首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study identifies calcium-antagonist-receptor-carrying polypeptides of calcium channels in guinea-pig hippocampus membranes. The arylazide ligands (-)-[3H]azidopine and [N-methyl-3H]LU49888 [(-)-5-[(3-azidophenethyl) [N-methyl-3H]methylamino]-2-(3,4,5-trimethoxyphenyl-2- isopropylvaleronitrile] were used to selectively label 1,4-dihydropyridine and phenylalkylamine receptors respectively. In the absence of u.v. light, both ligands reversibly bound to a single class of high-affinity receptors with a calcium-channel-typical pharmacological profile. [N-methyl-3H]LU49888 bound to the extent of 849 +/- 188 fmol/mg of protein (mean +/- S.D., n = 3) with a dissociation constant (Kd) of 1.4 +/- 0.3 nM. Under identical assay conditions (-)-[3H]azidopine labelled to the extent of 562 +/- 132 fmol/mg of protein with a Kd of 0.096 +/- 0.024 nM. After u.v. irradiation of the [N-methyl-3H]LU49888- and (-)-[3H]azidopine-labelled membranes, both photo-affinity probes were found to be incorporated specifically into a 190-195 kDa band as shown by SDS/polyacrylamide-gel electrophoresis (SDS/PAGE). Photoincorporation occurred with a protection profile identical with that produced by reversible binding-inhibition. [N-methyl-3H]LU49888, but not (-)-[3H]-azidopine, specifically labelled an additional 265 kDa band. Both photolabelled bands had an identical electrophoretic mobility on SDS/PAGE, irrespective of pretreatment either with 10 mM-N-ethylmaleimide or 10 mM-dithiothreitol. The electrophoretic properties of the 195 kDa polypeptide and the lability of receptor-incorporated (-)-[3H]azidopine to nucleophilic agents resemble those of the previously described drug-receptor-carrying alpha 1 subunit of the purified skeletal-muscle calcium channel. The data suggest that this polypeptide carries both the high-affinity 1,4-dihydropyridine as well as the phenylalkylamine receptor of neuronal calcium channels in guinea-pig hippocampus and is a component of the L-type calcium channel.  相似文献   

2.
A 68-kDa glycoprotein bearing the biological activity of the plasma membrane serotonin (5-hydroxytryptamine, 5-HT) transporter has been purified from human blood platelets, a classical cell model for the study of 5-HT uptake. After treatment of the whole platelet population or its plasma membrane fraction by sulfhydryl-dependent bacterial protein toxins or by digitonin, purification was reproducibly obtained by a one-step affinity chromatography using two different columns with 5-HT or 6-fluorotryptamine as ligands and elution by 5-HT or Na(+)-free buffer. The purified fraction migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single band with an apparent molecular mass of 68 kDa and exhibited an apparent isoelectric point of 5.6-6.2. Two sialic acid residues were detected in the purified material. The purified glycoprotein bound the 5-HT uptake blocker [3H]paroxetine with a Kd (0.25 nM) similar to the one observed for intact human platelets. It also bound [3H] 5-HT but neither [3H]hydroxytetrabenazine nor [3H] ouabain, the respective markers of the granular monoamine transporter and of the Na+,K(+)-ATPase associated to the plasma membrane 5-HT transporter. 5-HT derivatives and 5-HT uptake inhibitors exhibited similar Ki values for 5-HT uptake and paroxetine binding in intact human platelets and in the purified glycoprotein. Under laser UV irradiation, 40% of this purified glycoprotein could be labeled by either [3H]paroxetine or [3H]cyanoimipramine. No labeling was detected with either [3H] gamma-aminobutyric acid or [3H]GBR 12783, the respective markers of gamma-aminobutyric acid and dopamine carriers. The purified 68-kDa protein is therefore likely to correspond at least to the binding domain of the 5-HT transporter located at the human platelet plasma membrane.  相似文献   

3.
A prostaglandin E2 (PGE2) receptor was solubilized and isolated from cardiac sarcolemma membranes. Its binding characteristics are almost identical to those of the membrane bound receptor. [3H]PGE2 binding to solubilized and membrane bound receptor was sensitive to elevated temperature and no binding was observed in the absence of NaCl. No significant effects of DTT, ATP, Mg2+, Ca2+ or of changes in buffer pH were observed on [3H]PGE2 binding to either solubilized or membrane-bound receptor. Unlabelled PGE1 displaced over 90% of [3H]PGE2 from the CHAPS-solubilized receptor. PGD2, PGI2, PGF2 alpha and 6-keto-PGF1 alpha were not effective in displacing [3H]PGE2 from the receptor. Scatchard analysis of [3H]PGE2 binding to CHAPS-solubilized receptor revealed the presence of two types of PGE2 binding sites with Kd of 0.33 +/- 0.05 nM and 3.00 +/- 0.27 nM and Bmax of 0.5 +/- 0.04 and 2.0 +/- 0.1 pmol/mg of protein. The functional PGE2 receptor was isolated from CHAPS-solubilized SL membrane using two independent methods: first by a WGA-Sepharose chromatography and second by sucrose gradient density centrifugation. Receptor isolated by these two methods bound [3H]PGE2. Unlabelled PGE1 and PGE2 displaced [3H]PGE2 from the purified receptor. Scatchard analysis of [3H]PGE2 binding to purified receptor revealed the presence of the two binding sites as observed for the membrane bound and CHAPS-solubilized receptor. SDS-polyacrylamide gel electrophoresis of the purified receptor fractions revealed the presence of a protein band of M(r) of approx. 100,000. This 100-kDa was photolabelled with [3H]azido-PGE2, a photoactive derivative of PGE2. We propose that this 100-kDa protein is a cardiac PGE2 receptor.  相似文献   

4.
Photoaffinity labeling of isolated triads and purified dihydropyridine receptor with [3H]azidopine and (+)-[3H]PN200-110 has been used to identify and characterize the dihydropyridine-binding subunit of the 1,4-dihydropyridine receptor of rabbit skeletal muscle. The 1,4-dihydropyridine receptor purified from rabbit skeletal muscle triads contains four protein subunits of 175,000, 170,000, 52,000, and 32,000 Da (Leung, A., Imagawa, T., and Campbell, K. P. (1987) J. Biol. Chem. 262, 7943-7946). Photoaffinity labeling of isolated triads with [3H]azidopine resulted in specific and covalent incorporation of [3H]azidopine into only the 170,000-Da subunit of the dihydropyridine receptor and not into the 175,000-Da glycoprotein subunit of the receptor. The [3H]azidopine-labeled 170,000-Da subunit was separated from the 175,000-Da glycoprotein subunit by sequential elution from a wheat germ agglutinin-Sepharose column with 1% sodium dodecyl sulfate followed by 200 mM N-acetylglucosamine. Photoaffinity labeling of purified dihydropyridine receptor with [3H]azidopine or (+)-[3H]PN200-110 also resulted in the specific and covalent incorporation of either ligand into only the 170,000-Da subunit. Therefore, our results show that the dihydropyridine-binding subunit of the skeletal muscle 1,4-dihydropyridine receptor is the 170,000-Da subunit and not the 175,000-Da glycoprotein subunit.  相似文献   

5.
The arylazide 1,4-dihydropyridine (-)-[3H]azidopine binds to a saturable population of sites in guinea-pig heart membranes with a dissociation constant (KD) of 30 +/- 7 pM and a density (Bmax.) of 670 +/- 97 fmol/mg of protein. This high-affinity binding site is assumed to reside on voltage-operated calcium channels because reversible binding is blocked stereoselectively by 1,4-dihydropyridine channel blockers and by the enantiomers of Bay K 8644. A low-affinity (KD 25 +/- 7 nM) high-capacity (Bmax. 21.6 +/- 9 pmol/mg of protein) site does not bind (-)- or (+)-Bay K 8644, but is blocked by high concentrations (greater than 500 nM) of dihydro-2,6-dimethyl-4-(2-isothiocyanatophenyl)-3,5-pyridinedicarboxy lic acid dimethyl ester (1,4-DHP-isothiocyanate) or, e.g., (+/-)-nicardipine. (-)-[3H]Azidopine was photoincorporated covalently into bands of 165 +/- 8, 39 +/- 2 and 35 +/- 3 kDa, as determined by SDS/polyacrylamide-gel electrophoresis. Labelling of the 165 kDa band is protected stereoselectively by 1,4-dihydropyridine enantiomers at low (nM) concentrations and by (-)- and (+)-Bay K 8644, whereas the lower-Mr bands are not. Thus, only the 165 kDa band is the calcium-channel-linked 1,4-dihydropyridine receptor. Photolabelling of the 39 or 35 kDa bands was only blocked by 10 microM-1,4-DHP-isothiocyanate or 50 microM-(+/-)-nicardipine but not by 10 microM-(-)-Bay K 8644. [3H]-1,4-DHP-isothiocyanate binds to guinea-pig heart membranes with a KD of 0.35 nM and dissociates with a k-1 of 0.2 min-1 at 30 degrees C. [3H]-1,4 DHP-isothiocyanate irreversibly labels bands of 39 and 35 kDa which are protected by greater than 10 microM-(+/-)-nicardipine or unlabelled ligand but not by 10 microM-(-)-Bay K 8644. Thus, [3H]-1,4-DHP-isothiocyanate is not an affinity probe for the calcium channel.  相似文献   

6.
The tritiated arylazido phenylalkylamine (-)-5-[(3-azidophenethyl)[N-methyl-3H]methylamino]-2-(3,4, 5-trimethoxyphenyl)-2-isopropylvaleronitrile was synthesized and used to photoaffinity label the phenylalkylamine receptor of the membrane-bound and purified calcium channel from guinea-pig skeletal muscle transverse-tubule membranes. The photoaffinity ligand binds reversibly to partially purified membranes with a Kd of 2.0 +/- 0.5 nM and a Bmax of 17.0 +/- 0.9 pmol/mg protein. Binding is stereospecifically regulated by all three classes of organic calcium channel drugs. A 155 kDa band was specifically photolabelled in transverse-tubule particulate and purified calcium channel preparations after ultraviolet irradiation. Additional minor labelled polypeptides (92, 60 and 33 kDa) were only observed in membranes. The heterogeneous 155 kDa region of the purified channel was resolved into two distinct silver-stained polypeptides after reduction (i.e. 155 and 135 kDa). Only the 155 kDa polypeptide carries the photoaffinity label and it is concluded that the 135 kDa polypeptide (which migrates as a 165 kDa band under alkylating conditions) is not a high-affinity drug receptor carrying subunit of the skeletal muscle transverse-tubule L-type calcium channel.  相似文献   

7.
Purification of the 5-hydroxytryptamine 5-HT3 receptor from NCB20 cells   总被引:1,自引:0,他引:1  
A 5-hydroxytryptamine 5-HT3 receptor binding site has been purified from deoxycholate-solubilized NCB20 cell membranes. Purification (1,700-fold) was achieved in one step by affinity chromatography with L-685,603 immobilized on agarose. The 5-HT3 selective antagonist [3H]Q ICS 205-930 labeled a single population of receptors in the affinity-purified preparation with a Bmax of 3.1 +/- 0.9 nmol/mg protein and Kd of 0.40 +/- 0.05 nM (mean +/- S.E., n = 3). The rank order of potency for a series of competing compounds confirmed that [3H]Q ICS 205,930 was labeling a 5-HT3 receptor in the purified preparation, and the inhibition constants for all antagonists were unchanged after purification. The purified 5-HT3 binding site eluted from a Sepharose 6B gel filtration column in a similar manner to the crude solubilized preparation (Stokes radius of 4.9 nm, apparent molecular size 250,000). Polyacrylamide gel electrophoresis of the affinity-purified receptor showed two broad bands by silver staining, migrating with apparent molecular masses of 54,000 and 38,000. Gel filtration of the affinity purified material yielded a single peak labeled by [3H]Q ICS 205-930 with an apparent molecular size of 250,000, which was also composed of two bands of 54,000 and 38,000, consistent with these being the constituents of the 5-HT3 receptor.  相似文献   

8.
A 1,4-dihydropyridine- and phenylalkylamine-binding polypeptide has been identified by photoaffinity labeling of purified rabbit and guinea pig skeletal muscle calcium channel preparations. The arylazide ligands (-)-[3H]azidopine and (-)-5-[(3-azidophenethyl)[N-methyl-3H]methylamino]-2-(3,4,5- trimethoxyphenyl)-2-isopropylvaleronitrile [( N-methyl-3H]LU 49888) were used to label 1,4-dihydropyridine- and phenylalkylamine-binding sites, respectively. A single, 155 to 170-kDa polypeptide was specifically labeled by both ligands in rabbit and guinea pig preparations provided that the skeletal muscle membranes used for purification were derived from fresh and not previously frozen and thawed tissue. The photoaffinity labeled polypeptide (termed here alpha 1) is different from the previously described alpha subunit in that it has the identical electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels irrespective of pretreatment either with N-ethylmaleimide or with dithiothreitol. The use of transverse tubular membranes isolated from previously frozen and thawed skeletal muscle results in a purified calcium channel preparation devoid of the alpha 1 subunit. In these preparations proteolytic degradation products of alpha 1 are labeled with both (-)-[3H]azidopine and [N-methyl-3H]LU 49888. Another large molecular weight polypeptide (termed here alpha 2) was also present in every purified calcium channel preparation studied. alpha 2 is distinct from alpha 1 in that reduction with dithiothreitol changes its apparent mass from 160-190 to 130-150 kDa. The alpha 2 subunit is not photoaffinity labeled either with (-)-[3H]azidopine or [N-methyl-3H]LU 49888. These data suggest that two distinct high molecular weight polypeptides (termed alpha 1 and alpha 2) are putative subunits of skeletal muscle calcium channels. Only the alpha 1 subunit contains both 1,4-dihydropyridine and phenylalkylamine receptors. alpha 2 is the same as the previously described alpha subunit (Curtis, B. M., and Catterall, W. A. (1984) Biochemistry 23, 2113-2118), but is neither a 1,4-dihydropyridine- nor a phenylalkylamine-binding protein.  相似文献   

9.
B Votta  J Keefer    S Mong 《The Biochemical journal》1990,270(1):213-218
Leukotriene B4 (LTB4) is an arachidonate metabolite which elicits a variety of pro-inflammatory responses by activation of a guanine-nucleotide-binding protein-coupled membrane receptor. As a prelude to receptor isolation and purification, we have established assay methods for LTB4 receptor solubilization and characterization from sheep lung membranes. [3H]LTB4 binding to the soluble receptor was saturable, specific, protein-concentration- and time-dependent and reversible. Binding of [3H]LTB4 was enhanced by divalent cations and inhibited by sodium ions in a manner analogous to its binding to the human leukocyte membrane receptor. Saturation binding yielded a dissociation constant (Kd) of 0.50 +/- 0.05 nM and a receptor density (Bmax) of 330 +/- 90 fmol/mg of protein for [3H]LTB4 binding to detergent-solubilized receptor. In competition experiments, the rank order of binding affinity was LTB4 greater than 20-OH-LTB4 greater than trans-homo-LTB4 greater than 6-trans-LTB4 greater than U-75302. Gel-filtration chromatography showed that the LTB4 receptor protein in the detergent micellar state has a molecular mass in the range 800-1000 kDa. These results demonstrate that the physiologically and pharmacologically important LTB4 receptor may be readily solubilized from sheep lung membranes without alteration in binding specificity and characteristics, suggesting that sheep lung membranes represent a rich source with which to pursue receptor isolation and purification.  相似文献   

10.
Somatostatin-28 (SRIF-28) preferring receptors were solubilized from hamster beta cell insulinoma using the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate. The binding of the iodinated [Leu8-D-TRP22-Tyr25]SRIF-28 analog (referred to as 125I[LWY] SRIF-28) to the solubilized fraction was time-dependent, saturable, and reversible. Scatchard analysis of equilibrium binding data indicated that the solubilized extract contained two classes of SRIF-28-binding sites: a high affinity site (Kd = 0.3 nM and Bmax = 1 pmol/mg protein) and a low affinity site (Kd = 13 nM and Bmax = 4.7 pmol/mg protein). The binding of 125I[LWY]SRIF-28 to solubilized SRIF-28 receptors was sensitive to the GTP analog guanosine-5'-O-thiotriphosphate, suggesting that receptors are functionally linked to a G-protein. By anion-exchange chromatography of the solubilized extract followed by chromatography on wheat germ agglutinin, a 46-fold purification of SRIF-28 receptors was obtained. At this stage of purification, only high affinity sites were found (Kd = 1 nM) and the GTP effect was not maintained. A specific protein of 37 kDa was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after photoaffinity labeling. We suggest that this protein is the putative SRIF-28 receptor or a subunit thereof.  相似文献   

11.
Scatchard analysis of saturation curves was performed to compared newborn and adult rat neurotensin receptor using [3H] neurotensin as a tracer. The membrane fraction of newborn rat cerebral cortex has a single population of neurotensin receptor (Kd = 0.13 nM, Bmax = 710 fmol/mg protein), whereas adults have two distinct neurotensin binding sites (high affinity site, Kd1 = 0.13 nM; low affinity site, Kd2 = 20 nM). High affinity neurotensin receptor, solubilized with digitonin, was purified from newborn rat cortex by affinity chromatography. An overall purification of 14,000-fold was achieved. The binding of [3H] neurotensin to the purified receptor is saturable and specific, with a Kd of 0.45 nM. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the presence of 2-mercaptoethanol revealed purified material of a single major band of Mr = 55,000.  相似文献   

12.
The histamine H3 receptor agonist (R)alpha-methylhistamine (MeHA) inhibited, in a nanomolar range, basal and carbachol-stimulated inositol phosphate formation in the human gastric tumoral cell line HGT1-clone 6. The inhibition was reversed by micromolar concentrations of the histamine H3 receptor antagonist thioperamide and was sensitive to cholera or pertussis toxin treatment. Using [3H]N alpha-MeHA as specific tracer, high affinity binding sites were demonstrated with a Bmax of 54 +/- 3 fmol/mg of protein and a KD of either 0.61 +/- 0.04 or 2.2 +/- 0.4 nM, in the absence or presence of 50 microM GTP[gamma]S, respectively. The binding sites were solubilized by Triton X-100 and prepurified by gel chromatography. They were separated from the histamine H2 receptor sites by filtration through Sepharose-famotidine and finally retained on Sepharose-thioperamide. The purified sites concentrated in one single silver-stained protein band of 70 kDa in SDS-polyacrylamide gel electrophoresis. They specifically bound [3H]N alpha-MeHA with a KD of 1.6 +/- 0.1 nM and a Bmax of 12,000 +/- 750 pmol/mg of protein. This corresponds to a 90,225-fold purification over cell lysate and a purity degree of 84%. Binding was competitively displaced by N alpha-MeHA (IC50 = 5.8 +/- 0.7 nM), (R) alpha-MeHA (IC50 = 9 +/- 1 nM), and thioperamide (IC50 = 85 +/- 10 nM), but not by famotidine (H2 antagonist) or by mepyramine (H1 antagonist). These findings provide the first evidence for solubilization, purification, and molecular mass characterization of the histamine H3 receptor protein and for the negative coupling of this receptor phosphatidylinositol turnover through a so far unidentified G protein.  相似文献   

13.
The dihydropyridine receptor was purified from rabbit skeletal muscle microsomes in the presence of [3H]nitrendipine plus diltiazem or [3H](+)PN 200-110 to an apparent density of 1.5-2 nmol binding sites/mg protein. Sodium dodecyl sulfate gel electrophoresis in the absence of reducing agents yielded three peptide bands of 142, 56 and 30 kDa in a relative ratio of 11:1:1.3, whereas in the presence of 40 mM dithiothreitol bands of 142, 122, 56, 31, 26 and 22 kDa were obtained in a relative ratio of 5.5:2.2:1:0.9:14:0.09. This gel pattern was observed regardless of whether the receptor was purified as a complex with nitrendipine plus diltiazem or with (+)PN 200-110. cAMP-dependent protein kinase phosphorylated preferentially the 142-kDa band up to a stoichiometry of 0.82 +/- 0.07 (15) mol phosphate/mol peptide. The 56-kDa band was phosphorylated only in substoichiometric amounts. [3H]PN 200-110 bound at 4 degrees C to one site with apparent Kd and Bmax values of 9.3 +/- 1.7 nM and 2.2 +/- 0.3 (3) nmol/mg protein, respectively. The binding was stereospecific and was not observed in the presence of 1 mM EGTA. Desmethoxyverapamil interfered with the binding of [3H]PN 200-110 in an apparent allosteric manner. (-)Desmethoxyverapamil inhibited the binding of [3H]PN 200-110 at 37 degrees C and stimulated it at 18 degrees C. In agreement with these results, (-)desmethoxyverapamil increased the dissociation rate of [3H]PN 200-110 from 0.29 min-1 to 0.38 min-1 at 37 degrees C and decreased it threefold from 0.046 min-1 to 0.017 min-1 at 18 degrees C. The (+)isomer of desmethoxyverapamil inhibited PN 200-110 binding at all temperatures tested. d-cis-Diltiazem stimulated the binding of [3H]PN 200-110 at 37 degrees C with an apparent EC50 of 1.4 microM and decreased the dissociation rate from 0.29 min-1 to 0.11 min-1. The stimulatory effect of d-cis-diltiazem was temperature-dependent and was seen only at temperatures above 18 degrees C. These results suggest that the purified dihydropyridine receptor retains the basic properties of the membrane-bound receptor and contains separate sites for at least dihydropyridines and phenylalkylamines.  相似文献   

14.
1. Dopamine D-1 receptors of the bovine caudate nucleus were solubilized with different detergents. They were labelled with [3H]SCH 23390 and assayed by filtration through PEI-coated glass fibre filters and Sephadex G-50 columns. 2. DCHAPS was the best solubilizer among all detergents used and at 0.075% DCHAPS, 10 mg/ml protein, 30 min, 4 degrees C, gave the yield of 48.7%. 3. Reconstitution of solubilized receptors was performed using SM-2 Bio-Beads. Phosphatidylcholine did not improve reconstitution suggesting that DCHAPS solubilized sufficient amounts of the membrane phospholipids. 4. Loss of affinity of solubilized receptors to [3H]SCH 23390 binding was reversible. Apparent Kd values of 0.36 +/- 0.02, 21.3 +/- 3.2 and 0.77 +/- 0.05 nM were obtained for membrane-bound, solubilized and reconstituted receptors, respectively.  相似文献   

15.
The fungal phytotoxin fusicoccin binds with high affinity to plasma membranes of the monocotyledonous plant, Commelina communis L. The sites bind the toxin with an apparent Kd of 5.2 nM and a pH optimum of 6.0. They occur at a level of approximately 6-8 pmol/mg plasma membrane protein. Photoaffinity labeling with the biologically active fusicoccin derivative 9'-nor-8'-(4-azido[3,5-3H]benzoyl) diaminoethylfusicoccin identified a polypeptide of 31.5 kDa on SDS/PAGE which was strongly labeled. A second 32.5-kDa band was also consistently labeled, although not to the same extent. The binding sites were solubilized in functional form and a purification scheme was developed based on affinity and ion-exchange procedures. The purified fraction contains two polypeptides of apparent molecular masses of 30.5 kDa and 31.6 kDa. A detailed molecular analysis of the fusicoccin-binding complex is now possible.  相似文献   

16.
A F Ikin  Y Kloog  M Sokolovsky 《Biochemistry》1990,29(9):2290-2295
The N-methyl-D-aspartate (NMDA)/phencyclidine (PCP) receptor from rat forebrain was solubilized with sodium cholate and purified by affinity chromatography on amino-PCP-agarose. A 3700-fold purification was achieved. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol revealed four major bands of Mr 67,000, 57,000, 46,000, and 33,000. [3H]Azido-PCP was irreversibly incorporated into each of these bands after UV irradiation. The dissociation constant (Kd) of [1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) binding to the purified NMDA/PCP receptor was 120 nM. The maximum specific binding (Bmax) for [3H]TCP binding was 3.3 nmol/mg of protein. The pharmacological profile of the purified receptor complex was similar to that of the membranal and soluble receptors. The binding of [3H]TCP to the purified receptor was modulated by the NMDA receptor ligands glutamate, glycine, and NMDA.  相似文献   

17.
The neurotensin receptor protein, solubilized with digitonin/asolectin from bovine cerebral cortex membranes, was purified to apparent homogeneity by affinity chromatography using immobilized neurotensin. The product exhibits saturable and specific binding of [3,11-tyrosyl-3,5-3H]neurotensin with an apparent affinity (Kd = 5.5 nM) comparable to that measured in intact membranes and crude soluble extracts. The affinity-purified material, after reduction with 100 mM dithiothreitol, in denaturing gel electrophoresis showed a single polypeptide of Mr 72,000. Under nonreducing conditions the apparent Mr, however, was 50,000, suggesting the presence of intramolecular disulfide bonds. The purified neurotensin receptor was judged to be homogeneous, in that (i) only a single polypeptide was detectable; and (ii) the overall purification was 30,000-50,000-fold, giving a specific neurotensin-binding activity close to the theoretical maximum.  相似文献   

18.
The equilibrium binding characteristics of the tritiated GABAA agonist, 5-aminomethyl-3-isothiazolol (thiomuscimol) are described. Using the filtration technique to separate bound- from free-ligand, [3H]thiomuscimol was shown to bind to the GABA(A) receptor site(s) in a saturable manner with a Kd value of 28+/-6.0 nM and a Bmax value of 50+/-4.0 fmol/mg original tissue. In parallel binding experiments, the Kd and Bmax values for [3H]muscimol were determined to be 5.4+/-2.8 nM and 82+/-11 fmol/mg original tissue, respectively. In binding assays using the centrifugation technique, Kd and Bmax values for [3H]thiomuscimol were found to be 116+/-22 nM and 154 13 fmol/mg original tissue, respectively, whereas a Kd value of 16+/-1.8 nM and a Bmax value of 155+/-8.0 fmol/mg original tissue were determined for [3H]muscimol. In comparative inhibition studies using the GABA(A) antagonist SR 95531 and a series of specific GABAA agonists, the binding sites for [3H]thiomuscimol and [3H]muscimol were shown to exhibit similar pharmacological profiles. Autoradiographic studies disclosed similar regional distribution of [3H]thiomuscimol and [3H]muscimol binding sites in rat brain. Highest densities of binding sites were detected in cortex, hippocampus, and cerebellum, whereas low densities were measured in the midbrain structures of rat cortex. In conclusion, the equilibrium GABA(A) receptor binding characteristics of [3H]thiomuscimol are very similar to those of [3H]muscimol.  相似文献   

19.
The sigma-receptor, a distinct binding site in brain tissue that may mediate some of the psychotomimetic properties of benzomorphan opiates and phencyclidine, has been solubilized using the ionic detergent sodium cholate. Binding assays were performed with the solubilized receptor using vacuum filtration over polyethyleneimine-treated glass fiber filters. The pharmacological specificity of the solubilized binding site for sigma-receptor ligands is nearly identical to the membrane-bound form of the receptor, with the order of potencies for displacement of the selective sigma-ligand [3H]di-o-tolylguanidine ([3H]DTG) closely correlated. The stereoselectivity for (+)-benzomorphan opiate enantiomers was retained by the solubilized receptor. The soluble receptor retained high affinity for binding of [3H]DTG (KD = 28 +/- 0.5 nM) and (+)-[3H]3-(3-hydroxyphenyl)-N-(1-propyl)piperidine [(+)-[3H]3-PPP] (KD = 36 +/- 2 nM). Photoaffinity labeling of the solubilized receptor by [3H]p-azido-DTG, a sigma-selective photoaffinity label, resulted in labeling of a 29-kilodalton polypeptide identical in size to that labeled in intact membranes. Estimation of the Stokes radius of the [3H]DTG binding site was obtained by Sepharose CL-6B chromatography in the presence of 20 mM cholate and calculated to be 8.7 nm. This value was identical to the molecular size found for the binding sites of the sigma-selective ligands (+)-[3H]3-PPP and (+)-[3H]SKF-10,047, supporting the hypothesis that all three ligands bind to the same macromolecular complex.  相似文献   

20.
J Riond  N Vita  G Le Fur  P Ferrara 《FEBS letters》1989,245(1-2):238-244
The isoquinoline carboxamide derivative [3H]PK11195, a ligand for the peripheral-type benzodiazepine (BZD) receptor, binds to Chinese hamster ovary (CHO) cell mitochondria in a specific and saturable manner. Scatchard analysis showed the presence of a single-binding site with an apparent dissociation constant (Kd) of 12.0 +/- 1.0 nM and a maximal binding capacity of 23.0 +/- 2.0 pmol/mg protein. The pharmacological characterization of this CHO BZD-binding site, based on the displacement of [3H]PK11195 by several drugs of known binding specificity, indicated that it is of the peripheral-type. The photoaffinity probe [3H]PK14105, a nitrophenyl derivative of [3H]PK11195, specifically labeled a 17 kDa CHO mitochondrial protein. This 17 kDa protein was purified from digitonin-solubilized mitochondria by gel-filtration chromatography and two reverse-phase HPLC steps. The purified material migrated as a single band on silver stained or autoradiographed SDS-polyacrylamide gels, and had an amino acid composition corresponding to a 17 kDa protein rich in Leu, Val, Ala, Gly, and Pro. Analysis of the amino-terminal sequence of the purified 17 kDa protein revealed a blocked amino-terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号