首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of spermidine on the fidelity of natural mRNA-directed protein synthesis has been investigated. With protamine mRNA as a template for protamine synthesis, misincorporation of lysine, histidine, threonine and cysteine for arginine was measured in the presence and absence of spermidine. It was found that misincorporation of these four amino acids in the presence of spermidine was less than or nearly equal to that occurring in the absence of spermidine; however, incorporation of arginine was stimulated greatly by spermidine. These results clearly show that spermidine induced an increase of fidelity in protamine synthesis. The increase of fidelity in the presence of spermidine occurred mainly at the level of binding of aminoacyl-tRNA to ribosomes. The frequency of misreading the 5' base of the codon (misincorporation of cysteine) was greater than that of the middle base of the codon (misincorporation of histidine), but spermidine reduction of misreading was more marked at the middle base of the codon. Misincorporation of lysine (misreading of G to A residue at the middle base of the codon) was greater than that of threonine (misreading of G to C residue), but spermidine reduction of misreading was more marked in the misincorporation of threonine. It was deduced from these results that spermidine inhibited low-frequency misreading more effectively than high-frequency misreading.  相似文献   

2.
The mechanism of inhibition of polypeptide synthesis by the addition of a tRNA fraction in a rat liver cell-free system was studied. The inhibition was found to occur at the step of aminoacyl-tRNA binding to ribosomes, in which aminoacyl-tRNA's were mainly responsible for the inhibition. The addition of EF-1 decreased the inhibition by the tRNA fraction. The tRNA fraction inhibited polypeptide synthesis in a polysome-S100 system under conditions in which poly U- and poly A-dependent polypeptide syntheses were not inhibited. The possibility that the aminoacyl-tRNA inhibitory activity functions through improper binding to the ribosomes in the polysome-S100 system is discussed.  相似文献   

3.
The addition of phosphate caused an increase in the degree of spermidine stimulation of polypeptide synthesis in an Escherichia coli and a wheat germ cell-free system. Optimal stimulation of polypeptide synthesis was observed at 20 mm phosphate for both systems, but concentrations of phosphate up to 40 mm had no additional effect. The increase of degree of spermidine stimulation in the presence of phosphate in an E. coli cell-free system occurred at the level of aminoacyl-tRNA binding to ribosomes and not at the level of peptide bond formation, translocation, or aminoacyl-tRNA formation. From the results of studies on RNase A sensitivity of ribosomal subunits and the effect of antibiotics known to act on the 30 S ribosomal subunits, it is suggested that the nature of the 30 S ribosomal subunits is changed by phosphate so that the degree of spermidine stimulation of polypeptide synthesis is increased.  相似文献   

4.
The system of translation of Sepharose-bound poly(U) in which all ribosomes are active in peptide elongation was used to determine the stoichiometry of GTP hydrolysis at the stage of EF-Tu-promoted aminoacyl-tRNA binding. The ratio of GTP hydrolyzed at this stage per peptide bond was assayed during codon-specific elongation (polyphenylalanine synthesis) and misreading (polyleucine synthesis). It was demonstrated directly that the excess GTP hydrolyzed during misreading [(1984) FEBS Letters 178, 283-287] is expended at the stage of Ef-Tu-promoted binding of non-cognate aminoacyl-tRNA.  相似文献   

5.
Spermine and spermidine added to a Saccharomyces cerevisiae cell-free protein synthesizing system increased phenylalanine polymerization reaction several-fold at suboptimal concentration of Mg2+ and approximately two-fold at optimal amounts of Mg2+. The addition of polyamines greatly stimulated the enzymatic and nonenzymatic binding of phenylalanyl-tRNA and N-acetylphenylalanyl-tRNA to ribosomes. The binding of the acetylated derivative was higher than phenylalanyl-tRNA, however, as it was shown the former was bound exclusively to the A site of the ribosome. Contrary to the binding process, the puromycin reaction was not stimulated by spermine added at a concentration which enhanced the polyphenylalanine synthesis. These results indicate that polyamines have not only a sparing effect on the Mg2+ requirement for yeast protein synthesis in vitro and suggest that one of the possible sites of polyamines action might be the binding of aminoacyl-tRNA to ribosomes.  相似文献   

6.
It is shown that the stimulation of polyphenylalanine synthesis by spermidine is due mainly to the stimulation of initiation of polypeptide synthesis by following reasons: 1) the binding of poly(U) to ribosomes was stimulated more by spermidine than the binding of Phe-tRNA to ribosomes, and 2) the number of polyphenylalanine chains was increased more by spermidine than the extension of the chain length. In addition, it is shown that 30S ribosomal subunits are responsible for the stimulation of polyphenylalanine synthesis by spermidine.  相似文献   

7.
Summary The biochemical basis of suppression of a temperature-sensitive alanyl-tRNA synthetase (alaS) mutation by mutational alterations of the ribosome has been investigated. Measurement of the polyU-dependent polyphenylalanine synthesis showed that ribosomes from the suppressor strains are less active than ribosomes from the unsuppressed aminoacyl-tRNA synthetase mutant. In this system no increased translational ambiguity could be detected for the suppressor ribosomes. This fact and also the findings that the ram-1 mutation is not able to suppress the aminoacyl-tRNA synthetase mutation and that presence of the suppressor allele is not accompanied by a measureably improved alanyl-tRNA synthetase activity argue against the possibility that suppression might be due to increased translational misreading rates of the alanyl-tRNA synthetase mRNA.It has been further found that partial suppression of temperature sensitive growth of the alaS mutation can be achieved by independent ribosomal mutations leading to reduced growth rates because of a mutation to antibiotic resistance. Addition of low concentrations of a variety of antibiotics acting at the ribosomal level can also partially revert the temperature-sensitive phenotype of the alaS mutant. Although the possibility cannot be excluded that suppression is due to the stabilisation or activation of the mutant enzyme by some indirect effect of the suppressor ribosomal mutations, the following working hypothesis is favoured at the moment: It is assumed that limitation of the aminoacyl-tRNA synthetase activity in a certain range of the restrictive temperature causes growth inhibition by the premature termination of polypeptide synthesis at the ribosome or by the unbalanced synthesis of the individual cellular proteins under this condition. The mechanism of suppression by ribosomal mutations is proposed to consist of the release of this growth inhibition by the reduction of the rate of polypeptide synthesis, which would keep amino acid incorporation from exceeding the slow charging of tRNA and thus exhausting the pool of charged tRNA. In the suppressor strains, therefore, growth at the semi-restrictive temperature is no longer limited by the aminoacylation of tRNA but by the translational process at the mutated ribosome. This influence of the ribosomal mutation on the speed of translation could be directly or indirectly coupled with an effect on translational fidelity resulting in the prevention of the binding of uncharged or non-cognate charged tRNA or in the tighter binding of peptidyl-tRNA when cognate aminoacyl-tRNA is limiting.  相似文献   

8.
At 5 mM Mg2+, spermidine stimulation of polyphenylalanine synthesis by cell-free extracts of Escherichia coli was found to be about 30 times greater than that by extracts of Pseudomonas sp. strain Kim, a unique organism which lacks detectable levels of spermidine. By means of reconstitution experiments, the target of spermidine stimulation was localized to the protein fraction of the highspeed supernatant component (S-100) of E. coli and was absent from, or deficient in, the S-100 fraction of Pseudomonas sp. strain Kim. The spermidine stimulation did not appear to be due to the presence in the E. coli S-100 fraction of ribosomal protein S1, elongation factors, or E. coli aminoacyl-tRNA synthetases. The failure to observe spermidine stimulation by the Pseudomonas sp. strain Kim S-100 fraction was also not due to a spermidine-enhanced polyuridylic acid degradation. The synthesis of polyphenylalanine by Pseudomonas sp. strain Kim extracts was stimulated by putrescine and by S-(+)-2-hydroxyputrescine to a greater degree than was synthesis by E. coli extracts. The enhancement by putrescine and by S-(+)-2-hydroxyputrescine with Pseudomonas sp. strain Kim extracts was found to be due to effects on its ribosomes.  相似文献   

9.
—The regulation of protein synthesis by ribosomes isolated from mouse brain tissue was studied using a cell-free polyphenylalanine synthesizing system. Polypeptide synthesis was followed by assaying translocation and analysing the reaction products by BD-cellulose chromatography. The brain ribosomal activity could be divided by these methods into two distinct steps : binding of aminoacyl-tRNA to the ribosome and active translocation leading to subsequent polyphenylalanine synthesis. In comparison to initial binding of aminoacyl-tRNA, translocation in the cell-free system increased the incorporation of labelled phenylalanine by 10-fold. An analysis of the reaction products clearly showed active ribosomal synthesis of oligophenylalanine from [3H]phe-tRNA. Ribosomes isolated from neonatal brain tissue were 2–4 times as active as those obtained from adult brain tissue in polypeptide synthesis. In addition, polypeptides synthesized on the more active ribosomes from neonates tended to be of greater chain length than those from adult. Therefore, the maturation-dependent decrease in ribosomal protein synthetic activity during neural development was shown to be directly associated with the ribosome particles.  相似文献   

10.
The effect of mutations in ribosomal proteins S4 (rpsD12), S12 (rpsL282) and L7/L12 (rplL265) of Escherichia coli K12 on the EF-Tu-dependent expenditure of GTP during codon-specific elongation (poly(Phe) synthesis on poly(U] and misreading (poly(Leu) synthesis on poly(U], was studied. Under the conditions used the mutations in proteins S4 and L7/L12 did not practically affect the EF-Tu-dependent expenditure of GTR during the poly(Phe) synthesis on poly(U): the GTP/Phe ratio was about 1, as in the case of the wild strain. Under the same conditions, the ribosomes with a mutant S12 protein tended to discard some amount of Phe-tRNA, as a result of which the GTP/Phe ratio increased to about 3. The marked inhibition of misreading by ribosomes with a mutant S12 protein was accompanied by a significant increase of GTP expenditure at the stage of EF-Tu-dependent non-cognate aminoacyl-tRNA binding. In mutant S 12 proteins the GTP/Leu ratio was about 30-40, whereas in the wild type it was about 12. In contrast, stimulation of misreading by ribosomes with mutant S4 and L7/L12 proteins was accompanied by a decrease of the EF-Tu-dependent expenditure of GTP by 2-3 GTP molecules per one Leu residue included into the peptide.  相似文献   

11.
The effect of polyamines on Q beta and MS2 phage RNA-directed synthesis of three kinds of protein in an Escherichia coli cell-free system has been studied. With both phage RNAs, the degree of stimulation of protein synthesis by spermidine was in the order RNA replicase greater than A protein, while the synthesis of coat protein was not stimulated significantly by spermidine. The synthesis of RNA replicase was stimulated by 1 mM spermidine approx. 8-fold. From the results of Q beta RNA direct alanyl-tRNA and seryl-tRNA binding to ribosomes and initiation dipeptide synthesis, it is suggested that the preferential stimulation of the synthesis of RNA replicase by spermidine is due at least partially to the stimulation of the initiation of RNA replicase synthesis.  相似文献   

12.
1. Aspects of skeletal muscle protein synthesis in vitro were studied in young rats given a low-protein diet for up to 10 days and during re-feeding with an adequate diet. 2. Partially purified muscle transfer factors (transferases I and II), crude and purified (NH(4)Cl-washed) ribosomes and a pH5 enzyme fraction were prepared for this purpose. 3. A marked decrease in the capacity of crude ribosomes to carry out cell-free polypeptide synthesis occurred within 4 days of feeding the low-protein diet. 4. The capacity of salt-washed ribosomes to promote amino acid polymerization, in the presence of added transfer factors and aminoacyl-tRNA, was only slightly decreased by the dietary treatment. 5. However, the capacity of salt-washed ribosomes to bind (14)C-labelled aminoacyl-tRNA was decreased by feeding the low-protein diet. 6. The capacity of the pH5 enzyme fraction to promote amino acid incorporation in a complete cell-free system was decreased within 2 days of feeding the low-protein diet. There is no evidence that the change is associated with aminoacyl-tRNA synthetase or binding enzyme activities of the pH5 fractions. 7. These changes are discussed in relation to the diminished rate of protein synthesis in the intact muscle cell when rats are given a low-protein diet.  相似文献   

13.
Effects of Cephalotaxus alkaloids (homoharringtonine and cephalotaxine) on the translation of endogenous mRNA in a cell-free system of rabbit reticulocyte lysate and on poly(U)-directed poly(Phe) synthesis on human placenta ribosomes was studied. The effect of the alkaloids on the activity of human placenta ribosomes in a template-dependent aminoacyl-tRNA binding, N-acetyl-phenylalanyl-puromycin and diphenylalanine formation was also studied. Homoharringtonine was shown to have little effect of codon-dependent Phe-tRNA(Phe) binding but the alkaloid strongly inhibited (Phe)2 formation as well as N-Ac-Phe-puromycin synthesis from the complex N-Ac-Phe-tRNA(Phe).poly(U).80S ribosomes. It was concluded that the site of homoharringtonine binding overlaps or coincides with the acceptor site of the ribosomal peptidyltransferase center. The association constant of homoharringtonine to the ribosomes was estimated to be (4.8 +/- 1.0) x 10(7) M-1. Cephalotaxine had no effect on the elongation steps.  相似文献   

14.
Escherichia coli CAG2242 cells are deficient in the speG gene encoding spermidine acetyltransferase. When these cells were cultured in the presence of 0.5 to 4 mM spermidine, their viability was greatly decreased through the inhibition of protein synthesis by overaccumulation of spermidine. When the cells were cultured with a high concentration of spermidine (4 mM), a revertant strain was obtained. We found that a 55-kDa protein, glycerol kinase, was overexpressed in the revertant and that synthesis of a ribosome modulation factor and the RNA polymerase sigma(38) subunit, factors important for cell viability, was increased in the revertant. Levels of L-glycerol 3-phosphate also increased in the revertant. Transformation of glpFK, which encodes a glycerol diffusion facilitator (glpF) and glycerol kinase (glpK), to E. coli CAG2242 partially prevented the cell death caused by accumulation of spermidine. It was also found that L-glycerol 3-phosphate inhibited spermidine binding to ribosomes and attenuated the inhibition of protein synthesis caused by high concentrations of spermidine. These results indicate that L-glycerol 3-phosphate reduces the binding of excess amounts of spermidine to ribosomes so that protein synthesis is recovered.  相似文献   

15.
The effects of ricin on the different steps of the elongation cycle of protein synthesis in a rabbit reticulocyte cell-free system are studied in this paper. The toxin most probably acts by catalytically inactivating the ribosomes, since a single molecule of the toxin can inactivate 300 ribosomes for poly(U)-directed phenylalanine incorporation. The effect of the toxin on the ribosome is irreversible. Ricin specifically inhibits elongation-factor-1-dependent aminoacyl-tRNA binding to ribosomes but has no effect on the non-enzymic binding of aminoacyl-tRNA. Ricin also inhibits formation of the complex elongation-factor-2 - ribosome - nucleotide with GTP, GDP or GMP-P(CH2)P. However, the toxin has no effect on translocation. These apparently conflicting results are discussed in this study.  相似文献   

16.
Protein synthesis in cell-free systems of rat liver and kidney decreases markedly with age. Examination of activity changes of the different steps revealed for both types of organs that reduced binding of aminoacyl-tRNA to ribosomes and reduced peptidyl transfer might be of major importance for the decrease in overall protein synthesis whereas ageing has only little effect on translocation as well as on initiation and termination.  相似文献   

17.
Viomycin was observed to inhibit poly[U]- or f2 RNA-directed protein synthesis in an E. coli cell-free system. The former was more profoundly affected than the latter. Both initiation complex formation on the 30S ribosomal subunit and on 70S ribosomes were prevented by the antibiotic. In the peptide chain elongation process, viomycin did not significantly affect aminoacyl-tRNA binding to ribosomes and the peptidyl transferase reaction, but markedly inhibit translocation of peptidyl-tRNA from the acceptor site to the donor site. The mechanism of action of the drug appeared to be unique.  相似文献   

18.
A new homologous, cell-free system for protein synthesis has been devised for use with ribosomes and elongation factors fromAspergillus nidulans. Ribosome preparations from strains with either the suaAlO1 orsuaCl09 mutations have a higher misreading ratio (non-cognate:cognate amino acid incorporation) in the presence of hygromycin than controls. They can be classed as fidelity mutants. These results also prove that the mutations must be in genes coding for ribosomal proteins or enzymes which modify ribosomal proteins post-translationally. Alternatively, the genes could code for translation factors.  相似文献   

19.
A study was made of the integrity of some components of the protein-synthesizing system from viable and non-viable embryos of rye grains. In comparison with viable-embryo components both post-ribosomal supernatant and ribosomal fractions from non-viable embryos are impaired, for neither will fully support polyphenylalanine synthesis in poly(U)-directed cell-free systems. The lesion in the supernatant lies in components other than the tRNA or the aminoacyl-tRNA synthetase, for these are as functional as those present in the fully active cell-free systems from viable embryos. The ribosomes of embryos of lowered viability show considerable fragmentation and degradation of both 18S and 25S rRNA. This breakdown does not, however, account for the complete lack of polypeptide synthesis in the poly(U)-directed non-viable-embryo system, for if provided with viable-embryo supernatant, non-viable-embryo ribosomes will sustain 60% of the viable-embryo ribosome activity. A lesion in non-viable-embryo supernatant has been located in the binding of the aminoacyl-tRNA to the ribosome. The impaired components in both supernatant and ribosomes in systems in vitro may reflect the site of faults in protein synthesis in vivo in the early hours of germination. The development of these lesions during grain storage could contribute to senescence and loss of viability in the embryos of rye.  相似文献   

20.
A substance inhibitory to protein synthesis was purified from mouse skeletal muscle by gel filtration and ion-exchange chromatography, as well as by centrifugation on sucrose gradients. The molecular weight of the inhibitor, determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, was 71000. The inhibitory activity was insensitive to ribonuclease A, deoxyribonuclease I and phospholipase C. It was sensitive to Pronase treatment but insensitive to heat-treatment and trypsin degradation. The present results, taken together with previous studies, indicate that the site of action of the inhibitor is not on the initiation phase of protein synthesis but rather at a step after the binding of aminoacyl-tRNA to ribosomes. The increased inhibitor activity found in dystrophic muscle is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号