首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Myxozoans belonging to the recently described class Malacosporea parasitize freshwater bryozoans during at least part of their life cycle. There are at present only two species described in this class: Buddenbrockia plumatellae and Tetracapsuloides bryosalmonae . The former can exist as vermiform and sac-like stages in bryozoan hosts. The latter, in addition to forming sac-like stages in bryozoans, is the causative agent of salmonid proliferative kidney disease (PKD). We undertook molecular and ultrastructural investigations of new malacosporean material to further resolve malacosporean diversity and systematics. Phylogenetic analyses of 18S rDNA sequences provided evidence for two new putative species belonging to the genus Buddenbrockia , revealing a two-fold increase in the diversity of malacosporeans known to date. One new malacosporean is a vermiform parasite infecting the bryozoan Fredericella sultana and the other occurs as sac-like stages in the rare bryozoan, Lophopus crystallinus . Both bryozoans represent new hosts for the genus Buddenbrockia . Our results have established that the malacosporean which infected F. sultana was not a vermiform stage of T. bryosalmonae , although it was collected from a site endemic for PKD. Ultrastructural investigation of new material of B . plumatellae revealed the presence of numerous external tubes associated with developing polar capsules, confirming that the absence of external tubes should no longer be considered as a character of the class Malacosporea.  相似文献   

2.
Myxozoans, belonging to the recently described Class Malacosporea, parasitise freshwater bryozoans during at least part of their life cycle, but no complete malacosporean life cycle is known to date. One of the 2 described malacosporeans is Tetracapsuloides bryosalmonae, the causative agent of salmonid proliferative kidney disease. The other is Buddenbrockia plumatellae, so far only found in freshwater bryozoans. Our investigations evaluated malacosporean life cycles, focusing on transmission from fish to bryozoan and from bryozoan to bryozoan. We exposed bryozoans to possible infection from: stages of T. bryosalmonae in fish kidney and released in fish urine; spores of T. bryosalmonae that had developed in bryozoan hosts; and spores and sac stages of B. plumatellae that had developed in bryozoans. Infections were never observed by microscopic examination of post-exposure, cultured bryozoans and none were detected by PCR after culture. Our consistent negative results are compelling: trials incorporated a broad range of parasite stages and potential hosts, and failure of transmission across trials cannot be ascribed to low spore concentrations or immature infective stages. The absence of evidence for bryozoan to bryozoan transmissions for both malacosporeans strongly indicates that such transmission is precluded in malacosporean life cycles. Overall, our results imply that there may be another malacosporean host which remains unidentified, although transmission from fish to bryozoans requires further investigation. However, the highly clonal life history of freshwater bryozoans is likely to allow both long-term persistence and spread of infection within bryozoan populations, precluding the requirement for regular transmission from an alternate host.  相似文献   

3.
Colonies of the freshwater bryozoan Plumatella repens collected from a river in the UK were found to be infected with the myxozoan parasite Buddenbrockia plumatellae following laboratory maintenance. Optimisation of the bryozoan diet allowed maintenance of infected colonies for 90 d, permitting observation by light and electron microscopy of the sequential parasitic developmental cycle. Parasite stages were associated with host peritoneum, identifying the primary developmental phase. The association of B. plumatellae cells with peritoneal basal lamina and morphological similarities between parasite and host suggested that the parasite remodelled host tissue. Progressive expansion and elongation of individual parasites led to the release of freely floating vermiform stages within the host coelomic cavities. Within these 'worms', intraluminal masses developed, resulting in the formation of spores. Upon maturation, the 'worms' ruptured, releasing many spores within the host that were subsequently discharged. Although parasitism led to increased bryozoan fragmentation and lowered statoblast production, some colonies did survive, resulting in repeated waves of infection. Long-term laboratory maintenance of infected bryozoan colonies could provide a means of maintaining B. plumatellae for study until the full life cycle is ascertained.  相似文献   

4.
Development of a new species of malacosporean myxozoan (Buddenbrockia allmani n. sp.) in the bryozoan Lophopus crystallinus is described. Early stages, represented by isolated cells or small groups, were observed in the host's body wall or body cavity. Multiplication and rearrangement of cells gave an outer cell layer around a central mass. The outer cells made contact by filopodia and established adherens junctions. Sporoplasmosomes were a notable feature of early stages, but these were lost in subsequent development. Typical malacosporean sacs were formed from these groups by attachment of the inner (luminal) cells by a basal lamina to the outer layer (mural cells). Division of luminal cells gave rise to a population of cells that was liberated into the lumen of the sac. Mitotic spindles in open mitosis and prophase stages of meiosis were observed in luminal cells. Centrioles were absent. Detached luminal cells assembled to form spores with four polar capsules and several valve cells surrounding two sporoplasms with secondary cells. Restoration of sporoplasmosomes occurred in primary sporoplasms. A second type of sac was observed with highly irregular mural cells and stellate luminal cells. A radially striated layer and dense granules in the polar capsule wall, and previous data on 18 rDNA sequences enabled assignment of the species to the genus Buddenbrockia, while specific diagnosis relied on the rDNA data and on sac shape and size.  相似文献   

5.
Members of the phylum Myxozoa are obligate parasites, primarily of aquatic organisms. Their phylogeny has remained problematic, with studies placing them within either the Bilateria or Cnidaria. The discovery that the enigmatic Buddenbrockia plumatellae is a myxozoan that possesses distinct bilaterian features appeared to have finally resolved the debate. B. plumatellae is described as a triploblastic 'worm-like' organism, within which typical myxozoan malacospores form. Using EM we examined the early development of the B. plumatellae 'worms' within the bryozoan host Plumatella repens. The initial development involved numerous unicellular, amoeboid pre-saccular stages that were present within the basal lamina of the host's body wall. These stages migrate immediately beneath the peritoneum where a significant host tissue reaction occurs. The stages aggregate, initiating the formation of a 'worm'. The base of a developing 'worm' forms a pseudosyncytium which resolves into an ectoderm surrounding a mesendoderm. The pseudosyncytium is directly anchored into neighbouring host cells via masses of striated fibres. The replication of the ectodermal and mesendodermal cells extends the developing 'worm' into the coelom of the host. The mesendoderm resolves to form a mesoderm and an endoderm. Myogenesis appears to be initiated from the anchored end of the 'worm' and develops along the mesoderm. The aggregation and differentiation of amoeboid pre-saccular stages to initiate the 'worm' draws analogies to the sacculogenesis observed for Tetracapsuloides bryosalmonae, B. plumatellae's sister taxon within the class Malacosporea. The development of a multicellular, spore forming organism, from single cells does not correlate to any bilaterian or cnidarian species. Current phylogenies indicate the Myxozoa are basal bilaterians along with the Acoela and Mesozoa. Comparison with these other basal groups may help to resolve the placement of Myxozoa within the tree of life.  相似文献   

6.
A new species of microsporidian, Trichonosema algonquinensis, is described from a freshwater bryozoan, Pectinatella magnifica from Ontario, Canada. The parasite develops in epithelial cells and appears as white, spherical masses throughout the tissues. Trichonosema algonquinensis is diplokaryotic, diploblastic and undergoes development in direct contact with the cytoplasm of the host cell. Mature spores are ovoid, tapered at one end, and measure 8.5 +/- 0.3 x 4.4 +/- 0.1 microm. The polar filament is wound in 20 to 23 helical coils. Although the parasite resembles T. pectinatellae described from the same host in Michigan and Ohio, it differs in the length of the spore and number of coils of the polar filament. Analysis of 16S rDNA by maximum likelihood, parsimony and Baysian inference, complements the morphological data in supporting the placement of T. algonquinensis as a sister species of T. pectinatellae.  相似文献   

7.
An unusual xenoma-forming microsporidium was discovered in the central nervous system of moribund zebrafish from a laboratory colony in Eugene, Oregon. Infected fish were often emaciated and lethargic, and histological examination commonly revealed severe myelitis and myositis associated with the infection. Based on its structure, development, and small subunit ribosomal DNA sequence it is unique among fish microsporidia. Spores are uninucleate, ovoid to pyriform, with a prominent posterior vacuole. Spores average 5.4 x 2.7 microm with 13-16 coils of the polar filament. The microsporidium produces xenomas within the spinal cord and hindbrain of fish, and xenomas contained sporophorous vesicles with up to 16 spores. Sporoblasts and presporoblast stages (probably sporonts) are found occasionally in small aggregates dispersed randomly throughout xenomas. It clustered in the "Ichthyosporidium group" along with other fish microsporidian genera based on rDNA sequence analysis. The rDNA sequence of the zebrafish microsporidium was most similar to that of Ichthyosporidium, but showed only 12.1% similarity and therefore this microsporidium can be considered a distinct genus and species, which we have named Pseudoloma neurophilia n. g., n. sp.  相似文献   

8.
9.
10.
A novel species of aseptate eugregarine, Ganymedes yurii sp. n., is described using microscopic and molecular approaches. It inhabits the intestine of Gondogeneia sp., a benthic amphipod found along the shore of James Ross Island, Weddell Sea, Antarctica. The prevalence of the infection was very low and only a few caudo‐frontal syzygies were found. Morphologically, the new species is close to a previously described amphipod gregarine, Ganymedes themistos, albeit with several dissimilarities in the structure of the contact zone between syzygy partners, as well as other characteristics. Phylogenetic analysis of the 18S rDNA from G. yurii supported a close relationship between these species. These two species were grouped with other gregarines isolated from crustaceans hosts (Cephaloidophoroidea); however, statistical support throughout the clade of Cephaloidophoroidea gregarines was minimal using the available dataset.  相似文献   

11.
研究报道了中国首例摇蚊微孢子虫, 结合各发育阶段形态特征、生态学特征及分子特征, 鉴定其为萨梅诺娃新佩雷斯虫Neoperezia semenovaiae Issi, et al. 2012, 系我国新记录。萨梅诺娃新佩雷斯虫寄生于羽摇蚊幼虫脂肪体组织, 导致其体表呈白浊状。成熟孢子呈卵圆形, 孢子长(5.7±0.2) μm (5.3—6.3 μm), 宽(3.7±0.1) μm (3.4—4.0 μm)。透射电镜观察显示各发育阶段均为离核, 发育不同步, 与宿主细胞质直接接触。早期发育阶段为高电子密度的多核裂殖体阶段, 经原生质团分裂形成单核或多核产孢体, 进一步发育为单核孢子母细胞。孢子母细胞形状不规则, 周围被内质网环绕, 并逐渐形成微孢子虫的典型结构如极丝、极质体和三层孢壁等。成熟孢子卵圆形, 离核, 细胞核较大, 位于孢子正中央, 被大量核糖体包围。极质体分为两部分, 前半部分为海绵状, 后半部分薄膜状。锚状盘位于孢子前端, 呈蘑菇状。孢壁三层, 外层为高电子密度层, 厚26.5—62.7 nm, 中间层为电子透明层, 厚151.8—236.1 nm, 里层为质膜层。同型极丝, 30—31圈, 分2—3列排列。扩增获得其小核糖体序列为1356 bp, 序列比较发现其与俄罗斯列宁格勒区羽摇蚊的N. semenovaiae相似性为99.1%。系统发育关系分析表明N. semonovaiae与Neoperezia、Bryonosema、Schroedera属种类聚为一独立进化枝, N. semonovaiae种群出现明显的地理分化。  相似文献   

12.
Four unarmored heterotrophic dinoflagellates were isolated from the coastal waters of southern Korea. The rDNA sequences of four clonal cultures were determined, and the morphology of one of the four strains was examined using light and scanning and transmission electron microscopy. The large subunit (LSU) and small subunit (SSU) rDNA sequences of each of the strains differed by 0–0.9% from those of the other strains, and the SSU rDNA sequence of the strain differed by 1.8–4.4% from those of other Gyrodinium species, whereas the LSU (D1–D2) rDNA sequence differed by 12.4–22.2%. Furthermore, phylogenetic trees showed that Gyrodinium jinhaense n. sp. formed a distinctive clade among the other Gyrodinium species. Meanwhile, microscopy revealed an elliptical bisected apical structure complex and a cingulum that was displaced by approximately one‐quarter of the cell length, which confirmed that the dinoflagellate belonged to the genus Gyrodinium. However, the cell surface was ornamented with 16 longitudinal striations, both on the episome and hyposome, unlike other Gyrodinium species. Furthermore, the cells were observed to have pusule systems and trichocysts but lacked mucocysts. Based on morphology and molecular data, we consider this strain to be a new species in the genus Gyrodinium and thus, propose that it be assigned to the name Gjinhaense n. sp.  相似文献   

13.
We did a comparative analysis of the small subunit ribosomal DNA (rDNA) for two species of Microsporidia, Semenovaia chironomi and Neoperezia chironomi, both parasites of Chironomus plumosus (Diptera, Chironomidae). These two microsporidial species have been described previously on the basis of light and electron microscopic studies. The former species is dimorphic, producing both single diplokaryotic spores and uninucleate spores in sporophorous vesicles (SPVs) in packets of 16, while the latter species is monomorphic, disporoblastic, producing only uninucleate spores in SPVs. Based on their life cycles, S. chironomi and N. chironomi were assigned to two different families, Burenellidae and Neopereziidae. However, molecular analysis shows 96.7% sequence similarity for the small subunit rDNA between these two species. Remarkable similarities of the spore ultrastructure (mainly of the extrusion apparatus) justify a transfer of S. chironomi to Neoperezia, establishing a new combination, Neoperezia semenovaiae. Neoperezia belongs to Clade V, Class Aquasporidia sensu Vossbrinck and Debrunner-Vossbrinck (2005), and is in its spore ultrastructure similar to its closest relatives, namely Bryonosema, Schroedera, Pseudonosema, Trichonosema and Janacekia. We therefore conclude that similarities in spore ultrastructure reflect the phylogenetic relatedness of these Microsporidia, as opposed to the strikingly diverse life cycles.  相似文献   

14.
Proliferative kidney disease (PKD) is a hyperplastic condition of the lymphoid tissue of salmonids infected with the spores of Tetracapsula bryosalmonae, a myxozoan parasite formerly designated PKX, which has recently been described as a parasite of several species of bryozoans. The occurrence of PKD is generally associated with seasonal increase in water temperature, with research indicating that transmission of the disease does not occur below 12 to 13 degrees C. This suggested that the infectious stages are absent from about November to March/April. Here we document the transmission of PKD at water temperatures and seasons previously considered to be non permissive for PKD infection. The exposure of naive rainbow trout Oncorhynchus mykiss (Walbaum) to PKD-infected water ranging from 8 to 13 degrees C during the Autumn, Winter and early Spring, resulted in the infection of kidney interstitium once the trout were transferred to 16 degrees C. In addition, cohabitation studies were conducted with the bryozoan host Fredericella sultana collected from a river at times of low seasonal temperatures because this bryozoan species overwinters as living colonies. Cohabitation of trout with colonies of F sultana in parasite-free city water at 16 degrees C, also led to renal lymphoid tissue infection with the parasite and even to nephromegaly. Our results provide evidence that the infectious stages of T bryosalmonae for rainbow trout were present in the water throughout the entire year and that the impact of temperature on the development of PKD is primarily a result of the kinetics of Tetracapsula multiplication in bryozoan and fish hosts.  相似文献   

15.
A new species of Kudoa lutjanus n. sp. (Myxosporea) is described from the brain and internal organs of cultured red snapper Lutjanus erythropterus from Taiwan. The fish, 260 to 390 g in weight, exhibited anorexia and poor appetite and swam in the surface water during outbreaks. Cumulative mortality was about 1% during a period of 3 wk. The red snapper exhibited numerous creamy-white pseudocysts, 0.003 to 0.65 cm (n = 100) in diameter, in the eye, swim bladder, muscle and other internal organs, but especially in the brain. The number of pseudocysts per infected fish was not correlated with fish size or condition. Mature spores were quadrate in apical view and suboval in side view, measuring 8.2 +/- 0.59 microm in width and 7.3 +/- 0.53 microm in length. The 4 valves were equal in size, each with 1 polar capsule. Polar capsules were pyriform in shape, measuring 3.62 +/- 0.49 microm in length and 2.2 +/- 0.49 microm in width. Mild inflammatory responses or liquefaction of host tissue were associated with K. lutjanus n. sp. infection. The junction of shell valves appeared as overlapping, straight lines. The polar filament formed 2 to 3 coils. A general PCR (polymerase chain reaction) primer for Kudoa amplified the small subunit (SSU) rDNA sequences, and the amplified gene was sequenced. It was evident from the phylogenetic tree that the 3 strains tested, AOD93020M, AOD93028M and AOD93028B, were identical and belonged to the Kudoa SS rRNA subgroup. The evolutionary tree showed that these strains form a unique clade, at a distance from other Kudoa species and myxosporeans. The spore's morphological and ultrastructural characteristics, as well as the SS rDNA properties of the isolates, were also essentially identical and served to distinguish them from representative Kudoa. It is, therefore, proposed that the strains isolated from the diseased red snapper be assigned to a new species.  相似文献   

16.
Two species of Parvicapsula were found in the kidney tubules and the urinary bladder of 2 pleuronectid fish from the northern Oresund, Denmark. The coelozoic, spherical, disporic trophozoites of both species are 10 to 12 pm in diameter. The myxospores of both species are elongate, asymmetrical and slightly curved, and have spherical polar capsules. Parvicapsula bicornis n. sp. (6-8 x 5-6 microm, polar capsule 2.5 microm in diameter) occurs in Pleuronectes platessa. The polar capsules of P. bicornis are arranged symmetrically on either side of the longitudinal axis and its spores differ from other species of Parvicapsula in having two 2-3 microm long posterior processes of different length. Parvicapsula limandae n. sp. (8-11 x 4-5 pm, polar capsule 1.6 microm in diameter) is found in Limanda limanda. The polar capsules are arranged along the longitudinal axis. It differs from Parvicapsula unicornis Kabata, 1962, recorded from L. limanda, in the arrangement of the polar capsules and in the absence of a posterior horn-like projection. The phylogenetic relationship between P. bicornis n. sp., P. limandae n. sp. and other Parvicapsula spp. was examined with their partial small subunit rDNA (SSU rDNA) sequences. P. limandae n. sp. and P. asymmetrica appear to be closely related, while P. bicornis n. sp. and P. minibicornis are the most divergent members of the genus.  相似文献   

17.
In an effort to broaden our understanding of the biodiversity and distribution of gregarines infecting crustaceans, this study describes two new species of gregarines, Thiriotia hyperdolphinae n. sp. and Cephaloidophora oradareae n. sp., parasitizing a deep sea amphipod (Oradarea sp.). Amphipods were collected using the ROV Hyper‐Dolphin at a depth of 855 m while on a cruise in Sagami Bay, Japan. Gregarine trophozoites and gamonts were isolated from the gut of the amphipod and studied with light and scanning electron microscopy, and phylogenetic analysis of 18S rDNA. Thiriotia hyperdolphinae n. sp. was distinguished from existing species based on morphology, phylogenetic position, as well as host niche and geographic locality. Cephaloidophora oradareae n. sp. distinguished itself from existing Cephaloidophora, based on a difference in host (Oradarea sp.), geographic location, and to a certain extent morphology. We established this latter new species with the understanding that a more comprehensive examination of diversity at the molecular level is necessary within Cephaloidophora. Results from the 18S rDNA molecular phylogeny showed that T. hyperdolphinae n. sp. was positioned within a clade consisting of Thiriotia spp., while C. oradareae n. sp. grouped within the Cephaloidophoridae. Still, supplemental genetic information from gregarines infecting crustaceans will be needed to better understand relationships within this group of apicomplexans.  相似文献   

18.
The physical location of the 25S-26S rDNA sequences was examined in 11 taxa of nine species of Boronia. In diploid species, two rDNA sites were detected in Boronia clavata (2n = 14), Boronia pinnata 'White' (2n = 22), and Boronia chartacea (2n = 32); four in Boronia megastigma (2n = 14) and Boronia denticulata (2n = 18); six in Boronia pinnata 'Pink' (2n = 22); and eight in Boronia molloyae (2n = 16). Eleven sites were found in Boronia heterophylla 'Red' and 'Near White' (2n = 15), but only two active nucleolar organizer regions (NORs) were observed. In polyploid species, Boronia pilosa (2n = 44) had four rDNA sites, while Boronia coerulescens (2n = 72) had six. Most of the rDNA sequences were terminal, but a few were interstitial. There were also differences in signal intensity indicating that the gene copies between and within rDNA sites might be different. The result suggests that considerable chromosome rearrangements have occurred during Boronia cyto-evolution, leading to variation among Boronia taxa in rDNA copy number, site number, and location. These changes together with dysploid reduction during cyto-evolution have made the Boronia genome considerably diverse in chromosome number, genome organization, and chromosome structure.  相似文献   

19.
Henneguya cartilaginis n. sp. (Myxozoa: Myxosporea) is described from wild masu salmon Oncorhynchus masou masou in Hokkaido, Japan. H. cartilaginis n. sp. produced white cysts, up to 3mm in size, in the head of masu salmon. Infected fish exhibited cranial protrusion due to the cysts. Spores (11.4 × 8.6μm) of H. cartilaginis n. sp. were egg-shaped with the posterior end more pointed and possessed two caudal appendages (34.2μm average length). Histological observations revealed that large plasmodia possessing fine fibrous pseudopodia on the surface developed in the head cartilage. H. cartilaginis n. sp. resembles H. cerebralis, which was described from the cranial cartilage of Kosogol grayling Thymallus nigrescens in Mongolia. However, they were distinguishable by spore morphology. Molecular analysis of the 18S rDNA sequences indicated that H. cartilaginis n. sp. was most closely related to Henneguya zschokkei, H. nuesslini and H. salminicola of salmonid fish, with genetic similarities of 95.3%, 95.1% and 93.9%, respectively. Based on these differences in spore morphology, molecular data, the site of infection and geographical distribution, the present species is considered to be a new species.  相似文献   

20.
While around world, species of the genus Ceratomyxa parasite majority marine hosts, growing diversity has been reported in South American freshwater fish. The present study reports Ceratomyxa barbata n. sp. parasitizing the gallbladder of the Rhaphiodon vulpinus fish from the Amazon and La Plata basins. Morphological (light and transmission electron microscopy), molecular (sequencing of small subunit ribosomal DNA - SSU rDNA), and phylogenetic analyses were used to characterize the new species. Worm-like plasmodia endowed with motility were found swimming freely in the bile. The myxospores were elongated, lightly arcuate, with rounded ends and had polar tubules with 3 coils in the polar capsules. Ultrastructural analysis revealed plasmodia composed of an outer cytoplasmic region, where elongated tubular mitochondria, a rough endoplasmic reticulum, sporogonic stages, and a large vacuole occupying the internal area were observed. Phylogenetic analysis, based on SSU rDNA, found that among all South America freshwater Ceratomyxa species, C. barbata n. sp. arises as an earlier divergent species. The present study reveals the occurrence of this host-parasite system (R. vulpinus/C. barbata n. sp.) in the two largest watersheds on the continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号