首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tropomyosin (TM), an integral component of the thin filament, is encoded by three striated muscle isoforms: alpha-TM, beta-TM, and TPM 3. Although the alpha-TM and beta-TM isoforms are well characterized, less is known about the function of the TPM 3 isoform, which is predominantly found in the slow-twitch musculature of mammals. To determine its functional significance, we ectopically expressed this isoform in the hearts of transgenic mice. We generated six transgenic mouse lines that produce varying levels of TPM 3 message with ectopic TPM 3 protein accounting for 40-60% of the total striated muscle tropomyosin. The transgenic mice have normal life spans and exhibit no morphological abnormalities in their sarcomeres or hearts. However, there are significant functional alterations in cardiac performance. Physiological assessment of these mice by using closed-chest analyses and a work-performing model reveals a hyperdynamic effect on systolic and diastolic function. Analysis of detergent-extracted fiber bundles demonstrates a decreased sensitivity to Ca(2+) in force generation and a decrease in length-dependent Ca(2+) activation with no detectable change in interfilament spacing as determined by using X-ray diffraction. Our data are the first to demonstrate that TM isoforms can affect sarcomeric performance by decreasing sensitivity to Ca(2+) and influencing the length-dependent Ca(2+) activation.  相似文献   

3.
4.
The ends of striated muscle tropomyosin (TM) are integral for thin filament cooperativity, determining the cooperative unit size and regulating the affinity of TM for actin. We hypothesized that altering the alpha-TM carboxy terminal overlap end to the beta-TM counterpart would affect the amino-terminal association, which would alter the end-to-end interactions of TM molecules in the thin filament regulatory strand and affect the mechanisms of cardiac muscle contraction. To test this hypothesis, we generated transgenic (TG) mouse lines that express a mutant form of alpha-TM in which the first 275 residues are from alpha-TM and the last nine amino acids are from beta-TM (alpha-TM9aaDeltabeta). Molecular analyses show that endogenous alpha-TM mRNA and protein are nearly completely replaced with alpha-TM9aaDeltabeta. Working heart preparations data show that the rates of contraction and relaxation are reduced in alpha-TM9aaDeltabeta hearts. Left ventricular pressure and time to peak pressure are also reduced (-12% and -13%, respectively). The ratio of maximum to minimum first derivatives of change in left ventricular systolic pressure with respect to time (ratio of +dP/dt to -dP/dt, respectively) is increased, but tau is not changed significantly. Force-intracellular calcium concentration ([Ca2+]i) measurements from intact papillary fibers demonstrate that alpha-TM9aaDeltabeta TG fibers produce less force per given [Ca2+]i compared with nontransgenic fibers. Taken together, the data demonstrate that the rate of contraction is primarily affected in TM TG hearts. Protein docking studies show that in the mutant molecule, the overall carbon backbone is perturbed about 1.5 A, indicating that end-to-end interactions are altered. These results demonstrate that the localized flexibility present in the coiled-coil structures of TM isoforms is different, and that plays an important role in interacting with neighboring thin filament regulatory proteins and with differentially modulating the myofilament activation processes.  相似文献   

5.
Tropomyosin (TM), a ubiquitous protein, is a component of the contractile apparatus of all cells. In nonmuscle cells, it is found in stress fibers, while in sarcomeric and nonsarcomeric muscle, it is a component of the thin filament. Several different TM isoforms specific for nonmuscle cells and different types of muscle cell have been described. As for other contractile proteins, it was assumed that smooth, striated, and nonmuscle isoforms were each encoded by different sets of genes. Through the use of S1 nuclease mapping, RNA blots, and 5' extension analyses, we showed that the rat alpha-TM gene, whose expression was until now considered to be restricted to muscle cells, generates many different tissue-specific isoforms. The promoter of the gene appears to be very similar to other housekeeping promoters in both its pattern of utilization, being active in most cell types, and its lack of any canonical sequence elements. The rat alpha-TM gene is split into at least 13 exons, 7 of which are alternatively spliced in a tissue-specific manner. This gene arrangement, which also includes two different 3' ends, generates a minimum of six different mRNAs each with the capacity to code for a different protein. These distinct TM isoforms are expressed specifically in nonmuscle and smooth and striated (cardiac and skeletal) muscle cells. The tissue-specific expression and developmental regulation of these isoforms is, therefore, produced by alternative mRNA processing. Moreover, structural and sequence comparisons among TM genes from different phyla suggest that alternative splicing is evolutionarily a very old event that played an important role in gene evolution and might have appeared concomitantly with or even before constitutive splicing.  相似文献   

6.
7.
Striated muscle tropomyosin (TM) interacts with actin and the troponin complex to regulate calcium-mediated muscle contraction. Previous work by our laboratory established that alpha- and beta-TM isoforms elicit physiological differences in sarcomeric performance. Heart myofilaments containing beta-TM exhibit an increased sensitivity to calcium that is associated with a decrease in the rate of relaxation and a prolonged time of relaxation. To address whether the carboxyl-terminal, troponin T binding domain of beta-TM is responsible for these physiological alterations, we exchanged the 27 terminal amino acids of alpha-TM (amino acids 258 -284) for the corresponding region in beta-TM. Hearts of transgenic mice that express this chimeric TM protein exhibit significant decreases in their rates of contraction and relaxation when assessed by ex vivo work-performing cardiac analyses. There are increases in the time to peak pressure and a dramatic increase in end diastolic pressure. In myofilaments, this chimeric protein induces depression of maximum tension and ATPase rate, together with a significant decrease in sensitivity to calcium. Our data are the first to demonstrate that the TM isoform-specific carboxyl terminus is a critical determinant of sarcomere performance and calcium sensitivity in both the whole heart and in isolated myofilaments.  相似文献   

8.
Striated muscle tropomyosin (TM) plays an essential role in sarcomeric contraction and relaxation through its regulated movement on the thin filament. Previous work in our laboratory established that alpha- and beta-TM isoforms elicit physiological differences in sarcomeric performance. To address the significance of isoform-specific troponin T binding regions in TM, in this present work we replaced alpha-TM amino acids 175-190 and 258-284 with the beta-TM regions and expressed this chimeric protein in the hearts of transgenic mice. Hearts that express this chimeric protein exhibit significant decreases in rates of contraction and relaxation when assessed by ex vivo work-performing cardiac analyses. There are increases in time to peak pressure and in half-time to relaxation. These hearts respond appropriately to beta-adrenergic stimulation but do not attain control rates of contraction or relaxation. With increased expression of the transgene, 70% of the mice die by 5 mo of age without exhibiting gross pathological changes in the heart. Myofilaments from these mice have no differences in Ca(2+) sensitivity of percent maximum force, but there is a decrease in maximum tension development. Our data are the first to demonstrate that the troponin T binding regions of specific TM isoforms can alter sarcomeric performance without changing the Ca(2+) sensitivity of the myofilaments.  相似文献   

9.
《The Journal of cell biology》1989,109(6):2929-2937
The cellular distribution of the alpha-vascular and gamma-enteric smooth muscle actin isoforms was analyzed in rat embryos from gestational day (gd) 8 through the first neonatal week by in situ antigen localization using isoactin specific monoclonal antibodies. The alpha-vascular actin isoform was first detected on gd 10 in discrete cells lining the embryonic vasculature. By gd 14, this isoform was also present in the inner layers of mesenchymal cells condensing around the developing airways and gut. The gamma-enteric actin, however, was not detected until gd 15 when cells surrounding the developing aorta, airways, and gut labeled with the gamma-enteric-specific probe. There was continued expression of these two actin isoforms in regions of developing smooth muscle through the remainder of gestation and first neonatal week at which time their distribution coincided with that found in the adult. In addition to developing smooth muscle, the alpha- vascular actin isoform was expressed in differentiating striated muscle cells. On gd 10, there was intense labeling with the alpha-vascular specific probe in developing myocardiocytes and, within 24 h, in somitic myotomal cells. Although significant levels of this smooth muscle actin were present in striated myocytes through gd 17, by the end of the first postnatal week, alpha-vascular actin was no longer detectable in either cardiac or skeletal muscle. Thus, the normal developmental sequence of striated muscle cells includes the transient expression of the alpha-vascular smooth muscle actin isoform. In contrast, the gamma-enteric smooth muscle actin was not detected at any time in embryonic striated muscle. The differential timing of appearance and distribution of these two smooth muscle isoforms indicates that their expression is independently regulated during development.  相似文献   

10.
Two known tissue-specific tropomyosin (TM) isoforms are produced from the rodent beta-TM gene. Skeletal muscle beta-TM uses the alternative exons 6b and 9a and the exon 9a-associated poly(A) site. Fibroblast and smooth muscle TM-1 use exons 6a and 9b and the exon-9b associated poly(A) site. We have identified a new skeletal muscle beta-TM isoform, beta-TM2. beta-TM2 contains exon 6b (muscle) and exon 9b (nonmuscle). Full-length beta-TM2 cDNA clones were isolated from a cDNA library of mouse muscle BC3H1 cells. Its mRNA was also found in mouse skeletal muscle tissue but not in other tissues. beta-TM2 mRNA level and protein synthesis are differentiation-dependent, with a transient high level in the early stages of myogenesis both in BC3H1 cells and in mouse embryo limbs. Trace amounts of beta-TM3 mRNA, the other hybrid form (exons 6a + 9a), were found in less differentiated BC3H1 cells, mouse uterus, heart, and 3T3 fibroblasts but not skeletal muscle tissue. Thus, the selection of the two alternative exons appears to be controlled independently. Furthermore, during myogenesis, there is a sequential switch in the internal alternative exon, the terminal exon, and the poly(A) site from the nonmuscle to the muscle type.  相似文献   

11.
We isolated and characterized a cDNA clone encoding tropomyosin isoform 2 (TM2) from a mouse fibroblast cDNA library. TM2 was found to contain 284 amino acids and was closely related to the rat smooth and skeletal muscle alpha-TMs and the human fibroblast TM3. The amino acid sequence of TM2 showed a nearly complete match with that of human fibroblast TM3 except for the region from amino acids 189 to 213, the sequence of which was identical to those of rat smooth and skeletal muscle alpha-TMs. These results suggest that TM2 is expressed from the same gene that encodes the smooth muscle alpha-TM, the skeletal muscle alpha-TM, and TM3 via an alternative RNA-splicing mechanism. Comparison of the expression of TM2 mRNA in low-metastatic Lewis lung carcinoma P29 cells and high-metastatic D6 cells revealed that it was significantly less in D6 cells than in P29 cells, supporting our previous observations (K. Takenaga, Y. Nakamura, and S. Sakiyama, Mol. Cell. Biol. 8:3934-3937, 1988) at the protein level.  相似文献   

12.
Tropomodulins (Tmods) are tropomyosin (TM) binding proteins that bind to the pointed end of actin filaments and modulate thin filament dynamics. They bind to the N termini of both "long" TMs (with the N terminus encoded by exon 1a of the alpha-TM gene) and "short" nonmuscle TMs (with the N terminus encoded by exon 1b). In this present study, circular dichroism was used to study the interaction of two designed chimeric proteins, AcTM1aZip and AcTM1bZip, containing the N terminus of a long or a short TM, respectively, with protein fragments containing residues 1 to 130 of erythrocyte or skeletal muscle Tmod. The binding of either TMZip causes similar conformational changes in both Tmod fragments promoting increases in both alpha-helix and beta-structure, although they differ in binding affinity. The circular dichroism changes in the Tmod upon binding and modeling of the Tmod sequences suggest that the interface between TM and Tmod includes a three- or four-stranded coiled coil. An intact coiled coil at the N terminus of the TMs is essential for Tmod binding, as modifications that disrupt the N-terminal helix, such as removal of the N-terminal acetyl group from AcTM1aZip or striated muscle alpha-TM, or introduction of a mutation that causes nemaline myopathy, Met-8-Arg, into AcTM1aZip destroyed Tmod binding.  相似文献   

13.
P19 embryonal carcinoma cells are multipotential stem cells that differentiate into striated muscle as well as some other cell types when aggregated and exposed to dimethyl sulfoxide (DMSO). Immunofluorescence experiments using monospecific antibodies indicated that the majority of muscle cells were mononucleate and contained four myosin isoforms normally found in cardiac muscle; atrial and ventricular myosin heavy chains, ventricular myosin light chain 1, and atrial myosin light chain 2. Northern blot analysis of RNA isolated from differentiating cultures indicated that cardiac actin and skeletal actin mRNAs were expressed at similar levels and with identical kinetics during the differentiation of P19-derived myocytes. These results demonstrate that most of the P19-derived myocytes are of the cardiac type and suggest that they closely resemble the cells of the early embryonic myocardium.  相似文献   

14.
We have previously isolated and characterized cloned complementary DNAs (cDNAs) for striated and smooth muscle alpha-tropomyosin. The sequences of these cDNA clones suggested that these two isoforms were encoded by the same gene. Here, we have determined the complete structure of the alpha-tropomyosin (alpha-TM) gene, establishing that a single gene, with a sequence complexity of 28 kilobase pairs, is split into 12 exons and produces the smooth and striated muscle alpha-TM mRNA isoforms by alternative splicing of a minimum of five exchangeable isotype-specific exons. The elucidation of the intron/exon organization of alpha-TM suggests that this gene evolved from an ancestral gene encoding a 21-aa protein that might represent the primordial actin binding domain. Sequence comparison between the pairs of exons coding for the "isotype switch regions" and among the corresponding regions of tropomyosin genes in a variety of species ranging from insects to mammals, suggests that the alternatively spliced exons are very old and might have arisen before the radiation of the arthropods, more than 600 million years ago. Additionally, the examination of the intronic sequences has uncovered potential alternative intramolecular secondary structures (hairpin-loop structures) which might be involved in the tissue-specific expression of the duplicated and mutually exclusive alpha-TM isotype-specific exons.  相似文献   

15.
16.
17.
18.
19.
The expression of striated muscle proteins occurs early in the developing embryo in the somites and forming heart. A major component of the assembling myofibrils is the actin-binding protein tropomyosin. In vertebrates, there are four genes for tropomyosin (TM), each of which can be alternatively spliced. TPM1 can generate at least 10 different isoforms including the striated muscle-specific TPM1alpha and TPM1kappa. We have undertaken a detailed study of the expression of various TM isoforms in 2-day-old (stage HH 10-12; 33 h) heart and somites, the progenitor of future skeletal muscles. Both TPM1alpha and TPM1kappa are expressed transiently in embryonic heart while TPM1alpha is expressed in somites. Both RT-PCR and in situ hybridization data suggest that TPM1kappa is expressed in embryonic heart whereas TPM1alpha is expressed in embryonic heart, and also in the branchial arch region of somites, and in the somites. Photobleaching studies of Yellow Fluorescent Protein-TPM1alpha and -TPM1kappa expressed in cultured avian cardiomyocytes revealed that the dynamics of the two probes was the same in both premyofibrils and in mature myofibrils. This was in sharp contrast to skeletal muscle cells in which the fluorescent proteins were more dynamic in premyofibrils. We speculate that the differences in the two muscles is due to the appearance of nebulin in the skeletal myocytes premyofibrils transform into mature myofibrils.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号