首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Mesenchymal stromal cells (MSCs), also called mesenchymal stem cells, migrate and function as stromal cells in tumor tissues. The effects of MSCs on tumor growth are controversial. In this study, we showed that MSCs increase proliferation of tumor cells in vitro and promote tumor growth in vivo. We also further analyzed the mechanisms that underlie these effects. For use in in vitro and in vivo experiments, we established a bone marrow-derived mesenchymal stromal cell line from cells isolated in C57BL/6 mice. Effects of murine MSCs on tumor cell proliferation in vitro were analyzed in a coculture model with B16-LacZ cells. Both coculture with MSCs and treatment with MSC-conditioned media led to enhanced growth of B16-LacZ cells, although the magnitude of growth stimulation in cocultured cells was greater than that of cells treated with conditioned media. Co-injection of B16-LacZ cells and MSCs into syngeneic mice led to increased tumor size compared with injection of B16-LacZ cells alone. Identical experiments using Lewis lung carcinoma (LLC) cells instead of B16-LacZ cells yielded similar results. Consistent with a role for neovascularization in MSC-mediated tumor growth, tumor vessel area was greater in tumors resulting from co-injection of B16-LacZ cells or LLCs with MSCs than in tumors induced by injection of cancer cells alone. Co-injected MSCs directly supported the tumor vasculature by localizing close to vascular walls and by expressing an endothelial marker. Furthermore, secretion of leukemia inhibitory factor, macrophage colony-stimulating factor, macrophage inflammatory protein-2 and vascular endothelial growth factor was increased in cocultures of MSCs and B16-LacZ cells compared with B16-LacZ cells alone. Together, these results indicate that MSCs promote tumor growth both in vitro and in vivo and suggest that tumor promotion in vivo may be attributable in part to enhanced angiogenesis.  相似文献   

4.
Background aimsMesenchymal stromal/stem cells (MSCs) can be isolated from human bone marrow (BM), expanded ex vivo and identified via numerous surface antigens. Despite the importance of these cells in regenerative therapy programs, it is unclear whether the cell membrane signature defining MSC preparations ex vivo is determined during culture or may reflect an in vivo counterpart. BM-MSC phenotype in vivo requires further investigation.MethodsTo characterize cells in their natural BM environment, we performed multi-parametric immunohistochemistry on trabecular bone biopsy specimens from multiple donors and described cells by different morphology and micro-anatomic localization in relationship to a precise pattern of MSC antigen expression.ResultsMicroscopically examined high-power field marrow sections revealed an overlapping in vivo expression of antigens characterizing ex vivo expanded BM-MSCs, including CD10, CD73, CD140b, CD146, GD2 and CD271. Expanding this panel to proteins associated with pluripotency, such as Oct4, Nanog and SSEA-4, we were able to identify different cellular populations in the human trabecular bone and BM expressing different progenitor cell markers.ConclusionsTargeting several multipotency and pluripotency markers, we found that the BM contains identifiable and distinct progenitor cells further justifying their introduction for a wide range of applications in regenerative medicine.  相似文献   

5.
Pluripotent stem cells within the adipose stromal compartment, termed adipose-derived stromal cells (ASCs), have the potential to differentiate into a variety of cell lineages both in vitro and in vivo. Imaging with expression of exogenous or endogenous green fluorescent protein (GFP) reporters facilitates the detailed research on ASCs’ physiological behavior during differentiation in vivo. This study was aimed to confirm whether ASCs expressing GFP still could be induced to chondrogenesis, and to compare the expression of exogenous or endogenous GFP in ASCs during chondrogenic differentiation. ASCs were harvested from inguinal fat pads of normal nude mice or GFP transgenic mice. Monolayer cultures of ASCs from normal mice were passaged three times and then infected with replication-incompetent adenoviral vectors carrying GFP genes. Allowed to recover for 5 days, Ad/GFP infected ASCs were transferred to chondrogenic medium as well as the ASCs from transgenic mice cultured in vitro over the same passages. The level of GFP in transgenic ASCs maintained stable till 3 months after chondrogenic induction. Whereas, high level of GFP expression in Ad/GFP infected ASCs could last for only 8 weeks and then declined stepwise. Important cartilaginous molecules such as SOX9, collagen type I, collagen type II, aggrecan, collagen type X were assessed using immunocytochemistry, RT-PCR, and Western Blot. The results indicated that no matter the GFP was exogenous or endogenous, it did not influence the chondrogenic potential of ASCs in comparison with the normal controls. Moreover, chondrogenic lineages from ASCs also underwent phenotypic modulation called dedifferentiation as a result of long-term culture in monolayers similar to normal chondrocytes.  相似文献   

6.
Melatonin in nanomolar concentrations synchronizes protein synthesis in primary cultures of hepatocytes through calcium-dependent activation of protein kinases. The synchronizing effect of melatonin is blocked by the cytoplasmic calcium chelating agent BAPTA-AM (20 μM) as well as by the inhibitor of protein kinases 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine dihydrochloride (40 μM). Thus, protein phosphorylation is the key event in hepatocyte synchronization by melatonin, as we have demonstrated previously for gangliosides and biogenic amines. The antagonist of melatonin receptors luzindole (20 nM) blocks the synchronizing function of melatonin.  相似文献   

7.
Background aimsGraft-versus-host disease (GvHD) remains a major complication after allogeneic hematopoietic cell transplantation (HCT). Recent literature demonstrates a potential benefit of human mesenchymal stromal cells (MSC) for the treatment of refractory GvHD; however, the optimal dose remains uncertain. We set out to develop an animal model that can be used to study the effect of MSC on GvHD.MethodsA GvHD mouse model was established by transplanting C3H/he donor bone marrow (BM) cells and spleen cells into lethally irradiated BALB/c recipient mice. MSC were obtained from C3H/he mice and the C3H/10T1/2 murine MSC line.ResultsThe mRNA expression of Foxp3 in regional lymph nodes (LN) localized with T cells was markedly increased by the addition of C3H10T1/2 cells in a real-time polymerase chain reaction (PCR). Using a mixed lymphocyte reaction, we determined the optimal splenocyte proliferation inhibition dose (MSC:splenocyte ratios 1:2 and 1:1). Three different C3H10T1/2 cell doses (low, 0.5 × 106, intermediate, 1 × 106, and high, 2 × 106) with a consistent splenocyte dose (1 × 106) were evaluated for their therapeutic potential in an in vivo GvHD model. The clinical and histologic GvHD score and Kaplan–Meier survival rate were improved after MSC transplantation, and these results demonstrated a dose-dependent inhibition.ConclusionsWe conclude that MSC inhibit GvHD in a dose-dependent manner in this mouse model and this model can be used to study the effects of MSC on GvHD.  相似文献   

8.
Background aimsAmyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of brain and spinal cord motor neurons (MN). The intraspinal and systemic grafting of mesenchymal stromal cells (MSC) was used to treat symptomatic transgenic rats overexpressing human superoxide dismutase 1 (SOD1) in order to alleviate the disease course and prolong the animals’ lifespan.MethodsAt the age of 16 weeks (disease onset) the rats received two grafts of MSC expressing green fluorescent protein (GFP+ MSC) on the same day, intraspinally (105 cells) and intravenously (2 × 106 cells). Sham-treated animals were injected with phosphate-buffered saline (PBS). Motor activity, grip strength and body weight were tested, followed by immunohistochemical analysis.ResultsThe combined grafting of MSC into symptomatic rats had a significant effect on motor activity and grip strength starting 4 weeks after transplantation. The lifespan of animals in the treated group was 190 ± 3.33 days compared with 179 ± 3.6 days in the control group of animals. Treated rats had a larger number of MN at the thoracic and lumbar levels; these MN were of larger size, and the intensity of terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-end labeling (TUNEL) staining in the somas of apoptotic MN at the thoracic level was much lower than in sham-treated animals. Transplanted GFP+ MSC survived in the spinal cord until the end stage of the disease and migrated both rostrally and caudally from the injection site.ConclusionsIntraspinal and intravenous transplantation of MSC has a beneficial and possibly synergistic effect on the lifespan of ALS animals.  相似文献   

9.
10.
Background aimsFor many years the human heart has been considered a terminally differentiated organ with no regenerative potential after injury. Recent studies, however, have cast doubt on this long-standing dogma. The objective of this study was to investigate the presence of and characterize mesenchymal stromal cells (MSC) in the adult mouse heart. The impact of MSC on growth and differentiation of adult cardiac stem cells (CSC) was also analyzed.MethodsA combination of lineage-negative/c-kit-negative (Lin?/c-kit?) immunoselection with a plastic-adhesion technique was used to isolate cardiac-derived MSC. The differentiation capacity and expression of surface markers were analyzed. To investigate the impact of MSC on growth and differentiation of adult CSC, Green Fluorescent Protein (GFP+) adult CSC were co-cultured with GFP? cardiac-derived MSCResultsMSC were present in the adult mouse heart and they met the criteria established to define mouse MSC. They expressed surface markers and were able to differentiate, in a controlled manner, into multiple lineages. In addition, cardiac-derived MSC promoted the survival and expansion of adult CSC in vitroConclusionsMSC can be isolated from the mouse heart and they promote growth and differentiation of adult CSC. The findings from this study could have a significant beneficial impact on future heart failure treatment. Co-culture and co-implantation of cardiac-derived MSC with adult CSC could provide extensive cardiac regeneration and maintenance of the CSC population after implanted into the heart.  相似文献   

11.
12.
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are multipotent progenitor cells that have shown promise for several different therapeutic applications. As they are able to modulate the function of several types of immune cells, BM-MSCs are highly important in the field of cell-based immunotherapy. Understanding BM-MSC-natural killer (NK) cell interactions is crucial for improving their therapeutic efficiency. Here, we observed that the type of NK cell-activating cytokine (e.g., IL-2, IL-12, IL-15 and IL-21) strongly influenced the outcomes of their interactions with BM-MSCs. The expression patterns of the ligands (CD112, CD155, ULPB-3) and receptors (LAIR, NCR) mediating the cross-talk between BM-MSCs and NK cells were critically modulated following co-culture. BM-MSCs partially impaired NK cell proliferation but up-regulated their secretion of IFN-γ and TNF-α. As they are cytotoxic, activated NK cells induced the killing of BM-MSCs. Indeed, BM-MSCs triggered the degranulation of NK cells and increased their release of perforin and granzymes. Interestingly, activated NK cells induced ROS generation within BM-MSCs that caused their decreased viability and reduced expression of serpin B9. Collectively, our observations reveal that BM-MSC-NK cell interactions may impact the immunobiology of both cell types. The therapeutic potential of BM-MSCs will be significantly improved once these issues are well characterized.  相似文献   

13.
A circahoral rhythm of protein syntheses similar to that in monolayer hepatocytes was discovered in cell culture of Chinese hamster fibroblasts. Studies on the effects of pH changes in the culture medium and cultured cells on different parameters of protein synthesis showed some pH-dependent changes of predecessor pool and of its incorporation intensity into proteins. At the same time changes in a relative incorporation of the predecessor into proteins (with a correction for the pool) were insignificant. This value characterizing the productivity of protein synthesis does not seem to be directly associated with pH changes in the cells. The mean period of the rhythm of protein synthesis and intracellular pH was not changed with medium pH alterations.  相似文献   

14.
Pérez, L., Aguilar, R. and Sánchez-de-Jiménez, E. 1987. Effect of an exogenous auxin on maize tissues. Alteration of protein synthesis and phosphorylation. - Physiol. Plantarum 69: 517–522.
A synthetic auxin 2-(2-methyl-4-chloro)phenoxypropionic acid (MCPP), analogue of 2,4-D, alters maize ( Zea mays L. H-30) germination while inducing callus formation. The effect of this auxin on protein synthesis and phosphorylation of the embryonic tissues was explored. Total cytoplasmic proteins were analysed for 14C or 32P incorporation into trichloroacetic acid precipitable material. MCPP significantly stimulated protein synthesis as well as protein phosphorylation. The protein synthesis pattern was highly altered in the presence of MCPP as analysed by two-dimensional gel electrophoresis. Analyses by Sephadex G-100 chromatography and by two-dimensional gel electrophoresis of phosphorylated proteins indicate that the effect of MCPP on protein phosphorylation was only quantitative.  相似文献   

15.
A single injection of N-methyl-N-nitrosourea results in simultaneous long-term inhibition of tumor growth and protein synthesis in mouse hepatoma 22a cells. These effects are tightly connected: onset of tumor regrowth starts only after a full recovery of the activity of the protein synthetic machinery of tumor cells.  相似文献   

16.
17.
18.
A major question concerning the immunopathology of rheumatoid arthritis is why the disease is localized to particular joints. A possible explanation could be the presence within the synovium of cells that foster inflammation or easy accessibility of the synovium to migratory disease enhancing cells. Within both the bone marrow and the synovium, fibroblastic stromal cells play an important role in supporting the differentiation and survival of normal cells, and also contribute to the pathologic processes. Among fibroblastic stromal cells in synovial tissue and bone marrow, nurse-like cells are a unique population having the specific capacity to promote pseudoemperipolesis (adhesion and holding beneath) of lymphocytes, and also the ability to promote the growth and function of some populations of lymphocytes and monocytes. Nurse-like cells could therefore contribute to the immunopathogenesis of rheumatoid arthritis, and may contribute to the localization of inflammation within specific joints. The present review considers the evidence that supports these possibilities.  相似文献   

19.
In cultures of human keratinocytes HaCaT contained in a serum-free medium on glass, a circahoralian rhythm of protein synthesis was found similar to the one in hepatocytes in vitro. The intensity of the synthesis was determined by the inclusion of 3H-leucine corrected for the pool of free marked leucine. Rhythm was studied in washed 1- or 2-day cultures after the change of the medium. The medium conditioned with keratinocytes HaCaT synchronized the rarefied hepatocyte cultures nonsynchronous in the control. Therefore, the keratinocytes liberate synchronizing factors into the medium. A BAPTA-AM chelator of calcium ions eliminates the protein synthesis rhythm both in dense hepatocyte cultures synchronous in the control and in the HaCaT keratinocyte cultures. The effect of the H7 inhibitor of protein kinases was analogous. Thus, both in keratinocytes and hepatocytes, self-synchronization of fluctuations of the intensity of protein synthesis takes place. The mechanism of self-synchronization is the calcium-depending phosphorylation of cell proteins.  相似文献   

20.
A biochemical parameter of lymphocyte activation, lipid synthesis, has been measured in a purified specific antigen-binding cell population (ABC). ABC isolated form immune and nonimmune animals by sequential centrifugation on buoyant density and sedimentation velocity gradients have a 2- to 7-fold higher rate of 14-C choline incorporation into phospholipid than either unfractionated spleen cells or cells depleted of ABC. Aslo ABC from immune animals were shown to have a 4- to 7-fold higher rate of 14C-acetate incorporation into their neutral lipids than nonbinding controls. The elevated lipid synthesis seen in both nonimmune SRBC-ABC and TNP-SRBC ABC indicates that antigenic contact via the B cell immunoglobulin receptor results in signal transduction and activation of the specific receptor-bearing lymphocyte population. Binding of the same particle (SRBC) to B cells via their Fc receptors did not regularly result in activation of lipid synthesis. The magnitude of the increased lipid synthesis in ABC populations approached that seen in LPS-stimulated spleen cells. We propose that the measurement of early activation events in purified ABC may be a more appropriate criterion for antigen-induced signals that later events such as thymidine incorporation or antibody secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号