首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
House dust mite (HDM), the most common allergen, activate both the IgE-associated and innate immune responses. To clarify the process of sensitization, we investigated the role of the CCL21, CCL19, and CCR7 axis in a mouse model of HDM-induced allergic asthma. HDM inhalation without systemic immunization resulted in a HDM-specific IgE response. CCR7-knockout (CCR7KO) mice exhibited greater airway inflammation and IgE responses compared to wild-type mice. We examined FoxP3 expression in these mice to clarify the contribution of regulatory cells to the responses. FoxP3 expression was higher in the lungs but not in the lymph nodes of CCR7KO mice compared to wild-type mice. In CCR7KO mice, FoxP3-positive cells were found in lung, but we observed higher release of IL-13, IL-5, TGF-β, IL-17, and HMGB1 in bronchoalveolar lavage fluid. We demonstrate here that immuno-regulation through CCR7 expression in T cells plays a role in HDM-specific sensitization in the airway.  相似文献   

2.
The cytokines released from Th2 and Th2-like cells are likely to be central to the pathophysiolgy of asthma and allergy, contributing to aberrant IgE production, eosinophilia and, perhaps, mucosal susceptibility to viral infection. IL-4 has emerged as a central target, not only for B cell IgE production, but also in the commitment of both CD4+ and CD8+ T cells to cells with Th2 effector function capable of secreting IL-5 resultlng in eosinophilic inflammation. In view of the central role of this cytokine and the evidence that glucocorticoids are unable to modify many IL-4 dependent effects, Th2 inhibitors may prove to be novel therapies for the treatment of bronchial asthma.  相似文献   

3.
Increased numbers of pulmonary dendritic cells (DCs) are recruited to the lungs during allergic airway inflammation and contribute to the maintenance of the inflammatory immune response. The chemokine receptors that directly control DC accumulation into the lungs are largely unknown. To explore this issue, we generated mixed bone marrow chimeric mice containing both wild-type and knockout cells for a given chemokine receptor. After induction of allergic airway inflammation, we specifically tracked and compared chemokine receptor knockout vs wild-type DC populations through various lung compartments. Using this approach, we show that CCR2, but not CCR5 or CCR6, directly controls the accumulation of DCs into allergic lungs. Furthermore, the size of inflammatory monocyte populations in peripheral blood was strikingly CCR2 dependent, suggesting that CCR2 primarily mediates the release of monocytic DC precursors into the bloodstream.  相似文献   

4.
Enhanced Th2 cell-mediated allergic inflammation in Tyk2-deficient mice   总被引:3,自引:0,他引:3  
Allergic inflammation is mediated by Th2 cell-derived cytokines, including IL-4, IL-5, and IL-13, and down-regulated by IFN-gamma and IL-12. Tyk2 is a member of the Janus family of protein tyrosine kinases and is activated by a variety of cytokines: IFN-alphabeta, IL-6, IL-10, IL-12, and IL-13. In this study, we investigated the role of Tyk2 in the regulation of Ag-induced Th cell differentiation and Ag-induced allergic inflammation in the airways using Tyk2-deficient (Tyk2(-/-)) mice. When splenocytes were stimulated with antigenic peptide, IL-12-mediated Th1 cell differentiation was decreased, but IL-4-mediated Th2 cell differentiation was increased in Tyk2(-/-) mice. In vivo, Ag-specific IgE and IgG1 production was increased, but Ag-specific IgG2a production was decreased in Tyk2(-/-) mice as compared with those in control mice. In addition, Ag-induced eosinophil and CD4(+) T cell recruitment, as well as the production of Th2 cytokines in the airways, was increased in Tyk2(-/-) mice. Adoptive transfer experiments revealed that CD4(+) T cells were responsible for the enhanced Ag-induced eosinophil recruitment in Tyk2(-/-) mice. In contrast, although the level of IL-13 was increased in the airways of Tyk2(-/-) mice after Ag inhalation, the number of goblet cells, as well as Muc5ac mRNA expression, was decreased in Tyk2(-/-) mice. Together, these results indicate that Tyk2 plays a bilateral role in the regulation of allergic inflammation in the airways: Tyk2 plays a role in the down-regulation of Th2 cell-mediated Ab production and eosinophil recruitment in the airways by regulating Th1/Th2 balance toward Th1-type, while Tyk2 is necessary for the induction of IL-13-mediated goblet cell hyperplasia in the airways.  相似文献   

5.
It is now well established that passive exposure to inhaled OVA leads to a state of immunological tolerance. Therefore, to elicit allergic sensitization, researchers have been compelled to devise alternative strategies, such as the systemic delivery of OVA in the context of powerful adjuvants, which are alien to the way humans are exposed and sensitized to allergens. The objectives of these studies were to investigate immune-inflammatory responses to intranasal delivery of a purified house dust mite (HDM) extract and to evaluate the role of GM-CSF in this process. HDM was delivered to BALB/c mice daily for 10 days. After the last exposure, mice were killed, bronchoalveolar lavage was performed, and samples were obtained. Expression/production of Th2-associated molecules in the lymph nodes, lung, and spleen were evaluated by real-time quantitative PCR and ELISA, respectively. Using this exposure protocol, exposure to HDM alone generated Th2 sensitization based on the expression/production of Th2 effector molecules and airway eosinophilic inflammation. Flow cytometric analysis demonstrated expansion and activation of APCs in the lung and an influx of activated Th2 effector cells. Moreover, this inflammation was accompanied by airways hyper-responsiveness and a robust memory-driven immune response. Finally, administration of anti-GM-CSF-neutralizing Abs markedly reduced immune-inflammatory responses in both lung and spleen. Thus, intranasal delivery of HDM results in Th2 sensitization and airway eosinophilic inflammation that appear to be mediated, at least in part, by endogenous GM-CSF production.  相似文献   

6.
In this study, we demonstrate that Dermatophagoides farinae (Der f), a major source of airborne allergens, but not OVA, could rapidly activate mast cells in mice. This was indicated by an elevation of serum mouse mast cell protease 1, a mast cell-specific proteinase, as early as 30 min after intratracheal challenge. Administration of sodium cromoglycate (40 mg/kg, i.p., 1 h before Der f instillation), a mast cell stabilizer, not only suppressed acute mouse mast cell protease 1 production but also attenuated the allergic airway inflammation provoked by repetitive Der f challenge in mice (five times at 1-wk interval). Der f induced the expression of mRNA for TNF-alpha, IL-1beta, IL-4, IL-6, IL-9, and IL-13 in mastocytoma P815 cells and stimulated both P815 cells and bone marrow-derived mast cells to produce IL-4, IL-6, and TNF-alpha in a dose- and time-dependent manner. Cycloheximide as well as sodium cromoglycate blocked the Der f-induced IL-4 production, indicating a de novo protein synthesis process. Supernatants of Der f-stimulated mast cells chemoattracted monocytes and T lymphocytes; they up-regulated the expression of costimulatory B7 molecules, eotaxin, RANTES, monocyte chemoattractant protein 1, and IFN-inducible protein 10 mRNA of alveolar macrophages; they supported PHA-induced T cell proliferation; and they promoted Th2 cell development. Our data indicate that mast cells may be an important cell type during the initiation of Der f sensitization in the airway by modulating the function of alveolar macrophages and T cells.  相似文献   

7.
8.
IL-27 up-regulates Th1 but down-regulates Th2 responses. However, its molecular mechanism and regulatory effects on polarized Th2 cells remain unclear. In this study, we have revealed that IL-27 inhibits Th2 cell development as well as Th2 cytokines production from already polarized Th2 cells by down-regulation of GATA-3 and up-regulation of T-bet expression simultaneously. In vivo daily IL-27 treatment for 1 wk after Leishmania major infection protects BALB/c mice from footpad swelling by diminishing parasite burden via reciprocal regulation of Th1 and Th2 responses. Furthermore, IL-27 stimulation causes marked reduction in the capacity of host mouse to mount a Th2 response against Strongyloides venezuelensis infection. Thus, IL-27-treated mice failed to develop intestinal mastocytosis after S. venezuelensis infection and exhibited a marked delay in parasite expulsion. Finally, intranasal administration of IL-27 inhibits OVA-induced airway hyperresponsiveness and inflammation in OVA-sensitized animals. Thus, IL-27 could provide us with a novel therapeutic way for treating Th2-associated diseases such as bronchial asthma.  相似文献   

9.
Dendritic cells (DC) are potent antigen - presenting cells that can orientate the immune response towards a Th1 or a Th2 type. DC produce chemokines that are involved in the recruitment of either Th1 cells, such as IP10 (CXCL10), Th2 cells such as TARC (CCL17) and MDC (CCL22), or non-polarized T cells such as RANTES (CCL5) and MIP-lalpha (CCL3). We investigated whether monocyte-derived DC (MD-DC) generated from healthy donors or from patients sensitive to Dermatophagoides pteronyssinus (Dpt) and exposed to the cysteine-protease Der p 1(allergen of Dpt), could upregulate the expression of chemokines involved in type 1 or type 2 T cell recruitment. MD-DC were pulsed with either Der p 1 or with LPS as the control and the chemokines produced were evaluated using ELISA and chemotaxis assays. Der p 1-pulsed DC from allergic patients showed increased TARC (CCL17) and MDC (CCL22) production without modifying IP-10 (CXCL10) release. Der p 1-pulsed DC from healthy donors showed only increased IP-10 (CXCL10) secretion. RANTES (CCL5) and MIP-lalpha (CCL3) production were similarly increased when DC were from healthy or allergic donors. The selective Th2 clone recruitment activity of supernatants from Der p 1-pulsed DC of allergic patients was inhibited by anti-TARC (CCL17) and anti-MDC (CCL22) neutralizing Abs. By using anti-IP10 (CXCL10) blocking Abs, supernatants of Der p 1-pulsed DC from healthy donors were shown to be involved in the recruitment of Th1 cells. These results suggest that in allergic patients exposed to house dust mites, DC may favour the exacerbation of the Th2 response via the increase in type 2 chemokine production.  相似文献   

10.
CCL1 is the predominant chemokine secreted from IgE-activated human and mouse mast cells in vitro, colocalizes to mast cells in lung biopsies, and is elevated in asthmatic airways. CCR8, the receptor for CCL1, is expressed by approximately 70% of CD4(+) T lymphocytes recruited to the asthmatic airways, and the number of CCR8-expressing cells is increased 3-fold in the airways of asthmatic subjects compared with normal volunteers. In vivo, CCL1 expression in the lung is reduced in mast cell-deficient mice after aeroallergen provocation. Neutralization of CCL1 or CCR8 deficiency results in reduced mucosal lung inflammation, airway hyperresponsiveness, and mucus hypersecretion to a similar degree as detected in mast cell-deficient mice. Adenoviral delivery of CCL1 to the lungs of mast cell-deficient mice restores airway hyperresponsiveness, lung inflammation, and mucus hypersecretion to the degree observed in wild-type mice. The consequences of CCR8 deficiency, including a marked reduction in Th2 cytokine levels, are comparable with those observed by depletion of CD4(+) T lymphocytes. Thus, mast cell-derived CCL1- and CCR8-expressing CD4(+) effector T lymphocytes play an essential role in orchestrating lung mucosal inflammatory responses.  相似文献   

11.

Background

A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2); however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear.

Methods

Mice (wild type and PAR-2-deficient) were sensitized using German cockroach (GC) feces (frass), the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC) and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production), serum IgE levels and airway hyperresponsiveness (AHR) were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry.

Results

Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice. Importantly, GC frass-stimulated wild type BMDCs were sufficient to induce AHR and allergic airway inflammation, while GC frass-stimulated PAR-2-deficient BMDC had attenuated responses.

Conclusions

Together these data suggest an important role for allergen activation of PAR-2 on mDCs in mediating Th2/Th17 cytokine production and allergic airway responses.  相似文献   

12.
Cellular FLIP long form (c-FLIP(L)) is a caspase-defective homologue of caspase-8 that blocks apoptosis by death receptors. The expression of c-FLIP(L) in T cells can also augment extracellular signal-regulated kinase phosphorylation after TCR ligation via the association of c-FLIP(L) with Raf-1. This contributes to the hyperproliferative capacity of T cells from c-FLIP(L)-transgenic mice. In this study we show that activated CD4(+) T cells from c-FLIP(L)-transgenic mice produce increased amounts of Th2 cytokines and decreased amounts of Th1 cytokines. This correlates with increased serum concentrations of the Th2-dependent IgG1 and IgE. The Th2 bias of c-FLIP(L)-transgenic CD4(+) T cells parallels impaired NF-kappa B activity and increased levels of GATA-3, which contribute, respectively, to decreased IFN-gamma and increased Th2 cytokines. The Th2 bias of c-FLIP(L)-transgenic mice extends to an enhanced sensitivity to OVA-induced asthma. Taken together, these results show that c-FLIP(L) can influence cytokine gene expression to promote Th2-driven allergic reaction, in addition to its traditional role of blocking caspase activation induced by death receptors.  相似文献   

13.
Lung CD11c(high) dendritic cells (DC) are comprised of two major phenotypically distinct populations, the CD11b(high) DC and the integrin alpha(E)beta(7)(+) DC (CD103(+) DC). To examine whether they are functionally distinguishable, global microarray studies and real-time PCR analysis were performed. Significant differences between the two major CD11c(high) DC types in chemokine mRNA expression were found. CD11b(high) DC is a major secretory cell type and highly expressed at least 16 chemokine mRNA in the homeostatic state, whereas CD103(+) DC highly expressed only 6. Intracellular chemokine staining of CD11c(high) lung cells including macrophages, and ELISA determination of sort-purified CD11c(high) cell culture supernatants, further showed that CD11b(high) DC produced the highest levels of 9 of 14 and 5 of 7 chemokines studied, respectively. Upon LPS stimulation in vitro and in vivo, CD11b(high) DC remained the highest producer of 7 of 10 of the most highly produced chemokines. Induction of airway hyperreactivity and lung inflammation increased lung CD11b(high) DC numbers markedly, and they produced comparable or higher amounts of 11 of 12 major chemokines when compared with macrophages. Although not a major producer, CD103(+) DC produced the highest amounts of the Th2-stimulating chemokines CCL17/thymus and activation-related chemokine and CCL22/monocyte-derived chemokine in both homeostasis and inflammation. Significantly, CCL22/monocyte-derived chemokine exhibited regulatory effects on CD4(+) T cell proliferation. Further functional analysis showed that both DC types induced comparable Th subset development. These studies showed that lung CD11b(high) DC is one of the most important leukocyte types in chemokine production and it is readily distinguishable from CD103(+) DC in this secretory function.  相似文献   

14.
CCR7 was described initially as a potent leukocyte chemotactic receptor that was later shown to be responsible of directing the migration of dendritic cells (DCs) to the lymph nodes where these cells play an important role in the initiation of the immune response. Recently, a variety of reports have indicated that, apart from chemotaxis, CCR7 controls the cytoarchitecture, the rate of endocytosis, the survival, the migratory speed, and the maturation of the DCs. Some of these functions of CCR7 and additional ones also have been described in other cell types. Herein we discuss how this receptor may contribute to modulate the immune response by regulating different functions in DCs. Finally, we also suggest a possible mechanism whereby CCR7 may control its multiple tasks in these cells.  相似文献   

15.
In the mucosal immune system, resident dendritic cells are specialized for priming Th2-polarized immunity, whereas the Ag-presenting activity of macrophages has been linked with the development of Th1 phenotype. As an immune switch toward Th1 can protect against Th2-mediated allergic response, this study investigated the capacity of lung macrophages to stimulate Th1 responses during the secondary exposure to inhaled allergen, thereby suppressing Th2-mediated allergic airway inflammation in a murine model of allergic asthma. Following airway macrophage depletion in OVA-sensitized mice, lung T cells defaulted to a phenotype that produced less Th1 (IFN-gamma) and more Th2 (IL-4 and IL-5) cytokines, leading to more severe airway hyperreactivity and inflammation after intranasal Ag challenge. After OVA pulsing and adoptive transfer, lung macrophages selectively promoted a Th1 response in Ag-sensitized recipients and did not induce pulmonary eosinophilia. By contrast, OVA pulsing and adoptive transfer of a lung cell preparation, consisting of dendritic cells, B cells, and macrophages, promoted a Th2 response with an associated inflammatory response that was suppressed when macrophages were present and pretreated with IFN-gamma, but exacerbated when macrophages were depleted before IFN-gamma treatment. In addition, Th1-promoting activity of lung macrophages was not related to the autocrine production of IL-12p40. These results suggest that the Th1-promoting APC activity may be an inherent property of the lung macrophage population, and may play an important role, upon stimulation by IFN-gamma, in antagonizing an ongoing Th2 immunity and Th2-dependent allergic responses.  相似文献   

16.
We have previously shown that human myeloid dendritic cells treated with purified rotavirus induce an allogenic Th1 response. To determine if rotavirus in the context of an intestinal microenvironment modulates the function of dendritic cells, we treated these cells with supernatants from non-infected or infected Caco-2 cells and studied their capacity to promote Th1 or Th2 responses. Dendritic cells treated with supernatants from rotavirus-infected Caco-2 cells promoted a significantly lower Th1 response, in comparison with those treated with purified rotavirus. We wanted to establish if TGF-β1, induced, or TSLP, not induced, during rotavirus infection, could mediate this effect. Neutralization of TGF-β but not TSLP in the supernatant prior to treatment of dendritic cells increased their capacity to promote a Th1 response. The results suggest that the TGF-β1 induced by rotavirus could be an immune evasion mechanism, and may partially explain the poor rotavirus-specific T cell response we have previously evidenced.  相似文献   

17.
Agua-Doce A  Graca L 《PloS one》2011,6(7):e22320
Allergic airways disease is a consequence of a Th2 response to an allergen leading to a series of manifestations such as production of allergen-specific IgE, inflammatory infiltrates in the airways, and airway hyper-reactivity (AHR). Several strategies have been reported for tolerance induction to allergens leading to protection from allergic airways disease. We now show that CD4 blockade at the time of house dust mite sensitization induces antigen-specific tolerance in mice. Tolerance induction is robust enough to be effective in pre-sensitized animals, even in those where AHR was pre-established. Tolerant mice are protected from airways eosinophilia, Th2 lung infiltration, and AHR. Furthermore, anti-CD4 treated mice remain immune competent to mount immune responses, including Th2, to unrelated antigens. Our findings, therefore, describe a strategy for tolerance induction potentially applicable to other immunogenic proteins besides allergens.  相似文献   

18.
19.
Analysis of the CD1 antigen presenting system in humanized SCID mice   总被引:1,自引:0,他引:1  
CD1 molecules are glycoproteins that present lipids and glycolipids for recognition by T cells. CD1-dependent immune activation has been implicated in a wide range of immune responses, however, our understanding of the role of this pathway in human disease remains limited because of species differences between humans and other mammals: whereas humans express five different CD1 gene products (CD1a, CD1b, CD1c, CD1d, and CD1e), muroid rodents express only one CD1 isoform (CD1d). Here we report that immune deficient mice engrafted with human fetal thymus, liver, and CD34(+) hematopoietic stem cells develop a functional human CD1 compartment. CD1a, b, c, and d isoforms were highly expressed by human thymocytes, and CD1a(+) cells with a dendritic morphology were present in the thymic medulla. CD1(+) cells were also detected in spleen, liver, and lungs. APCs from spleen and liver were capable of presenting bacterial glycolipids to human CD1-restricted T cells. ELISpot analyses of splenocytes demonstrated the presence of CD1-reactive IFN-γ producing cells. CD1d tetramer staining directly identified human iNKT cells in spleen and liver samples from engrafted mice, and injection of the glycolipid antigen α-GalCer resulted in rapid elevation of human IFN-γ and IL-4 levels in the blood indicating that the human iNKT cells are biologically active in vivo. Together, these results demonstrate that the human CD1 system is present and functionally competent in this humanized mouse model. Thus, this system provides a new opportunity to study the role of CD1-related immune activation in infections to human-specific pathogens.  相似文献   

20.
Upon microbial infection, specific Th1 or Th2 responses develop depending on the type of microbe. Here, we demonstrate that different microbial compounds polarize the maturation of human myeloid dendritic cells (DCs) into stably committed Th1 cell-promoting (DC1) or Th2 cell-promoting (DC2) effector DCs that polarize Th cells via different mechanisms. Protein extract derived from the helminth Schistosoma mansoni induced the development of DC2s that promote the development of Th2 cells via the enhanced expression of OX40 ligand. Likewise, toxin from the extracellular bacterium Vibrio cholerae induced development of DC2s as well, however, via an OX40 ligand-independent, still unknown mechanism. In contrast, toxin from the intracellular bacterium Bordetella pertussis induced the development of DC1s with enhanced IL-12 production, which promotes a Th1 cell development. Poly(I:C) (dsRNA, mimic for virus) induced the development of extremely potent Th1-inducing DC1, surprisingly, without an enhanced IL-12 production. The obtained DC1s and DC2s are genuine effector cells that stably express Th cell-polarizing factors and are unresponsive to further modulation. The data suggest that the molecular basis of Th1/Th2 polarization via DCs is unexpectedly diverse and is adapted to the nature of the microbial compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号