首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current studies show that multispecies forests are beneficial regarding biodiversity and ecosystem functionality. However, there are only little efforts to understand the ecological mechanisms behind these advantages of multispecies forests. Bacteria are among the key plant growth-promoting microorganisms that support tree growth and fitness. Thus, we investigated links between bacterial communities, their functionality and root trait dispersion within four major European forest types comprising multispecies and monospecific plots. Bacterial diversity revealed no major changes across the root functional dispersion gradient. In contrast, predicted gene profiles linked to plant growth activities suggest an increasing bacterial functionality from monospecific to multispecies forest. In multispecies forest plots, the bacterial functionality linked to plant growth activities declined with the increasing functional dispersion of the roots. Our findings indicate that enriched abundant bacterial operational taxonomic units are decoupled from bacterial functionality. We also found direct effects of tree species identity on bacterial community composition but no significant relations with root functional dispersion. Additionally, bacterial network analyses indicated that multispecies forests have a higher complexity in their bacterial communities, which points towards more stable forest systems with greater functionality. We identified a potential of root dispersion to facilitate bacterial interactions and consequently, plant growth activities.  相似文献   

2.
The evolution and local stability of a system of two interacting species in a finite two-dimensional habitat is investigated by taking into account the effects of self- and cross-dispersion and convection of the species. In absence of cross-dispersion, an equilibrium state which is stable without dispersion is always stable with dispersion provided that the dispersion coefficients of the two species are equal. However, when the dispersion coefficients of the two species are different, the possibility of self-dispersive instability arises. It is also pointed out that the cross-dispersion of species may lead to stability or instability depending upon the nature and the magnitude of the cross-dispersive interactions in comparison to the self-dispersive interactions. The self-convective movement of species increases the stability of the equilibrium state and can stabilize an otherwise unstable equilibrium state. The effect of cross-convection (in absence of self-dispersion and self-convection) is to stabilize the equilibrium state in a prey-predator model with positive cross-dispersion coefficients for the prey species. Finally, it is shown that if the system is stable under homogeneous boundary conditions it remains so under non-homogeneous boundary conditions.  相似文献   

3.
Gross K 《Ecology letters》2008,11(9):929-936
Although positive interactions between species are well documented, most ecological theory for investigating multispecies coexistence remains rooted in antagonistic interactions such as competition and predation. Standard resource-competition models from this theory predict that the number of coexisting species should not exceed the number of factors that limit population growth. Here I show that positive interactions among resource competitors can produce species-rich model communities supported by a single limiting resource. Simulations show that when resource competitors reduce each others' per capita mortality rate (e.g. by ameliorating an abiotic stress), stable multispecies coexistence with a single resource may be common, even while the net interspecific interaction remains negative. These results demonstrate that positive interactions may provide an important mechanism for generating species-rich communities in nature. They also show that focusing on the net interaction between species may conceal important coexistence mechanisms when species simultaneously engage in both antagonistic and positive interactions.  相似文献   

4.
Statistical mechanics of relative species abundance (RSA) patterns in biological networks is presented. The theory is based on multispecies replicator dynamics equivalent to the Lotka–Volterra equation, with diverse interspecies interactions. Various RSA patterns observed in nature are derived from a single parameter related to productivity or maturity of a community. The abundance distribution is formed like a widely observed left-skewed lognormal distribution. It is also found that the “canonical hypothesis” is supported in some parameter region where the typical RSA patterns are observed. As the model has a general form, the result can be applied to similar patterns in other complex biological networks, e.g. gene expression.  相似文献   

5.
A number of studies have shown that an association with mycorrhizal fungi can alter the outcome of interactions between plants and their enemies. While the directions of these effects vary, their strength suggests the need for greater attention to multispecies interactions among plant enemies, plants, and mycorrhizal fungi. We recognize that mycorrhizal fungi could effect plant enemies by improving plant nutrition, modifying plant tolerance, or modifying plant defenses. In addition, mycorrhizal fungi could directly interfere with pathogen infection, herbivory, or parasitism by occupying root space. We formalize these alternative outcomes of multispecies interactions and explore the long-term dynamics of the plant-enemy interactions based on these different scenarios using a general model of interactions between plants and plant enemies. We then review the literature in terms of the assumptions of the alternative mechanisms and the predictions of these models. Through this effort, we identify new directions in the study of tritrophic interactions between enemies, plants, and soil mutualists.  相似文献   

6.
Aim Biotic interactions – within guilds or across trophic levels – have widely been ignored in species distribution models (SDMs). This synthesis outlines the development of ‘species interaction distribution models’ (SIDMs), which aim to incorporate multispecies interactions at large spatial extents using interaction matrices. Location Local to global. Methods We review recent approaches for extending classical SDMs to incorporate biotic interactions, and identify some methodological and conceptual limitations. To illustrate possible directions for conceptual advancement we explore three principal ways of modelling multispecies interactions using interaction matrices: simple qualitative linkages between species, quantitative interaction coefficients reflecting interaction strengths, and interactions mediated by interaction currencies. We explain methodological advancements for static interaction data and multispecies time series, and outline methods to reduce complexity when modelling multispecies interactions. Results Classical SDMs ignore biotic interactions and recent SDM extensions only include the unidirectional influence of one or a few species. However, novel methods using error matrices in multivariate regression models allow interactions between multiple species to be modelled explicitly with spatial co‐occurrence data. If time series are available, multivariate versions of population dynamic models can be applied that account for the effects and relative importance of species interactions and environmental drivers. These methods need to be extended by incorporating the non‐stationarity in interaction coefficients across space and time, and are challenged by the limited empirical knowledge on spatio‐temporal variation in the existence and strength of species interactions. Model complexity may be reduced by: (1) using prior ecological knowledge to set a subset of interaction coefficients to zero, (2) modelling guilds and functional groups rather than individual species, and (3) modelling interaction currencies and species’ effect and response traits. Main conclusions There is great potential for developing novel approaches that incorporate multispecies interactions into the projection of species distributions and community structure at large spatial extents. Progress can be made by: (1) developing statistical models with interaction matrices for multispecies co‐occurrence datasets across large‐scale environmental gradients, (2) testing the potential and limitations of methods for complexity reduction, and (3) sampling and monitoring comprehensive spatio‐temporal data on biotic interactions in multispecies communities.  相似文献   

7.
The dynamics of multispecies, multi-life-stage models of aquatic food webs   总被引:1,自引:0,他引:1  
We investigated the dynamics of models of aquatic food webs using stability analysis methods previously applied to other types of food web models. Our models expanded traditional Lotka-Volterra models of predator-prey interactions in several ways. We added life history structure to these models in order to investigate its effects. Life history omnivory is different life history stages of a species feeding in trophically different positions in a food web. Such a species might appear omnivorous, integrating across all stages, but the individual stage might not be. Other important additions to the basic models included stock-recruitment relationships between adults and young and food-dependent maturation rates for early life history stages. Complex models of multispecies interactions were built from basic ones by adding new features sequentially. Our analysis revealed five major features of our multispecies, multi-life-stage models. Omnivory reduces stability, as it does in food web models without life history structure. However, life history omnivory reduces stability much less than single life stage omnivory does. Stock recruitment relationships affect the likelihood of finding stable models. If the maturation rate of young varies with their food supply, the chance of finding stable models decreases. Finally, predation loops of the type A eats B, B eats A, or A eats B, B eats C, C eats A greatly reduce model stability. We present both biological and mathematical explanations for these findings. We also discuss their implications for management of marine resources.  相似文献   

8.
9.
We compare and contrast the long-time dynamical properties of two individual-based models of biological coevolution. Selection occurs via multispecies, stochastic population dynamics with reproduction probabilities that depend nonlinearly on the population densities of all species resident in the community. New species are introduced through mutation. Both models are amenable to exact linear stability analysis, and we compare the analytic results with large-scale kinetic Monte Carlo simulations, obtaining the population size as a function of an average interspecies interaction strength. Over time, the models self-optimize through mutation and selection to approximately maximize a community potential function, subject only to constraints internal to the particular model. If the interspecies interactions are randomly distributed on an interval including positive values, the system evolves toward self-sustaining, mutualistic communities. In contrast, for the predator–prey case the matrix of interactions is antisymmetric, and a nonzero population size must be sustained by an external resource. Time series of the diversity and population size for both models show approximate 1/f noise and power-law distributions for the lifetimes of communities and species. For the mutualistic model, these two lifetime distributions have the same exponent, while their exponents are different for the predator–prey model. The difference is probably due to greater resilience toward mass extinctions in the food-web like communities produced by the predator–prey model.   相似文献   

10.
The theory of spatial pattern formation via Turing bifurcations - wherein an equilibrium of a nonlinear system is asymptotically stable in the absence of dispersal but unstable in the presence of dispersal - plays an important role in biology, chemistry and physics. It is an asymptotic theory, concerned with the long-term behavior of perturbations. In contrast, the concept of reactivity describes the short-term transient behavior of perturbations to an asymptotically stable equilibrium. In this article we show that there is a connection between these two seemingly disparate concepts. In particular, we show that reactivity is necessary for Turing instability in multispecies systems of reaction-diffusion equations, integrodifference equations, coupled map lattices, and systems of ordinary differential equations.  相似文献   

11.
The widespread occurrence of multiple infections and the often vast range of nutritional resources for their hosts allow that interspecific parasite interactions in natural host populations might be determined by host diet quality. Nevertheless, the role of diet quality with respect to multispecies parasite interactions on host population level is not clear. We here tested the effect of host population diet quality on the parasite community in an experimental study using Daphnia populations. We studied the effect of diet quality on Daphnia population demography and the interactions in multispecies parasite infections of this freshwater crustacean host. The results of our experiment show that the fitness of a low‐virulent microsporidian parasite decreased in low, but not in high‐host‐diet quality conditions. Interestingly, infections with the microsporidium protected Daphnia populations against a more virulent bacterial parasite. The observed interspecific parasite interactions are discussed with respect to the role of diet quality‐dependent changes in host fecundity. This study reflects that exploitation competition in multispecies parasite infections is environmentally dependent, more in particular it shows that diet quality affects interspecific parasite competition within a single host and that this can be mediated by host population‐level effects.  相似文献   

12.
In ecological communities, numerous species coexist and affect each others’ population levels via various types of interspecific interactions. Previous ecological theory explaining multispecies coexistence tended to focus on a single interaction type, such as antagonism, competition, or mutualism, and its consequences on population dynamics. Hence, it remains unclear what, if any, contribution multiple coexisting interaction types have on the multispecies coexistence. Here, we show that the coexistence of multiple interaction types can be essential for multispecies coexistence. We present a simple model in which the exploiter and mutualist adaptively switch between two competing resource species. An adaptive mutualist, which favors the more abundant species, provides a mechanism of majority-advantage and, thus, potentially inhibits the coexistence of resource species. In the absence of an exploiter, an adaptive mutualist leads to competitive exclusion at the resource species level. However, the coexistence of an adaptive exploiter and a mutualist allows the coexistence of all species in the community, because the mutualist-mediated “winner” tends to be suppressed by the adaptive exploiter. The mutualist indirectly increases the abundance of the exploiter through mutualistic interactions, thereby indirectly supporting this coexistence mechanism. In fact, coexistence may occur even if the exploiter or mutualist alone cannot mediate the coexistence of two resources. We conclude that the coexistence of mutualism and antagonism may be the key to the persistence of the four-species module in the presence of adaptive switching.  相似文献   

13.
Plants interact with many different species throughout their life cycle. Recent work has shown that the ecological effects of multispecies interactions are often not predictable from studies of the component pairwise interactions. Little is known about how multispecies interactions affect the evolution of ecologically important traits. We tested the direct and interactive effects of inter- and intraspecific competition, as well as of two abundant herbivore species (a generalist folivore and a specialist aphid), on the selective value of a defensive chemical compound in Brassica nigra. We found that investment in chemical defense was favored in interspecific competition but disfavored in intraspecific competition and that this pattern of selection was dependent on the presence of both herbivores, suggesting that selection will depend on the rarity or commonness of these species. These results show that the selective value of ecologically important traits depends on the complicated web of interactions present in diverse natural communities and that fluctuations in community composition may maintain genetic variation in such traits.  相似文献   

14.
The role of indirect effects such as apparent competition in structuring predator-prey assemblages has recently received empirical attention. That one prey species can be excluded by the impact of a shared-enemy contrasts with the known diversity of multispecies predator-prey interactions. Here, the role of predator foraging among patches of two different prey species is examined as a mechanism that can mediate coexistence in multispecies prey-predator assemblages. Specifically, models of host-parasitoid interactions are constructed to analyse how different types of aggregative behaviour (generated by host-dependent and host-independent responses) affect persistence of the assemblage. How the distribution of hosts and the response of the parasitoid to these distributions can influence coexistence is shown. A generic explanation for coexistence suggests that it is the variability rather than the precise functional relationship that is critical for coexistence under shared-enemy interactions.  相似文献   

15.
While several studies have established a positive correlation between community diversity and invasion resistance, it is less clear how species interactions within resident communities shape this process. Here, we experimentally tested how antagonistic and facilitative pairwise interactions within resident model microbial communities predict invasion by the plant–pathogenic bacterium Ralstonia solanacearum. We found that facilitative resident community interactions promoted and antagonistic interactions suppressed invasions both in the lab and in the tomato plant rhizosphere. Crucially, pairwise interactions reliably explained observed invasion outcomes also in multispecies communities, and mechanistically, this was linked to direct inhibition of the invader by antagonistic communities (antibiosis), and to a lesser degree by resource competition between members of the resident community and the invader. Together, our findings suggest that the type and strength of pairwise interactions can reliably predict the outcome of invasions in more complex multispecies communities.  相似文献   

16.
The functional feeding response forms of piscivorous fishes used in multispecies and ecosystem modeling have been questioned because they were mostly conjectural or solely based on laboratory studies. Here, we investigate the functional feeding response of seven species of piscivorous fishes on four species of their prey from the northeast US continental shelf using field data that spans 30 years. Our study confirmed that Holling’s types II and III functional responses are the most common functional responses for piscivorous fishes in this region. However, our analyses also revealed that differences exist between piscivorous fishes’ functional responses, and, therefore, combining functional responses of piscivores is probably not appropriate in multispecies and ecosystem modeling. In the absence of specific predator–prey functional responses, we suggest that, for cruising, actively attacking predators, a type II functional response is slightly preferable; for a sedentary, ambush predator, a type III functional response is slightly preferable; at low prey densities for a generic fish predator, a type III functional response should be used; and at moderate to high prey densities, either should work sufficiently. Because we have shown that the functional response of a particular predator to individual prey species varies, these relationships must be further evaluated as we continue to develop and employ multispecies and ecosystem modeling.  相似文献   

17.
The multispecies stock‐production model of Horbowy developed in 1996 was further extended to include the unexploited part of a stock. The model was then applied to simulate stock dynamics and species interactions of cod, herring, and sprat in the Baltic from 1982 to 2001. The model indicates that there have been large declines in cod and herring biomass over the past two decades and a strong increase in sprat biomass in the 1990s. Using the extended stock‐production model, the relative changes in stock biomass were similar to the changes derived using the age‐structured multispecies model, the multispecies virtual population analysis (MSVPA). However, the production model estimates of the average predation mortality of young cod and young sprat are much lower than those derived from MSVPA, although the estimates for young and adult herring and adult sprat are similar in both approaches. The estimates of food suitability show that the preferred food of adult cod is adult sprat and young herring, while the suitability of young sprat, young cod, and adult herring is much smaller. The simulations performed show that the multispecies production model, which is less data‐demanding than age‐structured MSVPA, can provide estimates of stock dynamics and species interactions that are largely consistent with those estimated by MSVPA. The quality of input data in terms of recruitment and fishing‐effort indices strongly impacts the reliability of the model's results.  相似文献   

18.
Centrin is a low molecular mass (20 kDa) protein that belongs to the EF-hand superfamily of calcium-binding proteins. Local and overall changes were investigated for interactions between cations and Chlamydomonas centrin using Fourier transform infrared (FT-IR) and circular dichroic (CD) spectroscopies. FT-IR spectral features studied included the amide I' band and the side-chain absorbances for aspartate residues located almost exclusively at the calcium-binding sites in the spectral region of 1700-1500 cm(-1). The amide I' band is exquisitely sensitive to changes in protein secondary structure and is observed to shift from 1626.5 to 1642.7 cm(-1) in the presence and absence of calcium. These spectral bands are complex and were further studied using two-dimensional Fourier transform infrared (2D-FT-IR) correlation along with curve-fitting routines. Using these methods the secondary structure contributions were determined for holocentrin and apocentrin. The alpha-helical content in centrin was determined to be 60%-53% in the presence and absence of cations, respectively. Furthermore, the beta-strand content was determined to be 12%-36%, while the random coil component remained almost constant at 7%-13.5% in the presence and absence of cations, respectively. Changes in the side-chain band are mostly due to the monodentate coordination of aspartate to the cation. A shift of approximately 4 cm(-1) (for the COO- antisymmetric stretch in Asp) from 1565 to 1569 cm(-1) is observed for apocentrin and holocentrin, respectively. Thermal dependence revealed reversible conformational transition temperatures for apocentrin at 37 degrees C and holocentrin at 45 degrees C, suggesting greater stability for holocentrin.  相似文献   

19.
General theory of competitive coexistence in spatially-varying environments   总被引:14,自引:0,他引:14  
A general model of competitive and apparent competitive interactions in a spatially-variable environment is developed and analyzed to extend findings on coexistence in a temporally-variable environment to the spatial case and to elucidate new principles. In particular, coexistence mechanisms are divided into variation-dependent and variation-independent mechanisms with variation-dependent mechanisms including spatial generalizations of relative nonlinearity and the storage effect. Although directly analogous to the corresponding temporal mechanisms, these spatial mechanisms involve different life history traits which suggest that the spatial storage effect should arise more commonly than the temporal storage effect and spatial relative nonlinearity should arise less commonly than temporal relative nonlinearity. Additional mechanisms occur in the spatial case due to spatial covariance between the finite rate of increase of a local population and its local abundance, which has no clear temporal analogue. A limited analysis of these additional mechanisms shows that they have similar properties to the storage effect and relative nonlinearity and potentially may be considered as enlargements of the earlier mechanisms. The rate of increase of a species perturbed to low density is used to quantify coexistence. A general quadratic approximation, which is exact in some important cases, divides this rate of increase into contributions from the various mechanisms above and admits no other mechanisms, suggesting that opportunities for coexistence in a spatially-variable environment are fully characterized by these mechanisms within this general model. Three spatially-implicit models are analyzed as illustrations of the general findings and of techniques using small variance approximations. The contributions to coexistence of the various mechanisms are expressed in terms of simple interpretable formulae. These spatially-implicit models include a model of an annual plant community, a spatial multispecies version of the lottery model, and a multispecies model of an insect community competing for spatially-patchy and ephemeral food.  相似文献   

20.
Ecological interactions among species are the backbone of biodiversity. Interactions take a tremendous variety of forms in nature and have pervasive consequences for the population dynamics and evolution of species. A persistent challenge in evolutionary biology has been to understand how coevolution has produced complex webs of interacting species, where a large number of species interact through mutual dependences (e.g., mutualisms) or influences (e.g., predator–prey interactions in food webs). Recent work on megadiverse species assemblages in ecological communities has uncovered interesting repeated patterns that emerge in these complex networks of multispecies interactions. They include the presence of a core of super- generalists, proper patterns of interaction (that resemble nested chinese boxes), and multiple modules that act as the basic blocks of the complex network. The structure of multispecies interactions resembles other complex networks and is central to understanding its evolution and the consequences of species losses for the persistence of the whole network. These patterns suggest both precise ways on how coevolution goes on beyond simple pairwise interactions and scales up to whole communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号