首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The infection of white clover seedlings byRhizobium strains with different host range properties was assessed using various microscopic techniques. Several wild-type andRhizobium leguminosarum biovarvicias hybrid strains containing definedR. l. bv.trifolii host range genes were used. The morphological changes in the root tissue of uninoculated and rhizobia inoculated white clovers were identified and compared. In particular, changes were observed in the induction of inner cortical cell division, alterations to nodule development and lateral root formation. The responses of the infected roots and the types of structures formed support the hypothesis that lateral roots and nodules may be physiologically homologous structures. To establish a normal pattern of nodulation on white clover roots, both sets of known host specific nodulation genes (operonsnod FERL andnod MNX) ofR. l. bv.trifolii were required. However, some nodule development occurred when only thenod FERL genes were present in the hybrid strain.  相似文献   

2.
The contributions of various nod genes from Rhizobium leguminosarum biovar viceae to host-specific nodulation have been assessed by transferring specific genes and groups of genes to R. leguminosarum bv. trifolii and testing the levels of nodulation on Pisum sativum (peas) and Vicia hirsuta. Many of the nod genes are important in determination of host-specificity; the nodE gene plays a key (but not essential) role and the efficiency of transfer of host specific nodulation increased with additional genes such that nodFE < nodFEL < nodFELMN. In addition the nodD gene was shown to play an important role in host-specific nodulation of peas and Vicia whilst other genes in the nodABCIJ gene region also appeared to be important. In a reciprocal series of experiments involving nod genes cloned from R. leguminosarum bv. trifolii it was found that the nodD gene enabled bv. viciae to nodulate Trifolium pratense (red clover) but the nodFEL gene region did not. The bv. trifolii nodD or nodFEL genes did significantly increase nodulation of Trifolium subterraneum (sub-clover) by R. leguminosarum bv. viciae. It is concluded that host specificity determinants are encoded by several different nod genes.  相似文献   

3.
Summary Rhizobium and Bradyrhizobium bacteria gain intercellular entry into roots of the non-legume Parasponia andersonii by stimulating localized sites of cell division which disrupt the epidermis. Infection threads are then initiated from intercellular colonies within the cortex. Infection via the information of infection threads within curled root hairs, which commonly occurs in legumes, was not observed in Parasponia. The conserved nodulation genes nodABC, necded for the curling of legume root hairs, were not essential for the initiation of infection, however, these genes were required for Parasponia prenodule development. In contrast, the nodD gene of Rhizobium strain NGR234 was essential for the initiation of infection. In addition, successful infection required not only nodD but a region of the NGR234 symbiotic plasmid which is not needed for the nodulation of legumes. Agrobacterium tumefaciens carrying this Parasponia specific region, as well as legume nod genes, was able to form nodules on Parasponia which reached an advanced stage of development.  相似文献   

4.
H. H. Zahran  J. I. Sprent 《Planta》1986,167(3):303-309
The effects of sodium chloride and polyethylene glycol (PEG) on the interaction between Rhizobium leguminosarum strain 29d and root hairs of field bean (Vicia faba L. cv. Maris Bead) plants were investigated. Two levels each of NaCl (50 and 100 mol·m–3) and PEG (100 and 200 mol·m–3) were given at the time of root-hair formation. Scanning electron microscopy showed rhizobial attachment and colonization on root-hair tips. Adhesion of rhizobia in both lateral and polar orientation, sometimes associated with microfibrils, occurred mainly in crooks at the root-hair tips; most of the infections also occurred here. Bacterial colonization and root-hair curling were both reduced by stress treatments. Polyethylene glycol but not NaCl significantly reduced root-hair diameter. The proportion of root hairs containing infection threads was reduced by 30% under NaCl and by 52% under PEG. The structure of some of the root hairs, epidermal and hypodermal cells, as seen by light microscopy in ultrasections, was distorted as a result of NaCl and PEG treatments; cells showed plasmolysis and folded membranes. After three weeks of treatment, both NaCl and PEG inhibited nodule number by about 50% and nodule weight by more than 60%. It is concluded that the root-hair infection process in Vicia faba is impaired by NaCl and PEG treatments and this in turn results in fewer nodules being produced.Abbreviation PEG polyethylene glycol  相似文献   

5.
This report describes the early cytological events in the infection byRhizobium leguminosarum biovartrifolii of the root hairs ofTrifolium repens seedlings kept alive on agar medium in glass slide culture experiment. The infection threads bearing rhizobia were formed as soon as the epidermal cells began to emerge as root hairs. On the top of some of these infected emerging root hairs, there were smoky, cell-debris-like bodies, which appeared to be derived from the cell wall dug by rhizobia. Similar bodies were also observed in longer root hairs. None of the root hair cells along the length of the roots which contained infection threads were curled or distorted. A substantial number of pink-colored nodules were later formed on the roots with non-curled infected root hairs.  相似文献   

6.
J. Ikeda 《Plant and Soil》1994,158(1):23-27
The number of nodules formed by white clover (Trifolium repens L.) released from NaCl stress for 3 days (137 mol m-3) at different periods was examined. The NaCl stress-free periods were, 0 to 3 days prior to rhizobial inoculation, 0 to 3, 3 to 6, and 6 to 9 days after rhizobial inoculation. Plants not subjected to NaCl stress at 0 to 3 days after inoculation had 28.7 nodules per plant (74% of control), while plants continuously stressed had 5.2 nodules (13% of control). A NaCl stress-free period immediately after inoculation was the best among the stressed treatments, indicating that the early stage of nodulation was more sensitive than the later stages. Microscopic observation showed that imposing NaCl stress during the first 3 days after inoculation suppressed root hair curling to 9.1% of control, while the numbers of rhizobia attached to roots counted by dilution plates were not affected. Thus, there were no significant effects of NaCl stress on rhizobia. The sensitivity of the early stage of infection to NaCl stress was attributed to the inhibition of root hair curling.  相似文献   

7.
B. G. Turgeon  W. D. Bauer 《Planta》1985,163(3):328-349
The location and topography of infection sites in soybean (Glycine max (L.) Merr.) root hairs spot-inoculated with Rhizobium japonicum have been studied at the ultrastructural level. Infections commonly developed at sites created when the induced deformation of an emerging root hair caused a portion of the root-hair cell wall to press against an adjacent epidermal cell, entrapping rhizobia within the pocket between the two host cells. Infections were initiated by bacteria which became embedded in the mucigel in the enclosed groove. Infection-thread formation in soybean appears to involve degradation of mucigel material and localized disruption of the outer layer of the folded hair cell wall by one or more entrapped rhizobia. Rhizobia at the site of penetration are separated from the host cytoplasm by the host plasmalemma and by a layer of wall material that appears similar or identical to the normal inner layer of the hair cell wall. Proliferation of the bacteria results in an irregular, wall-bound sac near the site of penetration. Tubular infection threads, bounded by wall material of the same appearance as that surrounding the sac, emerge from the sac to carry rhizobia roughly single-file into the hair cell. Growing regions of the infection sac or thread are surrounded by host cytoplasm with high concentrations of organelles associated with synthesis and deposition of membrane and cell-wall material. The threads follow a highly irregular path toward the base of the hair cell. Threads commonly run along the base of the hair cell for some distance, and may branch and penetrate into subjacent cortical cells at several points in a manner analagous to the initial penetration of the root hair.  相似文献   

8.
The lectin on the surface of 4- and 5-dold pea roots was located by the use of indirect immunofluorescence. Specific antibodies raised in rabbits against pea seed isolectin 2, which crossreact with root lectins, were used as primary immunoglobulins and were visualized with fluorescein- or tetramethylrhodamine-isothiocyanate-labeled goat antirabbit immunoglobulin G. Lectin was observed on the tips of newly formed, growing root hairs and on epidermal cells located just below the young hairs. On both types of cells, lectin was concentrated in dense small patches rather than uniformly distributed. Lectin-positive young hairs were grouped opposite the (proto)xylematic poles. Older but still-elongating root hairs presented only traces of lectin or none at all. A similar pattern of distribution was found in different pea cultivars, as well as in a supernodulating and a non-nodulating pea mutant. Growth in a nitrate concentration which inhibits nodulation did not affect lectin distribution on the surface of pea roots of this age. We tested whether or not the root zones where lectin was observed were susceptible to infection by Rhizobium leguminosarum. When low inoculum doses (consisting of less than 106 bacteria·ml-1) were placed next to lectin-positive epidermal cells and on newly formed root hairs, nodules on the primary roots were formed in 73% and 90% of the plants, respectively. Only a few plants showed primary root nodulation when the inoculum was placed on the root zone where lectin was scarce or absent. These results show that lectin is present at those sites on the pea root that are susceptible to infection by the bacterial symbiont.Abbreviations FITC fluorescein isothiocyanate - TRIC tetramethylrhodamine isothiocyanate  相似文献   

9.
10.
Thirty Tn5- or Tn1831-induced nodulation (nod) mutants of Rhizobium leguminosarum were examined for their genetic and symbiotic properties. Thirteen mutants contained a deletion in Sym plasmid pRL1JI. These deletions cover the whole nod region and are 50 kb in size. All remaining seventeen mutations are located in a 6.6 kb EcoRI nod fragment of the Sym plasmid. Mutations in a 3.5 kb part on the right hand side of this 6.6 kb fragment completely prevent nodulation on Vicia sativa. All mutants in this 3.5 kb area are unable to induce marked root hair curling and thick and short roots.Mutations in a 1.5 kb area on the left hand side of the 6.6 kb nod fragment generate other symbiotic defects in that nodules are only rarely formed and only so after a delay of several days. Moreover, infection thread formation is delayed and root hair curling is more excessive than that caused by the parental strain. Their ability to induce thick and short roots is unaltered.Mutations in this 1.5 kb region are not complemented by pRmSL26, which carries nod genes of R. meliloti, whereas mutations in the 3.5 kb region are all complemented by pRmSL26.Abbreviations Rps repression of production of small bacteriocin - Mep medium bacteriocin production - Nod nodulation - Fix fixation - Tsr thick and short roots - Flac root hair curling - Hsp host specificity - Flad root hair deformation - Tc tetracycline - Km kanamycin - Cm chloramphenicol - Sp spectinomycin - Sm streptomycin - R resistant  相似文献   

11.
Summary Spontaneous nodules developed on the roots of white clover (Trifolium repens cv. Ladino) in the absence ofRhizobium. A small subpopulation of uninoculated clover plants (0.2%) exhibited white, single-to-multilobed elongated structures on their root systems when grown without fixed nitrogen. Clonal propagation using aseptic stolons confirmed the genetic stability of the observation. Few if any viable bacteria of unknown origin were recovered from surfacesterilized structures. Nodule contents were incapable of eliciting nodulation. Histological observations showed that these structures possessed all the characteristic features of indeterminate nodules, such as active meristem, cortex, endodermal layer, vascular strands, and a central zone with parenchyma cells. Infection threads, intercellular or intracellular bacteria were absent. Instead, numerous starch grains were observed in the central zone, a feature absent in normal nitrogen-fixing nodules. Our observation broadens the concept of spontaneous nodulation, believed to be restricted to alfalfa (Medicago sativa), to other legumes, and suggests a degree of generality among indeterminately nodulated legumes displaying natural heterozygosity.  相似文献   

12.
A multi-marked strain ofRhizobium meliloti was developed by the co-mutation method and employed to contribute to the genetic map ofR. meliloti chromosome. Seven loci were placed at 5 sites in theleu region in the orderman-aba, fix, leu-cro-azt, ost-thi.  相似文献   

13.
T. L. Wang  E. A. Wood  N. J. Brewin 《Planta》1982,155(4):350-355
The cytokinin content of roots and nodules of pea and the culture supernatants from two strains of Rhizobium leguminosarum has been examined. Roots, nodules and wild-type Rhizobium culture medium contained very little cytokinin as indicated by bioassay. Chemical ionisation gas chromatography-mass spectrometric analysis of the isopentenyladenine content of the culture medium from the Rhizobium strains confirmed that the content of the wild-type was low (approx. 1 ng dm-3) but that it was increased by the introduction of the Agrobacterium Ti plasmid into the Rhizobium strain.Abbreviations CI chemical ionisation - GCMS gas chromatography-mass spectrometry - HPLC high performance liquid chromatography - iPAde isopentenyladenine - MIM multiple ion monitoring  相似文献   

14.
15.
Summary Five specific transposon-induced nodulation defective (Nod) mutants from different fast-growing species ofRhizobium were used as the recipients for the transfer of each of several endogenous Sym(biosis) plasmids or for recombinant plasmids that encode early nodulation and host-specificity functions. The Nod mutants were derived fromR. trifolii, R. meliloti and from a broad-host-rangeRhizobium strain which is able to nodulate both cowpea (tropical) legumes and the non-legumeParasponia. These mutants had several common features (a), they were Nod on all their known plant hosts, (b), they could not induce root hair curling (Hac) and (c), the mutations were all located on the endogenous Sym-plasmid of the respective strain. Transfer to these mutants of Sym plasmids (or recombinant plasmids) encoding heterologous information for clover nodulation (pBR1AN, pRt032, pRt038), for pea nodulation (pJB5JI, pRL1JI::Tn1831), for lucerne nodulation (pRmSL26), or for the nodulation of both tropical legumes and non-legumes (pNM4AN), was able to restore root hair curling capacity and in most cases, nodulation capacity of the original plant host(s). This demonstrated a functional conservation of at least some genes involved in root hair curling. Positive hybridization between Nod DNA sequences fromR. trifolii and from a broad-host-rangeRhizobium strain (ANU240) was obtained to other fast-growingRhizobium strains. These results indicate that at least some of the early nodulation functions are common in a broad spectrum ofRhizobium strains.  相似文献   

16.
Rhizobium leguminosarum biovar trifolii strain TA1 nodulates a range of Trifolium plants including red, white and subterranean clovers. Nitrogen-fixing nodules are promptly initiated on the tap roots of these plants at the site of inoculation. In contrast to these associations, strain TA1 has a Nod- phenotype on a particular cultivar of subterranean clover called Woogenellup (A.H. Gibson, Aust J Agric Sci 19: (1968) 907–918) where it induces rare, poorly developed, slow-to-appear and ineffective lateral root nodules. By comparing the nodulation gene region of strain TA1 with that of another R. leguminosarum bv. trifolii strain ANU843, which is capable of efficiently nodulating cv. Woogenellup, we have shown that the nodT gene (B.P. Surin et al., Mol Microbiol 4: (1990) 245–252) is essential for nodulation on cv. Woogenellup. The nodT gene is naturally absent in strain TA1. A cosmid clone spanning the entire nodulation gene region of strain TA1 was capable of conferring nodulation ability to R.l. bv. trifolii strains deleted for nodulation genes, but only on cultivars of subterranean clovers nodulated by strain TA1. This shows that cultivar recognition events are, in part, determined by genes in the nodulation region of strain TA1. Complementation studies also indicated that strain TA1 contains negatively-acting genes located on the Sym plasmid and elsewhere, which specifically block nodulation of cv. Woogenellup.  相似文献   

17.
The mRNA population in pea root hairs was characterized by means of in vitro translation of total root hair RNA followed by 2-dimensional gel electrophoresis of the translation products. Root hairs contain several mRNAs not detectable in total RNA preparations from roots. Most of these root hair-specific mRNAs occur in elongating root hairs at higher levels than in mature root hairs. The expression of some genes in pea root hairs is typically affected by inoculation with Rhizobium leguminosarum. One gene, encoding RH-42, is specifically induced while the expression of another gene, encoding RH-44, is markedly enhanced. Using R. leguminosarum mutants it was shown that the nodC gene is required for the induction and enhancement of expression of the RH-42 and RH-44 genes, respectively, while the Rhizobium chromosomal gene pss1, involved in exopolysaccharide synthesis, is not essential. After induction of the nod genes with apigenin the bacteria excrete into the culture medium a factor that causes root hair deformation. This deformation factor stimulates the expression of the RH-44 gene but does not induce the expression of the gene encoding RH-42.  相似文献   

18.
Summary R-prime plasmids carrying regions of the symbiotic (Sym) plasmid of the broad host range Rhizobium strain NGR234 were isolated in intergeneric matings with Escherichia coli K12. Three R-primes carrying approximately 180 kb (pMN23), 220 kb (pMN31) and 330 kb (pMN49) of Sym DNA were characterized in more detail. Restriction enzyme analysis and hybridization studies showed that these R-primes carried large overlapping regions of the Sym plasmid, and had the symbiotic genes (two copies of nifH, D and K; nodA, B, C and D; region II; host specific nodulation (hsn) genes) located over half of the 470 kb Sym plasmid. Only the largest of these R-primes (pMN49) contained the complete nodulation host range of the original parent strain NGR234. This broad host range was shown to be present on plasmid pMN49 by being expressed in Agrobacterium tumefaciens strain A136. Furthermore the R-prime plasmids were shown to contain different regions of distinctive host specific nodulation (hsn) for tropical legume infection and for the nodulation of the non-legume Parasponia. Nodulation of soybeans, however, required an additional region that was not essential for the nodulation of other tropical legumes. Strain NGR234 was also found to nodulate the stem and roots of the tropical legume Sesbania rostrata at a very low efficiency. However, the R-prime mini Sym plasmid constructions enabled a greater efficiency of nodulation of Sesbania rostrata to occur.  相似文献   

19.
Summary Strains of Rhizobium leguminosarum (R. l.) biovar viciae containing pss mutations fail to make the acidic exopolysaccharides (EPS) and are unable to nodulate peas. It was found that they also failed to nodulate Vicia hirsuta, another host of this biovar. When peas were co-inoculated with pss mutant derivatives of a strain of R.l. bv viciae containing a sym plasmid plus a cured strain lacking a sym plasmid (and which is thus Nod-, but for different reasons) but which makes the acidic EPS, normal numbers of nodules were formed, the majority of which failed to fix nitrogen (the occasional Fix+ nodules were pressumably induced by strains that arose as a result of genetic exchange between cells of the two inoculants in the rhizosphere). Bacteria from the Fix- nodules contained, exclusively, the strain lacking its sym plasmid. When pss mutant strains were co-inoculated with a Nod- strain with a mutation in the regulatory gene nodD (which is on the sym plasmid pRL1JI), normal numbers of Fix+ nodules were formed, all of which were occupiced solely by the nodD mutant strain. Since a mutation in nodD abolishes activation of other nod genes required for early stages of infection, these nod genes appear to be dispensable for subsequent stages in nodule development. Recombinant plasmids, containing cloned pss genes, overcame the inhibitory effects of psi, a gene which when cloned in the plasmid vector pKT230, inhibits both EPS production and nodulation ability. Determination of the sequence of the pss DNA showed that one, or perhaps two, genes are required for correcting strains that either carry pss mutations or contain multi-copy psi. The predicted polypeptide product of one of the pss genes had a hydrophobic aminoterminal region, suggesting that it may be located in the membrane. Since the psi gene product may also be associated with the bacterial membrane, the products of psi and pss may interact with each other.  相似文献   

20.
We have used spot-inoculation and new cytological procedures to observe the earliest events stimulated in alfalfa (Medicago sativa L.) roots by Rhizobium meliloti. Roots were inoculated with 1–10 nl of concentrated bacteria, fixed in paraformaldehyde, and after embedding and sectioning stained with a combination of acridine orange and DAPI (4-6-diamidino-2-phenylindole hydrochloride). Normal R. meliloti provoke cell dedifferentiation and mitosis in the inner cortex of the root within 21–24 h after inoculation. This activation of root cells spreads progressively, leading to nodule formation. In contrast, the R. meliloti nodA and nodC mutants do not stimulate any activation or mitosis. Thus the primary and earliest effect of Rhizobium nod gene action is plant cellular activation. A rapid, whole-mount visualization by lactic acid shows that the pattern of nodule form varies widely. Some R. meliloti strains were found to be capable of stimulating on alfalfa roots both normal nodules and a hybrid structure intermediate between a nodule and a lateral root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号