首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Doxorubicin-resistant P388 mouse leukemia cells are cross-resistant to anthracycline and non-anthracycline DNA intercalators as well as to natural and semisynthetic anthracyclines which bind weakly or not at all to DNA. In the presence of a non-lethal concentration of 5 microM trifluoperazine cytotoxic effects of the strong DNA binding drugs actinomycin-D, mitoxantrone and m-AMSA were enhanced less than 2 fold in doxorubicin-sensitive cells and up to 50 fold in doxorubicin-resistant cells. Additionally, trifluoperazine induced a greater than 2-fold enhancement in the cytotoxic effects (but not accumulation and retention) of the strong DNA binder N,N-dimethyladriamycin-14-valerate only in doxorubicin resistant cells. In contrast, cell kill, drug accumulation and retention in P388/S and P388/DOX cells treated with the weak DNA binders N-benzyl-adriamycin-14-valerate and 7(R)-O-methylnogarol, and DNA-nonbinding N,N-dibenzyldaunorubicin was similar with or without trifluoperazine treatment. The study demonstrates that the calmodulin inhibitor trifluoperazine induces a specific and marked enhancement in the cytotoxic effects of strong vs weak DNA binding antitumor drugs in doxorubicin-resistant cells.  相似文献   

2.
The authors studied accumulation of the fluorescent probe Hoechst 33258 in leukemia P 388 sensitive (P 388/0) and resistant to doxorubicin (P 388/DOX) cells. It was shown that intensity of fluorescence of the dye increased after binding with nuclear DNA during 25 min for both lines of the cells. Intensity of fluorescence was 40% greater in sensitive than resistant cells. If Triton X-100 was added no difference between two lines of the cell was observed. When doxorubicin was added to the cells with dye, the intensity of fluorescence decreased. It was suggested to use Hoechst 33258 for assessment extent doxorubicin accumulation in nuclei of the cells.  相似文献   

3.
Using male mice BDF1, it has been shown that the retention period of doxorubicin (DOX) is shorter in the leukemia P 388 cells with induced antibiotic resistance (P 388/DOX) as compared to the P 388 cells, sensitive to DOX. Administration of finoptin (FP) to animals leads to the increase of DOX concentration in the leukemia P 388/DOX cells during 240 min observation. FP promotes the therapeutic effect of DOX on mice bearing leukemia P 388/DOX. It can be suggested that the mechanism of FP action is the damaged DOX elimination from cells with induced resistance, since FP doesn't change the period of antibiotic circulation in the murine blood plasma.  相似文献   

4.
We have studied by uridine short term test the level of resistance of murine leukemia cell lines P 388/Dx and ELD/Dx carcinoma cells with induced resistance to doxorubicin, P 388/Fp + Dx cells with induced resistance to combination of finoptOFF++ and doxorubicin in vivo. It was shown that the level of resistance was 6 fold for P 388/Dx cells, 4.5 fold for ELD/Dx cells and 2 fold for P 388/Fp + Dx cells. It was shown that the P 388/Dx cells and P 388/Fr + Dx cells had a 3.5 and 4.4 fold increase level of glutathione-S-transferase activity than P 388 cells. No increase in the activity of glutathione-S-transferase was detected in ELD/Dx cells. We conclude that increase of cellular glutathione-S-transferase activity is not associated with the development of resistance to doxorubicin.  相似文献   

5.
Breloy I  Schwientek T  Lehr S  Hanisch FG 《FEBS letters》2008,582(11):1593-1598
Previous studies of the mucin-type O-glycome of the fruit fly Drosophila melanogaster have revealed a restricted pattern of neutral core-type glycans corresponding to the Tn-(GalNAc) and the T-antigen (Galβ1-3GalNAc). In particular, no extension of the core 1 glycan with acidic sugars, like sialic acid, was detected. Here we report on the identification of an acidic O-linked trisaccharide expressed on secreted endogenous and recombinant glycoproteins of the embryonal hemocyte-like Drosophila Schneider-2 (S2) cell line. The glycan is composed of glucuronic acid, galactose and N-acetylgalactosamine and its structure was determined as GlcA1-3Gal1-3GalNAc. The O-linked trisaccharide resembles the peripheral structures of acidic D. melanogaster glycosphingolipids. Glucuronic acid may substitute for sialic acid in this organism, however its expression on the S2 cell surface may only marginally contribute to the negative surface charge as revealed by free-flow cell electrophoresis prior to and after β-glucuronidase treatment of the cells.  相似文献   

6.
《Phytomedicine》2015,22(13):1186-1194
BackgroundHigh consumption of flavonoids has been associated with a decrease risk of cancer. Alfalfa (Medicago sativa) leaves have been widely used in traditional medicine and is currently used as a dietary supplement because of their high nutrient content. We previously reported the cytotoxic activity of alfalfa leaf extracts against several sensitive and multidrug resistant tumor cell lines.Hypothesis/purposeWe aimed to determine whether medicarpin and millepurpan, two isoflavonoids isolated from alfalfa leaves, may have pro-apoptotic effects against drug-sensitive (P388) and multidrug resistant P388 leukemia cells (P388/DOX).Study design/methodsCells were incubated with medicarpin or millepurpan for the appropriate time. Cell viability was assessed by the MTT assay. DNA fragmentation was analyzed by agarose gel electrophoresis. Cell cycle analysis was realized by flow cytometry technics. Caspases 3 and 9 activities were measured using Promega caspACE assay kits. Proteins and genes expression were visualized respectively by western-blot using specific antibodies and RT-PCR assay.ResultsP-glycoprotein-expressing P388/DOX cells did not show resistance to medicarpin (IC50 ≈ 90 µM for P388 and P388/DOX cells) and millepurpan (IC50 = 54 µM and 69 µM for P388 and P388/DOX cells, respectively). Treatment with medicarpin or millepurpan triggered apoptosis in sensitive as well as multidrug resistant P388 cells. These effects were mediated through the mitochondrial pathway by modifying the balance pro/anti-apoptotic proteins. While 3 µM doxorubicin alone could not induce cell death in P388/DOX cells, concomitant treatment with doxorubicin and subtoxic concentration of medicarpin or millepurpan restored the pro-apoptotic cascade. Each compound increased sensitivity of P388/DOX cells to doxorubicin whereas they had no effect in sensitive P388 cells. Vinblastine cytotoxicity was also enhanced in P388/DOX cells (IC50 = 210 nM to 23 and 25 nM with medicarpin and millepurpan, respectively). This improved sensitivity was mediated by an increased uptake of doxorubicin in P388/DOX cells expressing P-gp. P-gp expression was not altered by exposure to medicarpin and millepurpan.ConclusionThese data indicate that medicarpin and millepurpan possess pro-apoptotic properties and potentiate the cytotoxicity of chemotherapy drugs in multidrug resistant P388 leukemia cells by modulating P-gp-mediated efflux of drugs. These flavonoids may be used as chemopreventive agents or as sensitizer to enhance cytotoxicity of chemotherapy drugs in multidrug resistant cancer cells.  相似文献   

7.
In P388 murine leukemic cells, the pheno-thiazine tranquilizer, chlorpromazine, causes a marked increase in intracellular drug retention. Laser excited flow cytometry shows that in log phase cultures this increase in drug retention is not uniform but confined to a sub-population. In cell cycle phase enriched populations of P388 cells obtained by centrifugal elutriation, the phenothiazine enhanced adriamycin retention is seen predominantly in cells in the late S, G2/M part of the cell cycle.  相似文献   

8.
To investigate the spontaneous frequency of occurrence of stable multidrug-resistant cells in a population of drug-sensitive cells, we exposed drug sensitive P388/S cells to daunorubicin (dnr) for 1 h, then used fluorescence-activated cell sorting based on intracellular dnr fluorescence to isolate cells within P388/S having different intracellular content of drug. One of the sort windows chosen (low dnr content sort window) isolated only P388/S cells with intracellular drug content equal to or less than that of the known multidrug-resistant subline P388/adr. This sort window constituted approximately 3% of P388/S cells with lowest dnr content. By such a procedure we were able, on one of seven attempts, to isolate and cultivate stable, highly multidrug-resistant cells (comparable to that of P388/adr) from the P388/S cells obtained from the low dnr-content sort window. Net growth of cells in culture was observed 15-20 days after sorting, indicating that of the P388/S cells collected from the low dnr-content sort window, very few were actually highly drug-resistant. On no occasion could resistant cells be cultivated from cells sorted from P388/S with higher dnr content, as would be expected if mutation to a multidrug-resistant phenotype had occurred as a result of exposure to drug. The resistant cells isolated from P388/S by sorting (called P388/LoSort) displayed low intracellular accumulation of dnr that was enhanced by verapamil, were cross-resistant to vincristine and actinomycin-D, and distinct from P388/S, possessed a 150- to 160-kD membrane species identified by Vinca alkaloid photoaffinity labeling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of propranolol (10−3 mM) on the surface anionic groups of Herpetomonas muscarum muscarum were analysed by cell electrophoresis, by ultrastructural cytochemistry and by identification of sialic acids using paper chromatography. Differentiation of H. muscarum muscarum induced by propranolol treatment caused a significant increase in the net negative surface charge. Binding of cationized ferritin (CF) and colloidal iron hydroxide particles was observed at the cell surface of both untreated and propranolol-treated cells. In cells incubated in the presence of the drug the CF particles were distributed in all membrane regions. However, there were small areas where the particles were absent. In H. muscarum muscarum exposed to propranolol the density of residues of sialic acid per cell was higher, and the agglutinating activity with Sendai virus was more intense. However, the pattern of sialic acid, characterized by the presence of N-acetylneuraminic acid derivative, was not modified upon cell interaction with the drug. Treatment of both control and propranolol-treated protozoa with neuraminidase significantly reduced the surface charge. These findings suggest that sialic acid residues are the major anionogenic groups exposed on the surface of H. muscarum muscarum .  相似文献   

10.
Carbohydrates were located on the surface of Phytomonas davidi using ultrastructural cytochemistry, and agglutination induced by lectins which bind to residues of mannose, N-acetylglucosamine, galactose, N-acetylgalactosamine, fucose and sialic acid. The surface charge of the cells was analysed by the binding of cationic particles (colloidal iron and cationized ferritin) to the cell surface and by cell electrophoretic mobility (EPM). Based on observations of binding of cationic particles to the cell surface; a decrease in the binding of these particles to the cell surface; a decrease in the mean EPM of the cells after their incubation in the presence of neuraminidase; and detection of N-acetylneuraminic acid by paper and gas-liquid chromatography, it was concluded that sialic acid residues are exposed on the surface of P. davidi. These residues may be glycolipids or are masked on the cell surface since only after brief trypsinization were the cells agglutinated by the lectin from Limulus polyphemus.  相似文献   

11.
Abstract: Density-dependent changes in ganglioside composition, Vibrio cholerae neuraminidase (VCN)-susceptible sialyl residues, and membrane- associated sialidase activity were determined for the cholinergic murine neuroblastoma cell line S20Y. A decrease in total ganglioside sialic acid and VCN-releasable sialic acid was observed with increasing cell density. GM3 was the major ganglioside component of preconfluent S20Y cells, whereas GDIA was predominant in postconfluent cells. Sialidase activity increased in confluent and postconfluent cells and may account for the reduction in total ganglioside sialic acid observed with increasing cell density. In contrast, while adrenergic N115 cells showed a decrease in VCN-susceptible sialic acid residues with increasing cell density, there was no significant change in ganglioside composition or ganglioside sialic acid levels.  相似文献   

12.
The effects of propranolol (10(-3) mM) on the surface anionic groups of Herpetomonas muscarum muscarum were analysed by cell electrophoresis, by ultrastructural cytochemistry and by identification of sialic acids using paper chromatography. Differentiation of H. muscarum muscarum induced by propranolol treatment caused a significant increase in the net negative surface charge. Binding of cationized ferritin (CF) and colloidal iron hydroxide particles was observed at the cell surface of both untreated and propranolol-treated cells. In cells incubated in the presence of the drug the CF particles were distributed in all membrane regions. However, there were small areas where the particles were absent. In H. muscarum muscarum exposed to propranolol the density of residues of sialic acid per cell was higher, and the agglutinating activity with Sendai virus was more intense. However, the pattern of sialic acid, characterized by the presence of N-acetylneuraminic acid derivative, was not modified upon cell interaction with the drug. Treatment of both control and propranolol-treated protozoa with neuraminidase significantly reduced the surface charge. These findings suggest that sialic acid residues are the major anionogenic groups exposed on the surface of H. muscarum muscarum.  相似文献   

13.
To improve cancer immunotherapy, it is important to understand how tumor cells counteract immune-surveillance. In this study, we sought to identify cell-surface molecules associated with resistance of leukemia cells to cytotoxic T cell (CTL)-mediated cytolysis. To this end, we first established thousands of monoclonal antibodies (mAbs) that react with MLL/AF9 mouse leukemia cells. Only two of these mAbs, designated R54 and B2, bound preferentially to leukemia cells resistant to cytolysis by a tumor cell antigen–specific CTLs. The antigens recognized by these mAbs were identified by expression cloning as the same protein, CD43, although their binding patterns to subsets of hematopoietic cells differed significantly from each other and from a pre-existing pan-CD43 mAb, S11. The epitopes of R54 and B2, but not S11, were sialidase-sensitive and expressed at various levels on leukemia cells, suggesting that binding of R54 or B2 is associated with the glycosylation status of CD43. R54high leukemia cells, which are likely to express sialic acid-rich CD43, were highly resistant to CTL-mediated cytolysis. In addition, loss of CD43 in leukemia cells or neuraminidase treatment of leukemia cells sensitized leukemia cells to CTL-mediated cell lysis. These results suggest that sialic acid-rich CD43, which harbors multiple sialic acid residues that impart a net negative surface charge, protects leukemia cells from CTL-mediated cell lysis. Furthermore, R54high or B2high leukemia cells preferentially survived in vivo in the presence of adaptive immunity. Taken together, these results suggest that the glycosylation status of CD43 on leukemia is associated with sensitivity to CTL-mediated cytolysis in vitro and in vivo. Thus, regulation of CD43 glycosylation is a potential strategy for enhancing CTL-mediated immunotherapy.  相似文献   

14.
S Nair  S V Singh  A Krishan 《Cytometry》1991,12(4):336-342
We have used an enzymatic (spectro-photometric) and a flow cytometric (GSH-MBCL) method to compare the glutathione (GSH) content of doxorubicin sensitive (P388) and resistant (P388/R-84) murine leukemic and human lung cancer cells. The flow cytometric analysis revealed that GSH-MBCL conjugate formation was dependent on glutathione-S-transferase (GST) activity. The human solid tumor cell lines exhibited extensive heterogeneity, high GSH content, and GST activity. In contrast to the enzymatic method, the flow cytometric method did not accurately reflect the 95% reduction in GSH content of cells treated for 24 h with 100 microM BSO. Possible reaction of MBCL with other sulfhydryl groups (other than GSH) in BSO-treated cells may be responsible for this discordance. We have also shown the feasibility of using dual parameter flow cytometry to monitor cellular anthracycline (daunorubicin) retention and GSH-MBCL conjugate fluorescence in human tumor cells. These two parameters, which measure drug retention and cellular detoxification, are believed to be the important determinants of chemoresistance in tumor cells.  相似文献   

15.
The nature of signals transmitted by two types of Fc gamma receptors (one specific for IgG2b and the other for IgG2a) present on the surface of a murine macrophage cell line (P388D1) was investigated. Specific binding of IgG2b (presented as EA2b) to cell surface Fc gamma 2br triggered the release of 3H-arachidonic acid and 3H-prostaglandins (PG) from P388D1 cells that were prelabeled with 3H-arachidonate. The release of 3H-arachidonic acid, which increased in a dose-dependent manner, was enhanced by exogenous Ca++ (1.25 mM) and was completely blocked by ethylenediaminetetraacetate (EDTA) (4 mM) or a phospholipase A2 inhibitor, p-bromophenacylbromide (7 microgram/ml). A cyclooxygenase inhibitor, indomethacin (9 microgram/ml), reduced the 3H-arachidonic acid release and completely blocked the conversion of arachidonate into PG. Cytochalasin D (1 microgram/ml), which inhibited the phagocytosis of immune complexes by 90% of P388D1 cells, did not affect the Fc gamma 2bR-triggered release of arachidonic acid. Specific binding of IgG2a (presented as EA2a) to cell surface Fc gamma 2aR did not trigger the release of either 3H-arachidonic acid or 3H-PG from P388D1 cells. Our data demonstrate a signal for the activation of the arachidonic acid metabolic cascade is transmitted by Fc gamma 2bR, but not by Fc gamma 2aR, on the surface of P388D1 cells, probably through the initial activation of the phospholipase A2 activity associated with Fc gamma 2bR.  相似文献   

16.
The zero-trans influx of 500 microM uridine by CHO, P388, L1210 and L929 cells was inhibited by nitrobenzylthioinosine ( NBTI ) in a biphasic manner; 60-70% of total uridine influx by CHO cells and about 90% of that in P388, L1210 and L929 cells was inhibited by nmolar concentrations of NBTI (ID50 = 3-10 nM) and is designated NBTI -sensitive transport. The residual transport activity, designated NBTI -resistant transport, was inhibited by NBTI only at concentrations above 1 microM (ID50 = 10-50 microM). S49 cells exhibited only NBTI -sensitive uridine transport, whereas Novikoff cells exhibited only NBTI -resistant uridine transport. In all instances NBTI -sensitive transport correlated with the presence of between 7 7 X 10(4) and 7 X 10(5) high-affinity NBTI binding sites/cell (Kd = 0.3-1 nM). Novikoff cells lacked such sites. The two types of nucleoside transport, NBTI -resistant and NBTI -sensitive, were indistinguishable in substrate affinity, temperature dependence, substrate specificity, inhibition by structurally unrelated substances, such as dipyridamole or papaverine, and inhibition by sulfhydryl reagents or hypoxanthine. We suggest, therefore, that a single nucleoside transporter can exist in an NBTI -sensitive and an NBTI -resistant form depending on its disposition in the plasma membrane. The sensitive form expresses a high-affinity NBTI binding site(s) which is probably made up of the substrate binding site plus a hydrophobic region which interacts with the lipophilic nitrobenzyl group of NBTI . The latter site seems to be unavailable in NBTI -resistant transporters. The proportion of NBTI -resistant and sensitive uridine transport was constant during proportion of NBTI -resistant and sensitive uridine transport was constant during progression of P388 cells through the cell cycle and independent of the growth stage of the cells in culture. There were additional differences in uridine transport between cell lines which, however, did not correlate with NBTI sensitivity and might be related to the species origin of the cells. Uridine transport in Novikoff cells was more sensitive to inhibition by dipyridamole and papaverine than that in all other cell lines tested, whereas uridine transport in CHO cells was the most sensitive to inactivation by sulfhydryl reagents.  相似文献   

17.
This study was undertaken to elucidate the mechanism(s) of cross-resistance (4.9-fold) to mitomycin C (MMC) in a multi-drug-resistant cell line, P388/R-84. Intracellular accumulation of MMC by sensitive (P388/S) and P388/R-84 cells was comparable. Despite a 32% reduction in NADPH cytochrome P-450 reductase activity (responsible for MMC activation) in P388/R-84 cells, the rate of MMC bio-reduction by sensitive and resistant cells was similar. These results suggested that MMC resistance in P388/R-84 cell line must depend on factors other than impaired drug accumulation or bio-activation. Recent studies suggest that glutathione transferase (GST) dependent drug detoxification also contributes to cellular resistance of a variety of alkylating agents. Even though overexpression of GST has been noted in some MMC resistant tumor cells, it is not known if its level affects sensitivity to MMC. We have, therefore, determined the effect of ethacrynic acid (an inhibitor of GST activity) treatment on MMC cytotoxicity in P388/R-84 cells, which have about 2-fold higher GST activity than P388/S cells. The IC50 value for the inhibition of GST activity in vitro by ethacrynic acid (EA) was 16.5 microM (5 micrograms/ml). A depletion in intracellular GSH was also observed by treating P388/R-84 cells with EA alone or in combination with MMC. A non-toxic concentration of EA (1 microgram/ml; 3.3 microM) increased MMC cytotoxicity by 36% in P388/R-84 cells. MMC cytotoxicity was increased 2-fold by EA treatment in glutathione (GSH)-depleted P388/R-84 cells. These results suggest that GST mediated drug inactivation may represent another important mechanism of MMC resistance.  相似文献   

18.
Overexpression of P-glycoprotein may cause increased efflux of a variety of anticancer drugs (ACD) leading to multidrug resistance (MDR) of tumor cells. Two sublines of murine monocytic leukemia P388 cells were used, one parental (Par-P388) and one multidrug resistant (MDR-P388). In cell growth inhibition assays in vitro, the Par-P388 cells showed a normal sensitivity to daunomycin (DAU) while the MDR-P388 cells were 200-fold resistant. In cellular fluorescence assays, DAU retention in MDR-P388 cells reached only 5% of the level achieved in Par-P388 cells. This cell line pair was used to compare the nonimmunosuppressive cyclosporin analog PSC 833 with several resistance-modifying agents (RMAs) for their in vitro chemosensitizing activity and for their restoration of DAU retention. PSC 833 sensitized the MDR-P388 cells 60- and 140-fold when used at 0.1 and 0.3 micrograms/ml (0.08 and 0.25 microM), respectively, a complete restoration of sensitivity being obtained at 1.0 micrograms/ml PSC 833. Similarly as little as 0.1 micrograms/ml (0.08 microM) PSC 833 was sufficient to restore intracellular DAU retention to 60% of the level found in Par-P388 cells, a 3-fold higher concentration restoring virtually the whole DAU retention. For both these activities, PSC 833 was at least one order of magnitude more active than CsA, which was itself an order of magnitude stronger than verapamil, another RMA already used in clinic. Since PSC 833 had no effect on the PAR-P388 cells, neither on chemosensitization nor on drug retention, it is assumed that it acts on the P-glycoprotein, which is highly expressed on the membrane of the MDR-P388 cells, by inhibiting the function of the P-glycoprotein pump and thus restoring a normal ACD-sensitivity of the MDR-P388 cells.  相似文献   

19.
Liu QY  Tan BK 《Life sciences》2000,67(10):1207-1218
It has been reported that several cis-unsaturated fatty acids (c-UFAs) could increase doxorubicin (DOX) accumulation in cancer cells and hence elevate its cytotoxicity. However, some researchers showed that c-UFA pretreatment did not affect its cytotoxicity in special cell lines. It is possible that the different results occurred due to different cellular characteristics. We hypothesized that c-UFA treatment might modulate the activities of some antioxidant enzymes to affect the resistance of cells to DOX. In the present study, we examined how c-UFA pretreatment affected DOX cytotoxicity on mouse leukemia cell line, P388, and its resistant subline, P388/DOX, which we found to have significantly higher glutathione peroxidase (GPx) activity as well as P-glycoprotein (p-gp) overexpression. We chose two c-UFAs, gamma-linolenic acid (GLA) (18:3n-6) and docosahexaenoic acid (DHA) (22:6n-3). Cytotoxicity was measured by MTT (3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and trypan blue exclusion assays. DOX accumulation and p-gp expression were measured by flow cytometry. The activities of catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and GPx were determined for both cell lines with and without treatment with GLA or DHA. Significant DOX accumulation occurred in both cell lines with GLA or DHA pretreatment, but without any change in p-gp expression in either cell line. Sensitivity to DOX cytotoxicity was improved by GLA or DHA pretreatment in P388/DOX in which only SOD activity was significantly increased, but not in the parental cell line P388 in which both SOD and CAT were significantly increased by the pretreatment. However, combined pretreatment of GLA or DHA with antioxidants, pyrrolidinedithiocarbamate (PDTC) or Vitamin C, could sensitize not only P388/DOX but also P388 cells to DOX. We conclude that the effects of c-UFA pretreatment on the sensitivity of cancer cells to DOX not only depend on the change in drug accumulation but also the change in the levels of antioxidant enzyme activities, and suggest that combined administration of c-UFAs, antioxidants, and DOX may be more effective in treating leukemia.  相似文献   

20.
Sialic acid, a nine-carbon sugar, is an acetylated derivative of neuraminic acid predominantly found in vertebrates, a few higher invertebrates, and certain types of bacteria. Red blood cells (RBCs) have a net negative surface charge and this bulk charge is due to ionized sialic acid. Decreased surface charge and sialic acid content have been reported in older erythrocytes, and it is postulated that the decreased electro-negativity may be related to cell senescence. In the present study we report the RBC and plasma sialic acid content during aging in rats. Our results show a significant decrease in RBC sialic acid content and increase in plasma sialic acid as a function of rat aging. The decreased sialic acid in erythrocyte membrane with increasing rat age presents a good biomarker of the aging process. The elevated plasma sialic acid may be a manifestation of several factors including increased expression of acute phase proteins and increased damage to various organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号