effector that functions as a GEF for the small GTPase Rap. We have presented evidence that RAPGEF3 and RAP2B, through calpain activation, are the proteins involved in the regulation of Hla and S. aureus-induced autophagy. In addition, we have found that both, RAPGEF3 and RAP2B, are recruited to the S. aureus–containing phagosome. Of note, adding purified α-toxin or infecting the cells with S. aureus leads to a decrease in intracellular cAMP levels, which promotes autophagy induction, a response that favors pathogen intracellular survival, as previously demonstrated. We have identified some key signaling molecules involved in the autophagic response upon infection with a bacterial pathogen, which have important implications in understanding innate immune defense mechanisms.  相似文献   

17.
Staphylococcus lugdunensis is the only coagulase-negative Staphylococcus species with a locus encoding iron-regulated surface determinant (Isd) proteins. In Staphylococcus aureus, the Isd proteins capture heme from hemoglobin and transfer it across the wall to a membrane-bound transporter, which delivers it into the cytoplasm, where heme oxygenases release iron. The Isd proteins of S. lugdunensis are expressed under iron-restricted conditions. We propose that S. lugdunensis IsdB and IsdC proteins perform the same functions as those of S. aureus. S. lugdunensis IsdB is the only hemoglobin receptor within the isd locus. It specifically binds human hemoglobin with a dissociation constant (Kd) of 23 nM and transfers heme on IsdC. IsdB expression promotes bacterial growth in an iron-limited medium containing human hemoglobin but not mouse hemoglobin. This correlates with weak binding of IsdB to mouse hemoglobin in vitro. Unlike IsdB and IsdC, the proteins IsdJ and IsdK are not sorted to the cell wall in S. lugdunensis. In contrast, IsdJ expressed in S. aureus and Lactococcus lactis is anchored to peptidoglycan, suggesting that S. lugdunensis sortases may differ in signal recognition or could be defective. IsdJ and IsdK are present in the culture supernatant, suggesting that they could acquire heme from the external milieu. The IsdA protein of S. aureus protects bacteria from bactericidal lipids due to its hydrophilic C-terminal domain. IsdJ has a similar region and protected S. aureus and L. lactis as efficiently as IsdA but, possibly due to its location, was less effective in its natural host.  相似文献   

18.
The ascitic fluids from patients with cancer metastatic to the peritoneum contain a factor(s) which stimulates the primary antibody response to sheep red blood cells (SRBC) in vitro. This enhancement is manifested by an increase in the number of plaque-forming cells per culture and a slight increase in plaque size. This factor has a molecular weight in the range 30,000–100,000 as determined by Sephadex gel filtration. The factor, which we have called “stimulatory factor” (SF), will completely replace the requirement for fetal calf serum in the Mishell-Dutton type of assay. Enhancement of the antibody response is most apparent at suboptimal culture conditions. SF does not increase the number of plaque-forming cells to the T-independent antigen Escherichia coli but there is a marked increase in the size of the plaques produced to the lipopolysaccharide using coated SRBC as targets. The stimulation induced by this factor is not due to endotoxin contamination since endotoxin is heat stable and the SF is heat inactivated at 80 °C for 10 min. In addition endotoxin does not act in a manner similar to SF. Thus, the SF appears to influence both T and B cells. With thymus-dependent antigen the factor results in increased numbers of antibody cells being generated; with thymus-independent antigen the factor results in increased quantity of antibody being produced.  相似文献   

19.
Biotic and abiotic stresses impose a major threat to agriculture. Therefore, the efforts to develop stress-tolerant plants are of immense importance to increase crop productivity. In recent years, tissue culture based in vitro selection has emerged as a feasible and cost-effective tool for developing stress-tolerant plants. Plants tolerant to both the biotic and the abiotic stresses can be acquired by applying the selecting agents such as NaCl (for salt tolerance), PEG or mannitol (for drought tolerance) and pathogen culture filtrate, phytotoxin or pathogen itself (for disease resistance) in the culture media. Only the explants capable of sustaining such environments survive in the long run and are selected. In vitro selection is based on the induction of genetic variation among cells, tissues and/or organs in cultured and regenerated plants. The selection of somaclonal variations appearing in the regenerated plants may be genetically stable and useful in crop improvement. This review focuses on the progress made towards the development of stress-tolerant lines through tissue culture based in vitro selection. Plants have evolved many biochemical and molecular mechanisms to survive under stress conditions. The mechanisms of ROS (reaction oxygen species) generation and removal in plants under biotic and abiotic stress conditions have also been reviewed.  相似文献   

20.
Staphylococcus aureus causes a spectrum of human infection. Diagnostic delays and uncertainty lead to treatment delays and inappropriate antibiotic use. A growing literature suggests the host’s inflammatory response to the pathogen represents a potential tool to improve upon current diagnostics. The hypothesis of this study is that the host responds differently to S. aureus than to E. coli infection in a quantifiable way, providing a new diagnostic avenue. This study uses Bayesian sparse factor modeling and penalized binary regression to define peripheral blood gene-expression classifiers of murine and human S. aureus infection. The murine-derived classifier distinguished S. aureus infection from healthy controls and Escherichia coli-infected mice across a range of conditions (mouse and bacterial strain, time post infection) and was validated in outbred mice (AUC>0.97). A S. aureus classifier derived from a cohort of 94 human subjects distinguished S. aureus blood stream infection (BSI) from healthy subjects (AUC 0.99) and E. coli BSI (AUC 0.84). Murine and human responses to S. aureus infection share common biological pathways, allowing the murine model to classify S. aureus BSI in humans (AUC 0.84). Both murine and human S. aureus classifiers were validated in an independent human cohort (AUC 0.95 and 0.92, respectively). The approach described here lends insight into the conserved and disparate pathways utilized by mice and humans in response to these infections. Furthermore, this study advances our understanding of S. aureus infection; the host response to it; and identifies new diagnostic and therapeutic avenues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号